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Abstract. The classical de Jonquières and MacDonald formulas describe the vir-
tual number of divisors with prescribed multiplicities in a linear system on an
algebraic curve. We discuss the enumerative validity of the de Jonquières formulas
for a general curve of genus g.
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1. Introduction

De Jonquières’ formula [11] is concerned with the following classical enumerative
question: Given a suitably general (singular) plane curve of Γ degree d and geometric
genus g, how many plane curves of given degree meet Γ in ni unspecified points with
contact order ai, for i = 1, . . . , e? De Jonquières using an ingenious recursive argument
(later considerably simplified by Torelli [24] and then slightly generalized by Allen [1])
showed that the number in question equals[

an1
1 an2

2 · · · anee
]

n1! n2! · · ·ne!
, where in general we define the quantity

[a1 · · · ae] = a1 · · · ae
g!

(g − e− 1)!

(
a1 · · · ae
g − e

−
e∑
i=1

a1 · · · âi · · · ae
g − e+ 1

+ · · ·+ (−1)e
1

g

)
.

(1.1)
The formula (1.1) recovers many well known formulas in the theory of algebraic

curves, for instance the number 2g−1(2g−1) of odd theta characteristics on a smooth
curve of genus g, or the Plücker formula for the total number of ramification points on
a linear series on a curve. The original proofs [11], [24] of the de Jonquières formula
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use an induction on the multiplicities ai coupled with the Brill-Cayley correspondence
principle. For a historic perspective on the de Jonquières formula we refer to Zeuthen’s
treatise [26, 136], or if one prefers English, the books of Coolidge [8, Book 3, Chapter
3.3] or Baker [5, pages 35-45]. De Jonquières’ formula has been rediscovered by Mac-
Donald [21] and Vainsencher [25] and a summary of their work, reinterpreting this
number as a fundamental class of a modified diagonal on the symmetric product of a
smooth curve can be found in the book [3].

In order to formulate the problem in modern terms, let C be a smooth curve of
genus g and we fix a linear series ` = (L, V ) ∈ Grd(C). For a partition µ = (a1, . . . , ae)
of d, we define the de Jonquières cycle DJµ(C, `) to be the locus of divisors of the
type a1 · x1 + · · ·+ ae · xe lying in the linear system `. Observe that DJµ(C, `) can be
realized as the rank r degeneracy locus of the evaluation morphism of vector bundles

χ : V ⊗OCe −→ Jµ(L)

over the product Ce, where the fibre of the vector bundle Jµ(L) over a point
(x1, . . . , xe) equals the d-dimensional vector space L|a1·x1+···+ae·xe . Accordingly, the
virtual dimension of DJµ(C, `) equals e − d + r. In the case e = d − r, this number
equals zero and one expects ` to contain finitely many divisors with multiplicities
prescribed by the partition µ. As pointed out in [3, page 359], the virtual class of this
degeneracy locus can be realized via the Porteous formula as the coefficient of the
monomial t1t2 · · · te in the polynomial(

1 + a21t1 + · · ·+ a2ete
)g(

1 + a1t1 + · · ·+ aete
)d−r−g

.

It is straightforward to see that this is simply a convenient way to repackage compactly
the information contained in the formula (1.1). For instance, we obtain that a linear
system ` ∈ Grd(C) is expected to contain precisely

2r
((

d− r
r

)
+ g

(
d− r − 1

r − 1

)
+

(
g

2

)(
d− r − 2

r − 2

)
+ · · ·

)
divisors containing r double points, that is, of the type

2 · x1 + · · ·+ 2 · xr + xr+1 + · · ·+ xd−r

and so on. Here we use the convention that
(
m
−h
)

= 0 when h > 0.

More generally, we consider a positive partition µ = (a1, . . . , ae) and set

|µ| := a1 + · · ·+ ae and `(µ) := e.

For 0 ≤ f ≤ |µ| we define the generalized de Jonquières (secant) locus

DJfµ (C, `) := Z|µ|−f (χ)

=
{

(x1, . . . , xe) ∈ Ce : dim
∣∣V (−a1 · x1 − · · · − ae · xe)

∣∣ ≥ r − |µ|+ f
}
.

Being a degeneracy locus, each component of DJfµ (C, `) has dimension at least

e− f(r + 1− |µ|+ f).

