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Abstract. In this paper, some Hermite-Hadamard type inequalities for products
of two GA-convex functions via Hadamard fractional integrals are established.
Our results about GA-convex functions are analogous generalizations for some
other results proved by Pachpette for convex functions.
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1. Introduction

In recent years, very large number of studies of error estimations have been done
for Hermite-Hadamard type inequalities. It is known that Hermite-hadamard integral
inequality was built on a convex function. In time, Hermite-Hadamrd inequality is
developed other kinds of convex functions. For some results which generalize, improve,
and extend the Hermite-Hadamard inequality see [1, 7, 10, 18, 20] and references
therein.

Hermite-Hadamard type inequalities for products of two convex functions are
interesting problem and firstly developed by Pachpatte in [16]. In [17], Pachpette also
established Hermite-hadamard type inequalities involving two log-convex functions. In
[11], Kırmacı et. al. proved several Hermite-Hadamard type inequalities for products
of two convex and s-convex functions. In [19], Sarıkaya et. al. proved some Hermite-
Hadamard type inequalities for products of two h-convex functions. In [2], Bakula et.
al. established Hermite-Hadamard type inequalities for products of two m-convex and
(α,m)-convex functions. In [4, 6], Chen and Wu obtained some Hermite-Hadamard
type inequalities for products of two convex and harmonically s-convex functions. In
[21], Yin and Qi established some Hermite-Hadamard type inequalities for products
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of two convex functions. In [5], Chen obtained some new Hermite-Hadamard type
inequalities for products of two convex functions via Riemann-Liouville fractional
integrals and in [3] he extended this problem tom-convex and (α,m)-convex functions.

In this work, we establish Hermite-Hadamard type inequalities for products of
two GA-convex functions via Hadamard fractional integrals. Our results are analogous
generalization for some results in [16].

2. Preliminaries

Let f : I ⊆ R→ R be a convex function defined on the interval I of real numbers
and a, b ∈ I with a < b. The inequality

f

(
a+ b

2

)
≤ 1

b− a

∫ b

a

f(x)dx ≤ f(a) + f(b)

2
(2.1)

is well known in the literature as Hermite-Hadamard’s inequality [8].
In [16], Pachpette established following two Hermite-Hadamard type inequalities

for products of convex functions as follows:

Theorem 2.1. Let f and g be real-valued, non-negative and convex functions on [a, b].
Then

1

b− a

∫ b

a

f (x) g (x) dx ≤ 1

3
M (a, b) +

1

6
N (a, b) (2.2)

and

2f

(
a+ b

2

)
g

(
a+ b

2

)
≤ 1

b− a

∫ b

a

f (x) g (x) dx

+
1

6
M (a, b) +

1

3
N (a, b) (2.3)

where M (a, b) = f (a) g (a) + f (b) g (b) and N (a, b) = f (a) g (b) + f (b) g (a) .

Definition 2.2. [14, 15]. A function f : I ⊆ (0,∞) → R is said to be GA-convex
(geometric-arithmetically convex) if

f(xty1−t) ≤ tf(x) + (1− t) f(y)

for all x, y ∈ I and t ∈ [0, 1].

We will now give definitions of the right-hand side and left-hand side Hadamard
fractional integrals which are used throughout this paper.

Definition 2.3. [12]. Let f ∈ L [a, b]. The right-hand side and left-hand side Hadamard
fractional integrals Jαa+f and Jαb−f of order α > 0 with b > a ≥ 0 are defined by

Jαa+f(x) =
1

Γ(α)

∫ x

a

(
ln
x

t

)α−1
f(t)

dt

t
, x > a

and

Jαb−f(x) =
1

Γ(α)

∫ b

x

(
ln
t

x

)α−1
f(t)

dt

t
, x < b
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respectively, where Γ(α) is the Gamma function defined by

Γ(α) =

∫ ∞
0

e−ttα−1dt.

In [9], İşcan represented Hermite-Hadamard’s inequalities for GA-convex func-
tions in fractional integral forms as follows.

Theorem 2.4. Let f : I ⊆ (0,∞)→ R be a function such that f ∈ L [a, b] where a, b ∈ I
with a < b. If f is a GA-convex function on [a, b], then the following inequalities for
fractional integrals hold:

f
(√

ab
)
≤ Γ(α+ 1)

2
(
ln b

a

)α [Jαa+f(b) + Jαb−f(a)
]
≤ f(a) + f(b)

2
(2.4)

with α > 0.

