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Multiple solution for a fourth-order nonlinear
eigenvalue problem with singular and sublinear
potential
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Abstract. Let (M, g) be a Cartan-Hadamard manifold. For certain positive num-
bers µ and λ, we establish the multiplicity of solutions to the problem

∆2
gu−∆gu+ u = µ

u

dg(x0, x)4
+ λα(x)f(u), in M,

where x0 ∈ M , while f : R → R is continuous function, superlinear at zero and
sublinear at infinity.
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1. Introduction

The biharmonic non-linear Schrödinger equation

i∂tψ + a∆2ψ + b∆ψ + c|ψ|2wψ = 0 in R× Rd,

where a,w > 0 and b, c ∈ R, c 6= 0 has been introduced by Karpman and Shagalov
[13]. The problem, because of its physical applications, has received much attention in
recent years. After a Lyapunov-Schmidt type reduction, i.e., a separation of variables
the previous problem reduces to a fourth-order elliptic equation. With the aid of
variational methods, the existence and multiplicity of nontrivial solutions for such
problems have been extensively studied in the literature over the last decades, see for
instance [4, 5, 9, 16] and reference therein.
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Similarly, in recent years singular fourth order equations have been widely stud-
ied because of their wide application to physical models such as non-Newtonian fluids,
see for instance [1, 3, 12, 11, 6, 17, 18].

Most of the aforementioned papers provide existence and multiplicity results
by employing different techniques as variational methods, genus theory, the Nehari
manifold etc.

As far as we know, no result is available in the literature concerning singular
foruth order Schrödinger systems on non-compact Riemannian manifolds. Motivated
by this fact, the purpose of the present paper is to provide multiplicity results in the
case of the singular foruth order Schrödinger system in such a non-compact setting.
Since this problem is very general, we shall restrict our study to Hadamard mani-
folds (simply connected, complete Riemannian manifolds with non-positive sectional
curvature).

To be more precise, let (M, g) be a d-dimensional Hadamard manifold, with
d ≥ 5 and we shall consider the following problem{

∆2
gu−∆gu+ u = µ u

dg(x0,x)4 + λα(x)f(u), in M

u ∈W 2,2
g (M)

(Pλ,µ)

where f is a given function, while λ and µ are positive constants, and α ∈ L1(M) ∩
L∞(M) . On the nonlinearity f : R→ R we assume that

(f1) is superlinear at zero, i.e. lim
s→0

f(s)

s
= 0,

(f2) is sublinear at infinity, i.e., lim
s→∞

f(s)

s
= 0,

(f3) denoting by F (s) =

s∫
0

f(t) dt, finally we assume that sup
s∈R

F (s) > 0.

Our main result reads as follows:

Theorem 1.1. Let (M, g) be a d-dimensional Hadamard manifold, with d ≥ 5 and
f : R→ R be continuous function which satisfies (f1), (f2) and (f3) and α ∈ L1(M)∩
L∞(M) be a non-zero, non-negative function which depends on dg(x0, ·) and satisfies

sup
R>0

essinf
dg(x0,x)≤R

α(x) > 0. Then for every µ ∈
[
0, d

2(d−4)2

16

)
there exist an open interval

Iµ ⊂ (0,+∞) and a real number σµ > 0 such that for every λ ∈ Iµ the problem (Pλ,µ)
has at least two distinct nontrivial weak solutions in W 2,2

g (M) whose W 2,2
g -norms are

less than σµ.

The proof of Theorem 1.1 is based on a three critical point result of Bonanno
[2] (which is actually a refinement of a general principle of Ricceri [20, 19]), combined
with a compact embedding result(see Farkas, Kristály and Mester [8]) combined with
variational arguments.
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2. Preliminaries

Let (M, g) be a complete non-compact Riemannian manifold with dimM = d.

Let TxM be the tangent space at x ∈ M , TM =
⋃
x∈M

TxM be the tangent bundle,

and dg : M ×M → [0,+∞) be the distance function associated to the Riemannian
metric g. Let Bg(x, ρ) = {y ∈ M : dg(x, y) < ρ} be the open metric ball with center
x and radius ρ > 0; if dvg is the canonical volume element on (M, g), the volume

of a bounded open set Ω ⊂ M is Volg(Ω) =

∫
Ω

dvg = Hd(Ω). If dσg denotes the

(d− 1)-dimensional Riemannian measure induced on ∂Ω by g, then

Areag(∂Ω) =

∫
∂Ω

dσg = Hd−1(∂Ω)

stands for the area of ∂Ω with respect to the metric g. Hereafter, Hl denotes the
l-dimensional Hausdorff measure.