If µ = (1e), then using the notations of [9] or [15], we observe that DJfµ (`) = V e−fe (`)
can be identified with the variety of e-secant (e − f − 1)-planes to the embedded



Generalized de Jonquières divisors on generic curves 15

curve C
|V |
↪→ Pr. Moreover, if |µ| = d, then DJd−rµ (C, `) = DJµ(C, `) is the locus of de

Jonquières divisors in the linear series `. De Jonquières loci have been used to study the
geometry of the moduli spaces of curves or that of strata of holomorphic differentials
[4]. The class of effective divisors onMg involving de Jonquières conditions have been
computed in [10], [16], [17], or [22].

The question of how to interpret the de Jonquières count when a curve C ⊆
Pr acquires singularities has been treated both in classical and modern times. The
problem we address in this note on the other hand is the enumerative validity of
the de Jonquières count when C is a general curve in moduli. We treat this problem
variationally and consider de Jonquières cycles associated to all linear systems ` ∈
Grd(C), that is, we set up the correspondence:

Σfµ(C) :=
{(
`, x1, . . . , xe

)
: (x1, . . . , xe) ∈ DJfµ (C, `)

}
π1

ss

π2

**
Grd(C) Ce

(1.2)

The main result of this paper is then summarized as follows:

Theorem 1.1. Let C be a general curve of genus g and we fix a partition

µ = (a1, . . . , ae),

as well as positive integers d, r and f with ρ(g, r, d) ≥ 0 and |µ| − r ≤ f ≤ |µ|. Then
each irreducible component of Σfµ(C) has dimension ρ(g, r, d) + e− f(r+ 1− |µ|+ f).
Accordingly, if

ρ(g, r, d) + e− f(r + 1− |µ|+ f) < 0,

then DJfµ (C, `) = ∅ for every linear series ` ∈ Grd(C).

This result generalizes [15, Theorem 0.1] to the case of an arbitrary partition
µ, the result in loc.cit. corresponding to the case when µ = (1e). It also generalizes
Ungureanu’s results [23, Theorem 1.5] corresponding to the case when |µ| = d =
deg(`), asserting that if C is a general curve, no linear series ` ∈ Grd(C) possesses a de
Jonquières divisor of length e < d− r. Observe that the case f = |µ| − r in Theorem
1.1 can be obviously reduced to the classical de Jonquières case, by extending the
partition µ to µ′ = (µ, 1d−|µ|) of the degree d of the curve in question.

We now discuss several cases in which Theorem 1.1 applies. The first case be-
yond the classical de Jonquières situation treated for instance (under some restric-
tive assumptions) in [23] is when f = |µ| + 1 − r, when the residual linear series∣∣V (−a1 · x1 − · · · − ae · xe)

∣∣ is a pencil, which can be formulated as saying that under
the map ϕ` : C → Pr induced by the linear series `, the (ai − 1)-st osculating planes
to C at the points xi span a codimension two plane, that is,〈

a1 · x1, . . . , ae · xe
〉 ∼= Pr−2. (1.3)

Tangential secants. Let us consider the case a1 = 2 and a2 = · · · = ae = 1 and f = 1, in
which case the condition (1.3) translates into saying that 〈2 · x1, x2, . . . , xe〉 ∼= Pe−1,
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that is, the tangent line to C at the point x1 lies in the (e − 1)-plane spanned by
the points x1, . . . , xe. Following classical terminology, we say that 〈x1, . . . , xe〉 is a
tangential (e+ 1)-secant to C. Theorem 1.1 can be formulated in this case as follows:

Corollary 1.2. We fix positive integer g, r, d and e such that 2e < r + 1 − ρ(g, r, d).
For a general curve C of genus g, no linear seris ` ∈ Grd(C) carries a tangential
(e+ 1)-secant.

Note that every space curve C ⊆ P3 of degree d and genus g is expected to have
finitely many tangential trisecants and their number

T (d, g) = 2(d− 2)(d− 3) + 2g(d− 6),

which can derived from the de Jonquières formula, has been first computed by Salmon
and Zeuthen [26, 64], see also [3, page 364]. It is an interesting result of Kaji [18], valid
to a large extent even in positive characteristic, that an arbitrary smooth space curve
C ⊆ P3 cannot have infinitely many tangential trisecants, see also [7] for various
extensions of this result. For space curves, our Corollary 1.2 reduces to the Brill-
Noether Theorem, but already for curves C ⊆ P4 it goes beyond that and it states
that when ρ(g, r, d) = 0 a general such curve has no tangential trisecants.