In [13], Kunt and İşcan established new Hermite-Hadamard type inequality for
GA-convex function in fractional integral forms as follows:

Theorem 2.5. Let f : [a, b] ⊆ (0,∞)→ R be a GA-convex function with a < b and
f ∈ L [a, b], then the following inequalities for fractional integrals hold:

f
(√

ab
)
≤ Γ (α+ 1)

21−α
(
ln b

a

)α [Jα√ab−f (a) + Jα√
ab+

f (b)
]
≤ f (a) + f (b)

2
. (2.5)

3. General results

Theorem 3.1. Let f and g : [a, b] ⊆ (0,∞)→ R be non-negative and GA-convex
functions with a < b and f ∈ L [a, b], then the following inequality for fractional
integrals hold:

Γ (α+ 1)

2
(
ln b

a

)α [Jαa+f (b) g (b) + Jαb−f (a) g (a)
]

≤
(

α

α+ 2
− α

α+ 1
+

1

2

)
M (a, b) +

α

(α+ 2) (α+ 1)
N (a, b) (3.1)

where α > 0, M (a, b) = f (a) g (a) + f (b) g (b) and N (a, b) = f (a) g (b) + f (b) g (a) .

Proof. Since f and g are non-negative and GA-convex functions on [a, b], we have for
all t ∈ [0, 1]

f(atb1−t) ≤ tf(a) + (1− t) f(b), (3.2)

and

g(atb1−t) ≤ tg(a) + (1− t) g(b). (3.3)

From products of (3.2) and (3.3), we have

f(atb1−t)g(atb1−t) ≤ t2f (a) g (a) + (1− t)2 f (b) g (b)

+t (1− t) [f (a) g (b) + f (b) g (a)] . (3.4)
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Similarly (3.4), we have

f(a1−tbt)g(a1−tbt) ≤ (1− t)2 f (a) g (a) + t2f (b) g (b)

+t (1− t) [f (a) g (b) + f (b) g (a)] . (3.5)

The sum of (3.4) and (3.5), we have

f(atb1−t)g(atb1−t) + f(a1−tbt)g(a1−tbt)

≤
(
2t2 − 2t+ 1

)
M (a, b) + 2t (1− t)N (a, b) (3.6)

Multiplying both sides of (3.6) by tα−1 α2 , then integrating the obtained inequality
with respect to t over [0, 1], we have

α

2

[∫ 1

0

tα−1f(atb1−t)g(atb1−t)dt+

∫ 1

0

tα−1f(a1−tbt)g(a1−tbt)dt

]

=
α

2

∫ b

a

(
ln b

u

ln b
a

)α−1
f (u) g (u)

du

u ln b
a

+

∫ b

a

(
ln v

a

ln b
a

)α−1
f (v) g (v)

du

v ln b
a


=

α

2
(
ln b

a

)α
[∫ b

a

(
ln
b

u

)α−1
f (u) g (u)

du

u
+

∫ b

a

(
ln
v

a

)α−1
f (v) g (v)

du

v

]

=
Γ (α+ 1)

2
(
ln b

a

)α [Jαa+f (b) g (b) + Jαb−f (a) g (a)
]

≤ α

2

[
M (a, b)

∫ 1

0

tα−1
(
2t2 − 2t+ 1

)
dt+N (a, b)

∫ 1

0

tα−12t (1− t) dt
]

=

(
α

α+ 2
− α

α+ 1
+

1

2

)
M (a, b) +

α

(α+ 2) (α+ 1)
N (a, b)

and this completes the proof. �

Remark 3.2. Theorem 3.1 is an analogous generalization of (2.2) for GA-convex func-
tions.

Corollary 3.3. In Theorem 3.1, if we take g : [a, b]→ R as g (x) = 1 for all x ∈ [a, b],
then we have

Γ (α+ 1)

2
(
ln b

a

)α [Jαa+f (b) + Jαb−f (a)
]
≤ f (a) + f (b)

2

which is the right hand side of (2.4).