Let p > 1. The norm of Lp(M) is given by

‖u‖p =

(∫
M

|u|pdvg
)1/p

.

Let u : M → R be a function of class C1. If (xi) denotes the local coordinate system on
a coordinate neighbourhood of x ∈ M , and the local components of the differential
of u are denoted by ui = ∂u

∂xi
, then the local components of the gradient ∇gu are

ui = gijuj . Here, gij are the local components of g−1 = (gij)
−1. In particular, for

every x0 ∈M one has the eikonal equation

|∇gdg(x0, ·)| = 1 a.e. on M. (2.1)

When no confusion arises, if X,Y ∈ TxM , we simply write |X| and 〈X,Y 〉 instead of
the norm |X|x and inner product gx(X,Y ) = 〈X,Y 〉x, respectively.

The Lp(M) norm of ∇gu : M → TM is given by

‖∇gu‖p =

(∫
M

|∇gu|pdvg
) 1
p

.

The space W 2,2
g (M) is the completion of C∞0 (M) with respect to the norm

‖u‖2
W 1,2
g (M)

= ‖u‖p2 + ‖∇gu‖22 + ‖∆gu‖22.

Let G be a compact connected subgroup of Isomg(M), and let OxG = {ξx : ξ ∈ G} be
the orbit of the element x ∈M . The action of G on W 2,2

g (M) is defined by

(ξu)(x) = u(ξ−1x) for all x ∈M, ξ ∈ G, u ∈W 1,p
g (M), (2.2)

where ξ−1 : M →M is the inverse of the isometry ξ. We say that a continuous action
of a group G on a complete Riemannian manifold M is coercive (see Tintarev [22,
Definition 7.10.8] or Skrzypczak and Tintarev [21, Definition 1.2]) if for every t > 0,
the set

Ot = {x ∈M : diamOxG ≤ t}
is bounded.
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Let m(y, ρ) be the maximal number of mutually disjoint geodesic balls with
radius ρ on OyG

m(y, ρ) = sup {n ∈ N : ∃ξ1, . . . , ξn ∈ G : Bg(ξiy, ρ) ∩Bg(ξjy, ρ) = ∅,∀i 6= j}
We also define

W 2,2
g,G(M) = {u ∈W 2,2

g (M) : ξu = u for all ξ ∈ G}

be the subspace of G-invariant functions of W 2,2
g (M).

Theorem 2.1 ([8], Theorem 1.1). Let (M, g) be a d-dimensional Hadamard manifold,
and let G be a compact connected subgroup of Isomg(M) such that FixM(G) 6= ∅. Then
the following statements are equivalent:

(i) G is coercive;
(ii) FixM (G) is a singleton;
(iii) m(y, ρ)→∞ as dg(x0, y)→∞.

Moreover, from any of the above statements it follows that the embedding W 2,2
g,G(M) ⊂

W 1,2
g,G(M) ↪→ Lq(M) is compact for every 2 ≤ q < 2# = 2d

d−4 if 1 < p < d.

In order to prove Theorem 1.1, we recall an abstract tool, which is the following
critical point result of Bonanno [2] (which is actually a refinement of a general principle
of Ricceri [20, 19]):

Theorem 2.2 ([2], Theorem 2.1). Let X be a separable and reflexive real Banach space,
and let Φ, J : X → R be two continuously Gâteaux differentiable functionals, such that
Φ(u) ≥ 0 for every u ∈ X. Assume that there exist u0, u1 ∈ X and ρ > 0 such that

(1) Φ(u0) = J(u0) = 0,
(2) ρ < Φ(u1),

(3) sup
Φ(u)<ρ

J(u) < ρ
J(u1)

Φ(u1)
.

Further, put

a = ζρ

(
ρ
J(u1)

Φ(u1)
− sup

Φ(u)<ρ

J(u)

)−1

, where ζ > 1,

and assume that the functional Φ − λJ is sequentially weakly lower semicontinuous,
satisfies the Palais-Smale condition and

(4) lim
‖u‖→∞

(Φ(u)− λJ(u)) = +∞, for all λ ∈ [0, a].

Then there exists an open interval Λ ⊂ [0, a] and a number µ > 0 such that for each
λ ∈ Λ, the equation Φ′(u) − λJ ′(u) = 0 admits at least three solutions in X having
norm less than µ.