Multiple tangents. Passing now to the case of tangent planes, that is, when a1 = · · · =
ae = 2, we look at (2e− 2)-planes in Pr that are tangent to C at e points, that is,〈

2 · x1, . . . , 2 · xe
〉 ∼= P2e−2.

We call such a configuration an degenerate e-tangent to C ⊆ Pr. With this terminol-
ogy, Theorem 1.1 takes the following form:

Corollary 1.3. Fix positive integers g, r, d, e with ρ(g, r, d) ≥ 0 and

3e < r + 2− ρ(g, r, d).

Then a general curve C of genus g has no linear series ` ∈ Grd(C) with degenerate
e-tangents.

The simplest case where Corollary 1.3 applies is when e = 2, r = 5. It says that
for a general curve C of genus g, no embedded curve ϕ` : C → P5 of degree d with
ρ(g, r, d) = 0 has a pair of coplanar tangent lines.

Another immediate application of Theorem 1.1 is when again a1 = · · · = ae = 2
but this time f = 2e− r > 0, hence〈

2 · x1, . . . , 2 · xe
〉∼= Pr−1.

In other words, the points x1, . . . , xe span a tangent hyperplane. We find the following
result:

Corollary 1.4. Fix integers g ≥ 1, r ≥ 3 and d such that ρ(g, r, d) ≥ 0 and e ≥ r + 1.
Then for a general curve C of genus g the locus of linear systems ` ∈ Grd(C) such
that ϕ` : C ↪→ Pr admits an e-secant tangent hyperplane is equal to ρ(g, r, d) + r − e.
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In particular, for e = r + 1 specializes to the known result [23], that for a Brill-
Noether general curve C ⊆ Pr no hyperplane can be tangent at more than r points.

Flex lines and bitangents. A general smooth space curve C ⊆ P3 is expected to
possess no bitangent or flex lines lines, that is, no de Jonquières divisors of length two
corresponding to the partitions µ = (2, 2) and µ = (3, 1) respectively. We consider the
problem more generally for curves C ⊆ Pr and our result in this case lends a sharp
form to this expectation.

Corollary 1.5. Fix positive integers g ≥ 1, r ≥ 3 and d with ρ(g, r, d) ≥ 0 and a1, a2
such that

a1 + a2 >
ρ(g, r, d) + 2r

r − 1
.

Then for a general curve C of genus g, no degree d embedding ϕ` : C ↪→ Pr possesses
a secant line meeting the image of C with multiplicities a1 and a2 at the points of
secancy.

For instance when r = 3, e = 2 and |µ| = 4, Corollary 1.5 implies that when
ρ(g, 3, d) ≤ 1, for a general curve C of genus g no embedding ϕ` : C ↪→ P3 of degree
d possesses either a bitangent or a flex line.

The last application of Theorem 1.1 is to the case when the partition µ is of
length one.

Corollary 1.6. We fix positive integers g, r, d and a such that 2a > ρ(g, r, d)− 1 + 2r.
Then a general curve C of genus g carries no linear series ` ∈ Grd(C) having a point
x ∈ C with `(−a · x) ∈ G1

d−a(C).

Specializing even further to the case d = 2g − 2 and r = g − 1 in which case
` necessarily equals the canonical linear series |ωC |, via the Riemann-Roch Theorem
Corollary 1.6 can be reformulated as stating that for a general curve of genus g, if
a ≥ g − 1 we have that

h0
(
C,OC(a · x)

)
≤ a+ 2− g,

for each point x ∈ C. When a = g − 1 we obtain that C carries no pencil of degree
g − 1 totally ramified at a point, which is a well-known result. The locus of curves
[C] ∈Mg having such a pencil has been studied by Diaz [12], who also computed the

class of its compactification in Mg.

