Subclasses of p-valent meromorphic functions involving certain operator
DOI:
https://doi.org/10.24193/subbmath.2018.3.03Keywords:
Analytic, p-valent, meromorphic, linear operator, dif- ferential subordination inclusion relationships.Abstract
In this paper we investigate some inclusion relationships of two new
subclassses of meromorphically p-valent functions, dened by means
of a linear operator. We also study some integral preserving properties
and convolution properties of these classes.
References
E. Aqlan, J. M. Jahangiri and S. R. Kulkarni, Certain integral operators
applied to meromorphic p-valent functions, J. Nat. Geom., 24 (2003),
-120.
____________________________________________________________
T. Bulboaca, Di¤erential Subordinations and Superordinations, Recent
Results, House of Scienti c Book Publ., Cluj-Napoca, 2005.
_____________________________________________________
P. Eenigenberg, S. S. Miller, P. T. Mocanu and M. O. Reade, On Briot-
Bouquet di¤erential subordination, Gen. Inequal., 3 (1983), 339-348.
____________________________________________________
V. Kumar and S. L. Shukla, Certain integrals for classes of p-valent
meromorphic functions, Bull. Aust. Math. Soc., 25(1982), 85-97.
_____________________________________________________
S. S. Miller and P. T. Mocanu, Di¤erential Subordination : Theory and
Applications, Series on Monographs and Textbooks in Pure and Applied
Mathematics, Vol. 225, Marcel Dekker Inc., New York and Basel, 2000.
____________________________________________________
S. S. Miller and P. T. Mocanu, Di¤erential subordinations and univalent
functions, Michigan Math. J., 28 (1981), no. 2, 157-171.
_______________________________________________________
S. S. Miller and P. T. Mocanu, Di¤erential subordinations and inequali-
ties in the complex plane, J. Di¤erential Equations, 67 (1987), 199-211.
__________________________________________________________
A. O. Mostafa, Inclusion results for certain subcasses of p-valent mero-
morphic functions associated with a new operator, J. Ineq. Appl.,
(2012), 1-14.
_________________________________________________________
St. Ruscheweyh, Convolutions in Geometric Function Theory,
Se´minaire de Mathe´matiques Supe´rieures, vol. 83, Les Presses de
Universite´ de Montre´al, Montreal, Quebec, 1982.
___________________________________________________
B. A. Uralegaddi and C. Somanatha, Certain classes of meromorphic
multivalent functions, Tamkang J. Math. 23 (1992), 223231.
______________________________________________________
D. -G. Yang, Certain convolution operators for meromorphic functions,
South. Asian Bull. Math., 25 (2001), 175-186.
Downloads
Published
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Transfer of copyright agreement: When the article is accepted for publication, the authors and the representative of the coauthors, hereby agree to transfer to Studia Universitatis Babeș-Bolyai Mathematica all rights, including those pertaining to electronic forms and transmissions, under existing copyright laws, except for the following, which the authors specifically retain: the authors can use the material however they want as long as it fits the NC ND terms of the license. The authors have all rights for reuse according to the license.