We conclude this section by stating the Rellich inequality: if (M, g) is a
Hadamard manifold with dimM = d ≥ 5, then we have the following inequality
(see for instance [15])∫

M

(∆gu)
2

dvg ≥
d2(d− 4)2

16

∫
M

u2

d4
g(x0, x)

dvg, ∀u ∈W 2,2
g (M). (2.3)
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where the constant is d2(d−4)2

16 sharp, but are never achieved

3. Proof of the main result

As in usual case we associate the energy functional with the problem (Pλ,µ),
Eλ,µ : M → R,

Eλ,µ(u) =

∫
M

(∆gu)
2

+ |∇gu|2 + u2 dvg

− µ
∫
M

u2

dg(x0, x)4
dvg − λ

∫
M

α(x)F (u) dvg.

Based on the assumption of the continuous function f , a standard argument
shows that Eλ,µ : W 2,2

g (M)→ R is of class C1 and its critical points are exactly the
weak solutions of the studied problem. Therefore, it is enough to show the existence
of multiple critical points of Eλ,µ. For further use, let us denote by

Φµ,0(u) =

∫
M

(∆gu)
2

+ |∇gu|2 + u2 dvg − µ
∫
M

u2

dg(x0, x)4
dvg

and

J0(u) =

∫
M

α(x)F (u) dvg.

Having in our mind the compactness result, see Theorem 2.1, we restrict the
energy functional to the space W 2,2

g,G(M). For simplicity, in the following we denote

Eλ,µ = Eλ,µ|W 2,2
g,G(M), Φµ = Φµ,0|W 2,2

g,G(M), and J = J0|W 2,2
g,G(M).

Lemma 3.1. Let G be a compact connected subgroup of Isomg(M) with FixM (G) =
{x0}. Then Eλ,µ is G-invariant.

Proof of Lemma 3.1. Let u ∈W 2,2
g (M) and σ ∈ G be arbitrarily fixed. Since σ : M →

M is an isometry on M , by (2.2), for every x ∈M we have

∇g(σu)(x) = Dσσ−1(x)∇gu(σ−1(x)),

where Dσσ−1(x) : Tσ−1(x)M → TxM denotes the differential of σ at the point σ−1(x).
Note that the (signed) Jacobian determinant of σ is 1 and Dσσ−1(x) preserves inner
products. Therefore, by using the latter facts, relation (2.2) and a change of variables
y = σ−1(x), it turns out that∫

M

(
|∇g(σu)(x)|2x + |(σu)(x)|2

)
dvg(x)

=

∫
M

(
|∇gu(σ−1(x))|2σ−1(x) + |u(σ−1(x))|2

)
dvg(x)

=

∫
M

(
|∇gu(y)|2y + |u(y)|2

)
dvg(y),

We claim that

∆g ((σ ◦ u)(x)) = ∆gu(σ−1(x)).



144 Csaba Farkas, Ildikó Ilona Mezei and Zsuzsánna-T́ımea Nagy

To prove this claim, we choose an arbitrary test function ϕ, then we consider the
following integral∫

M

∆g ((σ ◦ u)(x))ϕ(σ−1(x))dvg(x)

= −
∫
M

〈Dσσ−1(x)∇gu(σ−1(x)), Dσσ−1(x)ϕ(σ−1(x))〉dvg(x)

= −
∫
M

〈∇gu(σ−1(x)), ϕ(σ−1(x))〉dvg(x)

= −
∫
M

〈∇gu(y), ϕ(y)〉dvg(y)

=

∫
M

∆gu(y)ϕ(y)dvg(y)

=

∫
M

∆gu(σ−1(x))ϕ(σ−1(x))dvg(x),

the arbitrariness of the function ϕ proves the claim. Finally, since σ ∈ G and α ∈
L1(M)∩L∞(M) is a non-zero, non-negative function which depends on dg(x0, ·) and

FixM (G) = {x0}, it turns out that for every u ∈ W 2,2
g,G(M), we have J0(σu) = J0(u),

which concludes the proof. �

The principle of symmetric criticality of Palais (see Kristály, Rădulescu and
Varga [14, Theorem 1.50]) and the previous Lemma imply that the critical points of
Eλ,µ = Eλ,µ|W 2,2

g,G(M) are also critical points of the original functional Eλ,µ. Therefore,

it is enough to find critical points of Eλ,µ.

Lemma 3.2. For every µ ∈
[
0, d

2(d−4)2

16

)
and λ ∈ R+, the functional Eλ,µ is sequen-

tially weakly lower semicontinuous on W 2,2
g,G(M).

