On Lupaş-Jain operators
DOI:
https://doi.org/10.24193/subbmath.2018.4.08Keywords:
Lupaş operator, Jain operator, convexity, weighted uniform approximation, modulus of continuity functionAbstract
In this paper, linear positive Lupaş-Jain operators are constructed and a recurrence formula for the moments is given. For the sequence of these operators; the weighted uniform approximation, also, monotonicity under convexity are obtained. Moreover, a preservation property of each Lupaş-Jain operator is presented.References
U. Abel, M. Ivan, On a generalization of an approximation operator de ned by A.
Lupa¸s, Gen. Math., 15 (2007), no. 1, 2134.
U. Abel, O. Agratini, Asymptotic behaviour of Jain operators, Numer Algor., 71
(2016), 553565.
O. Agratini, On a sequence of linear positive operators, Facta Univ. Ser. Math. In-
form., 14 (1999), 4148.
O. Agratini, On the rate of convergence of a positive approximation process, Nihonkai
Math., J. 11 (2000), 47-56.
O. Agratini, Approximation properties of a class of linear operators, Math. Methods
Appl. Sci., 36 (2013), no. 17, 23532358.
E.W. Cheney, A. Charma, Bernstein power series, Can. J. Math., 16 (1964), 241-252.
A. Erencin, G. Ba¸scanbaz-Tunca and F. Ta¸sdelen, Some properties of the operators
de ned by Lupa¸s, Rev. Anal. Numér. Théor. Approx., 43 (2014), no. 2, 168174.
A. Farca¸s, An asymptotic formula for Jains operators, Stud. Univ. Babe¸s-Bolyai
Math., 57 (2012), no. 4, 511517.
Z. Finta, Pointwise approximation by generalized Szász-Mirakjan operators, Stud.
Univ. Babe¸s-Bolyai Math., 46 (2001), no. 4, 6167.
Z. Finta, Quantitative estimates for some linear and positive operators, Stud. Univ.
Babe¸s-Bolyai Math., 47 (2002), no. 3, 7184.
A.D. Gadzhiev, Theorems of the type of P. P. Korovkins type theorems, Mat. Za-
metki, 20 (1976), no. 5, 781-786.
G. Gasper, M. Rahman, Basic Hypergeometric Series, Cambridge University Press,
A. Holho¸s, Quantitative estimates for positive linear operators in weighted spaces,
Gen. Math., 16 (2008), no. 4, 99110.
Z. Li, Bernstein polynomials and modulus of continuity, J. Approx. Theory, 102
(2000), no.1, 171-174.
G.C. Jain, Approximation of functions by a newclass of linear operators, J. Austral.
Math. Soc., 13 (1972), no. 3, 271276.
A. Lupa¸s, The approximation by some positive linear operators. In: Proceedings of
the International Dortmund Meeting on Approximation Theory (M.W. MÄuller et
al.,eds.), Mathematical Research, 86 (1995), 201-229, Akademie Verlag, Berlin.
H. N. Mhaskar and D. V. Pai, Fundamentals of approximation theory, CRC Press,
Boca Raton, FL; Narosa Publishing House, New Delhi, 2000.
A. Olgun, F. Ta¸sdelen and A. Erençin, A generalization of Jains operators, Appl.
Math. Comput., 266 (2015), 611.
M.A. Özarslan, Approximation Properties of Jain-Stancu Operators, Filomat, 30
(2016), no. 4, 10811088.
P. Patel, V.N. Mishra, On new class of linear and positive operators, Boll. Unione
Mat. Ital., 8 (2015), no. 2, 8196.
D.D. Stancu, M.R. Occorsio, On Approximation by binomial operators of Tiberiu
Popoviciu type, Rev. Anal. Numér. Théor. Approx., 27 (1998), 167-181.
D.J. Velleman, G.S. Call, Permutation and combination locks, Mathematics Maga-
zine, 68 (1995), no. 4, 243-253.
Downloads
Additional Files
Published
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Transfer of copyright agreement: When the article is accepted for publication, the authors and the representative of the coauthors, hereby agree to transfer to Studia Universitatis Babeș-Bolyai Mathematica all rights, including those pertaining to electronic forms and transmissions, under existing copyright laws, except for the following, which the authors specifically retain: the authors can use the material however they want as long as it fits the NC ND terms of the license. The authors have all rights for reuse according to the license.