Corollary 3.4. In Theorem 3.1, if we take α = 1, then we have

1

ln b− ln a

∫ b

a

f (x) g (x)
dx

x
≤ 1

3
M (a, b) +

1

6
N (a, b)

for GA-convex functions.
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Theorem 3.5. Let f and g : [a, b] ⊆ (0,∞)→ R be non-negative and GA-convex
functions with a < b and f ∈ L [a, b], then the following inequality for fractional
integrals hold:

2f
(√

ab
)
g
(√

ab
)
≤ Γ (α+ 1)

2
(
ln b

a

)α [Jαa+f (b) g (b) + Jαb−f (a) g (a)
]

+
α

(α+ 2) (α+ 1)
M (a, b) +

(
α

α+ 2
− α

α+ 1
+

1

2

)
N (a, b) (3.7)

where α > 0, M (a, b) = f (a) g (a) + f (b) g (b) and N (a, b) = f (a) g (b) + f (b) g (a) .

Proof. It is clear for all t ∈ [0, 1]
√
ab =

√
atb1−t.a1−tbt =

√
atb1−t

√
a1−tbt.

Since f and g are non-negative and GA-convex functions on [a, b], we have for all
t ∈ [0, 1]

f
(√

ab
)
g
(√

ab
)

= f
(√

atb1−t
√
a1−tbt

)
g
(√

atb1−t
√
a1−tbt

)
≤ 1

4

[
f
(
atb1−t

)
+ f

(
a1−tbt

)] [
g
(
atb1−t

)
+ g

(
a1−tbt

)]
=

1

4

[
f
(
atb1−t

)
g
(
atb1−t

)
+ f

(
a1−tbt

)
g
(
a1−tbt

)]
+

1

4

[
f
(
atb1−t

)
g
(
a1−tbt

)
+ f

(
a1−tbt

)
g
(
atb1−t

)]
≤ 1

4

[
f
(
atb1−t

)
g
(
atb1−t

)
+ f

(
a1−tbt

)
g
(
a1−tbt

)]
+

1

4
[tf (a) + (1− t) f (b)] [(1− t) g (a) + tg (b)]

+
1

4
[(1− t) f (a) + tf (b)] [tg (a) + (1− t) g (b)]

=
1

4

[
f
(
atb1−t

)
g
(
atb1−t

)
+ f

(
a1−tbt

)
g
(
a1−tbt

)]
+

1

4
{2t (1− t) [f (a) g (a) + f (b) g (b)]

+
(
2t2 − 2t+ 1

)
[f (a) g (b) + f (b) g (a)]

}
(3.8)

Multiplying both sides of (3.8) by 2αtα−1, then integrating the obtained inequality
with respect to t over [0, 1], we have

2f
(√

ab
)
g
(√

ab
)
≤ Γ (α+ 1)

2
(
ln b

a

)α [Jαa+f (b) g (b) + Jαb−f (a) g (a)
]

+
α

(α+ 2) (α+ 1)
M (a, b) +

(
α

α+ 2
− α

α+ 1
+

1

2

)
N (a, b)

and this completes the proof. �

Remark 3.6. Theorem 3.5 is an analogous generalization of (2.3) for GA-convex func-
tions.
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Corollary 3.7. In Theorem 3.5, if we take g : [a, b]→ R as g (x) = 1 for all x ∈ [a, b],
then we have

2f
(√

ab
)
≤ Γ (α+ 1)

2
(
ln b

a

)α [Jαa+f (b) + Jαb−f (a)
]

+
f (a) + f (b)

2
.

Corollary 3.8. In Theorem 3.5, if we take α = 1, then we have

2f
(√

ab
)
g
(√

ab
)
≤ 1

ln b− ln a

∫ b

a

f (x) g (x)
dx

x
+

1

6
M (a, b) +

1

3
N (a, b)

for GA-convex functions.

Theorem 3.9. Let f and g : [a, b] ⊆ (0,∞)→ R be non-negative and GA-convex
functions with a < b and f ∈ L [a, b], then the following inequality for fractional
integrals hold:

Γ (α+ 1)

21−α
(
ln b

a

)α [Jα√ab−f (a) g (a) + Jα√
ab+

f (b) g (b)
]

≤
(

α

4 (α+ 2)
− α

2 (α+ 1)
+

1

2

)
M (a, b) +

α2 + 3α

4 (α+ 2) (α+ 1)
N (a, b) (3.9)

where α > 0, M (a, b) = f (a) g (a) + f (b) g (b) and N (a, b) = f (a) g (b) + f (b) g (a) .