Proof. First we prove that the functional Φµ is sequentially weakly lower semicon-
tinuous on W 2,2

g (M). To this end, we consider u, v ∈ W 2,2
g (M) and t ∈ [0, 1], and

thus

Φµ(tu+ (1− t)v) =

∫
M

(∆g(tu+ (1− t)v))
2

dvg +

∫
M

|∇g(tu+ (1− t)v)|2 dvg

+

∫
M

(tu+ (1− t)v)2 dvg − µ
∫
M

(tu+ (1− t)v)2

d4
g(x0, x)

dvg

≤
∫
M

(∆g(tu+ (1− t)v))
2

dvg +

∫
M

t|∇gu|2 + (1− t)|∇gv|2 dvg

+

∫
M

tu2 + (1− t)v2 dvg − µ
∫
M

(tu+ (1− t)v)2

d4
g(x0, x)

dvg.

Now, using the following identity

(ta+ (1− t)b)2 = ta2 + (1− t)b2 − t(1− t)(a− b)2,
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we get that

Φµ(tu+ (1− t)v) ≤ tΦµ(u) + (1− t)Φµ(v)

− t(1− t)
(∫

M

(∆g(u− v))
2

dvg − µ
∫
M

(u− v)2

d4
g(x0, x)

dvg

)
.

Using the Rellich inequality (2.3) (see also Kristály and Repovs [15]), one has that∫
M

(∆g(u− v))
2

dvg − µ
∫
M

(u− v)2

d4
g(x0, x)

dvg ≥ 0,

for every u, v ∈W 2,2
g (M), thus

Φµ(tu+ (1− t)v) ≤ tΦµ(u) + (1− t)Φµ(v).

Thus Φµ is positive and convex, therefore is sequentially weakly lower semicontinous.
It remains to prove that J is sequentially weakly continuous. To this end, consider

a sequence {uk}k in W 2,2
g,G(M) which converges weakly to u ∈W 2,2

g,G(M), and suppose
that

J(uk)��→J(uk) as k →∞.
Thus, there exist ε > 0 and a subsequence of {un}n, denoted again by {un}n, such
that un → u in L∞(M) and

0 < ε ≤ |J(uk)− J(u)|, for every k ∈ N.

Thus, by the mean value theorem, there exists θk ∈ (0, 1) such that

0 < ε ≤ |〈J ′(u+ θk(uk − u)), uk − u〉|

≤
∫
M

α(x)|f(u+ θk(uk − u))| · |uk − u|dvg.

Using the assumptions (f1), (f2) and the Hölder inequality the last term tends to 0,
which provides a contradiction. �

Lemma 3.3. For every µ ∈
[
0, d

2(d−4)2

16

)
and λ ∈ R+, the functional Eλ,µ is coercive

and satisfies the Palais-Smale condition.

Proof. First we prove that the functional Eλ,µ is coercive. Let us fix µ ∈
[
0, n

2(n−4)2

16

)
and λ ∈ R+. We denote µ = n2(n−4)2

16 . By the (f1) and (f2) for every ε > 0, there
exists δε ∈ (0, 1) such that

|f(s)| ≤ ε|s| for all|s| ≤ δε and |s| ≥ δ−1
ε .

Since f ∈ C(R,R), there also exists a number Mε > 0 such that

|f(s)|
|s|q

≤Mε for all |s| ∈ [δε, δ
−1
ε ],

where q ∈ (0, 1). Therefore

|f(s)| ≤ ε|s|+Mε|s|q, for all s ∈ R. (3.1)
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Thus, for every u ∈W 2,2
g,G(M) we have

Eλ,µ ≥
1

2

(
1− µ

µ

)
‖u‖2 − λ

∫
M

α(x)|F (u)|dvg

≥ 1

2

(
1− µ

µ

)
‖u‖2 − 1

2
λ‖α‖∞ε‖u‖2 −

λMεC

q + 1
‖u‖q+1.

If ‖u‖ → ∞ we conclude that Eλ,µ(u)→∞ as well, i.e. Eλ,µ is coercive. Now, let {uk}k
be a sequence in W 2,2

g,G(M) such that {Eλ,µ(uk)}k is bounded and ‖E ′λ,µ(uk)‖∗ → 0.

Since Eλ,µ is coercive, the sequence {uk}k is bounded in W 2,2
g,G(M). Therefore, up to

a subsequence, uk ⇀ u weakly in W 2,2
g,G(M) for some u ∈W 2,2

g,G(M).