Proof. Since f and g are non-negative and GA-convex functions on [a, b], multiplying
both sides of (3.6) by tα−1 α

21−α , then integrating the obtained inequality with respect

to t over
[
0, 12
]
, we have

α

21−α

[∫ 1
2

0

tα−1f(atb1−t)g(atb1−t)dt+

∫ 1
2

0

tα−1f(a1−tbt)g(a1−tbt)dt

]

=
α

21−α

∫ b

√
ab

(
ln b

u

ln b
a

)α−1
f (u) g (u)

du

u ln b
a

+

∫ √ab
a

(
ln v

a

ln b
a

)α−1
f (v) g (v)

du

v ln b
a


=

α

21−α
(
ln b

a

)α
[∫ b

√
ab

(
ln
b

u

)α−1
f (u) g (u)

du

u
+

∫ √ab
a

(
ln
v

a

)α−1
f (v) g (v)

du

v

]

=
Γ (α+ 1)

21−α
(
ln b

a

)α [Jα√ab+f (b) g (b) + Jα√
ab−f (a) g (a)

]
≤ α

21−α

[
M (a, b)

∫ 1
2

0

tα−1
(
2t2 − 2t+ 1

)
dt+N (a, b)

∫ 1
2

0

tα−12t (1− t) dt

]

=

(
α

4 (α+ 2)
− α

2 (α+ 1)
+

1

2

)
M (a, b) +

α2 + 3α

4 (α+ 2) (α+ 1)
N (a, b)

and this completes the proof. �

Remark 3.10. Theorem 3.9 is an other analogous generalization of (2.2) for GA-convex
functions.
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Corollary 3.11. In Theorem 3.9, if we take g : [a, b]→ R as g (x) = 1 for all x ∈ [a, b],
then we have

Γ (α+ 1)

21−α
(
ln b

a

)α [Jα√ab−f (a) + Jα√
ab+

f (b)
]
≤ f (a) + f (b)

2

which is the right hand side of (2.5).

Corollary 3.12. In Theorem 3.9, if we take α = 1, then we have

1

ln b− ln a

∫ b

a

f (x) g (x)
dx

x
≤ 1

3
M (a, b) +

1

6
N (a, b)

for GA-convex functions.

Theorem 3.13. Let f and g : [a, b] ⊆ (0,∞)→ R be non-negative and GA-convex
functions with a < b and f ∈ L [a, b], then the following inequality for fractional
integrals hold:

2f
(√

ab
)
g
(√

ab
)
≤ Γ (α+ 1)

21−α
(
ln b

a

)α [Jα√ab−f (a) g (a) + Jα√
ab+

f (b) g (b)
]

+
α2 + 3α

4 (α+ 2) (α+ 1)
M (a, b) +

(
α

4 (α+ 2)
− α

2 (α+ 1)
+

1

2

)
N (a, b) (3.10)

where α > 0, M (a, b) = f (a) g (a) + f (b) g (b) and N (a, b) = f (a) g (b) + f (b) g (a) .

Proof. Multiplying both sides of (3.8) by 21+ααtα−1, then integrating the obtained
inequality with respect to t over

[
0, 12
]
, we have desired result. �

Remark 3.14. Theorem 3.13 is an other analogous generalization of (2.3) for GA-
convex functions.

Corollary 3.15. In Theorem 3.13, if we take g : [a, b]→ R as g (x) = 1 for all x ∈ [a, b],
then we have

2f
(√

ab
)
≤ Γ (α+ 1)

21−α
(
ln b

a

)α [Jα√ab−f (a) + Jα√
ab+

f (b)
]

+
f (a) + f (b)

2
.

Corollary 3.16. In Theorem 3.13, if we take α = 1, then we have

2f
(√

ab
)
g
(√

ab
)
≤ 1

ln b− ln a

∫ b

a

f (x) g (x)
dx

x
+

1

6
M (a, b) +

1

3
N (a, b)

for GA-convex functions.
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