Hence, due to Theorem Theorem 2.1, it follows that uk → u strongly in Lp(M).
In particular, we have that

E ′λ,µ(u)(u− uk)→ 0 and E ′λ,µ(uk)(u− uk)→ 0 as k →∞. (3.2)

On the one hand, it is easy to verify that(
1− µ

µ

)
‖uk − u‖2 ≤‖uk − u‖2 − µ

∫
M

(uk − u)2

d4
g(x0, x)

dvg

=E ′λ,µ(u)(u− uk) + E ′λ,µ(uk)(u− uk)

+ λ

∫
M

α(x)[f(uk)− f(u)](uk(x)− u(x)) dvg.

On the other hand, by means of (f1) and (f2) one has that∫
M

α(x)[f(uk)− f(u)](uk(x)− u(x)) dvg → 0,

as k →∞. Thus we proved that ‖uk − u‖ → 0, which proves the claim. �

Lemma 3.4. For every µ ∈
[
0, d

2(d−4)2

16

)
lim
ρ→0+

sup{J(u) : Φµ(u) < ρ}
ρ

= 0.

Proof. Fix µ ∈ [0, µ). Using again (f1), for every ε > 0 there exists δ > 0

|f(s)| < ε

4

(
1− µ

µ

)
‖α‖−1

∞ κ−2
2 |s| for all |s| < δ.

For fixed p > 2, one has the following inequality

|F (s)| ≤ ε

4

(
1− µ

µ

)
‖α‖−1

∞ κ−2
2 |s|+ c(ε)|s|p for all s ∈ R.

For ρ > 0 define the sets

S1
ρ = {u : Φµ(u) < ρ}; S2

ρ = {u : (1− µ/µ)‖u‖ < 2ρ}.

Using the Rellich inequality, we have that S1
ρ ⊆ S2

ρ . Moreover, for every u ∈ S2
ρ we

have that

J(u) =

∫
M

α(x)F (u) dvg ≤
ε

2
ρ+ cρ

p
2 .



Nonlinear fourth-order singular eigenvalue problem 147

Thus there exists ρ(ε) > 0 such that for every 0 < ρ < ρ(ε)

0 ≤
sup
u∈S1

ρ

J(u)

ρ
≤

sup
u∈S2

ρ

J(u)

ρ
≤ ε

2
+ c′ρ

p−2
2 < ε,

which completes the proof. �

Proof of Theorem 1.1. Fix µ ∈ [0, µ). We recall that sup
R>0

essinf
dg(x0,x)≤R

α(x) > 0, thus we

choose an R0 > 0 such that αR0
:= essinf

dg(x0,x)≤R0

α(x) > 0.

From the assumption (f3) there exists s0 > 0 such that F (s0) > 0. Let uε ∈W 2,2
g,G(M)

such that uε(x) = s0 for any x ∈ Bg(x0, εR0), uε(x) = 0 for any M \Bg(x0, R0), and
‖uε‖∞ ≤ |s0|. We also have

J(uε) ≥ αR0
F (s0)Volg(Bg(x0, εR0))

− ‖α‖∞ max
|t|≤|s0|

|F (t)|Volg (Bg(x0, R0) \Bg(x0, εR0)) ,

For ε close enough to 1, the right-hand side of the last inequality becomes strictly
positive; choose such a number, say ε0. Now, taking into account Lemma 3.4, one can
fix a small number ρ = ρ(ε0) such that

2ρ <

(
1− µ

µ

)
‖u‖2,

sup{J(u) : Φµ(u) < ρ}
ρ

<
2J(uε0)

‖uε0‖2
.

In Theorem 2.2 we choose u1 = uε0 and u0 = 0, and observe that the hypotheses (2)
and (3) are satisfied. We define

a =
1 + ρ

J(uε0 )

Φ(uε0 ) −
sup{J(u):Φµ(u)≤ρ}

ρ

.

Taking into account Lemmas, 3.2 and 3.3, all the assumptions of Theorem 2.2 are
verified. Thus there exists an open interval Iµ ⊂ [0, a] and a number σµ > 0 such that
for each λ ∈ Iµ, the equation E ′λ,µ(u) = Φ′µ(u)−λJ ′(u) admits at least three solutions

in W 2,2
g,G(M) having W 2,2

g (M)-norms less than σµ. This concludes the proof. �
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2, Sighişoarei Street,
540485 Tg. Mureş, Romania
e-mail: farkascs@ms.sapientia.ro & farkas.csaba2008@gmail.com
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