2. Generalized de Jonquières divisors on flag curves

We fix a smooth curve C of genus g and we denote by Grd(C) the variety of

linear systems of type grd on C, that is, pairs ` = (L, V ), where L ∈ Picd(C) and
V ⊆ H0(C,L) is an (r + 1)-dimensional subspace of sections. Recall that when C is
a general curve of genus g, then Grd(C) is a smooth variety of dimension equal to the
Brill-Noether number ρ(g, r, d) = g − (r + 1)(g − d + r). Our proof of Theorem 1.1
is by degeneration and we will use throughout the theory of limit linear series. We
begin by quickly recalling the notation for vanishing and ramification sequences of
linear series on curves largely following [13] and [14].
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If ` = (L, V ) ∈ Grd(C) is a linear series, the ramification sequence of ` at a point q ∈ C

α`(q) : 0 ≤ α`0(q) ≤ · · · ≤ α`r(q) ≤ d− r
is obtained from the vanishing sequence

a`(q) : 0 ≤ a`0(q) < · · · < a`r(q) ≤ d
by setting α`i(q) := a`i(q)− i, for i = 0, . . . , r. In case the underlying line bundle L is
clear from the context, we write αV (q) = α`(q) and aV (q) = a`(q). The ramification
weight of q with respect to ` is defined as the quantity

wt`(q) :=

r∑
i=0

α`i(q).

We denote by

ρ(`, q) := ρ(g, r, d)− wt`(q)

the adjusted Brill-Noether number of ` with respect to q. We recall also the Plücker
formula ∑

q∈C
α`(q) = (r + 1)d+ (r + 1)r(g − 1), (2.1)

measuring the total ramification of `. Incidentally, assuming that ` has only simple
ramification points, that is, points with ramification sequence at most (0, . . . , 0, 1),
then (2.1) is an instance of the de Jonquières formula (1.1) applied to the linear series
` and to the partition µ = (r + 1, 1d−r−1) of d).

Following Eisenbud-Harris [13, page 364], let us recall that a limit linear series
on a curve X of compact type consists of a collection

` =
{

(LC , VC) ∈ Grd(C) : C is a component of X
}
,

satisfying a compatibility condition on the vanishing sequences at the nodes of X in
terms of the vanishing sequences of the aspects on the two (smooth) components of

X on which each node of X lies. We denote by G
r

d(X) the variety of limit linear series
of type grd on X. More generally, if q ∈ Xreq is a smooth point and

α =
(
0 ≤ α0 ≤ · · · ≤ αr ≤ d− r

)
is a Schubert index, we denote by G

r

d

(
X, (q, α)

)
the variety of limit linear series

` ∈ Grd(X) satisfying the condition α`(q) ≥ α. From basic principles it follows that
each component has dimension at least ρ

(
g, r, d, α) = ρ(g, r, d)−wt(q). Eisenbud and

Harris offer in [14, Theorem 1.1] sufficient conditions ensuring when the equality

dim G
r

d

(
X, (q, α)

)
= ρ(g, r, d)− wt(α) (2.2)

holds, which we will make an essential use of in the course of proving Theorem 1.1.
In case a pointed curve [X, q] satisfies the condition (2.2) for each r, d ≥ 1 such that
ρ(g, r, d) ≥ 0 and for each choice of a Schubert index α, we say that [X, q] verifies the
strong Brill-Noether Theorem.

Having fixed a positive partition µ = (a1, . . . , ae), a positive integer f with
|µ| − r ≤ f ≤ |µ| and a smooth curve C, we have defined in the Introduction the
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subvariety Σfµ(C) ⊆ Grd(C)×Ce. Due to its determinantal structure, each irreducible

component of Σfµ(C) has dimension at least

dim Grd(C) + e− f(r + 1− |µ|+ f) ≥ ρ(g, r, d) + e− f(r + 1− |µ|+ f).

From this fact we obtain that once one shows that for a general curve C of genus g each
irreducible component of Σfµ(C) has dimension at most ρ(g, r, d)+e−f(r+1−|µ|+f),

it will also follow that Σfµ(C) is in fact equidimensional of this dimension.

Assume we are in a situation when Σfµ(C) in nonempty for a general (and there-
fore for an arbitrary) smooth curve C of genus g.

2.1. Universal de Jonquières divisors on curves of compact type.

The proof of Theorem 1.1 relies, like several other proofs involving limit linear
series, on degenerating a smooth curve of genus g to a flag curve consisting of a rational
spine and g smooth elliptic tails. It is known [13] and [14] that such curves satisfy the
Brill-Noether Theorem independently of the position of the g points of attachment
on the rational spine. One has however to deal with the serious complication that,
under this degeneration, although one has a good understanding of the aspects of
the limit linear series on the flag curve, a priori there is no control on the position
of the e marked points lying in the support of a generalized de Jonquières divisor.
For the combinatorial argument required to prove Theorem 1.1 it is however essential
to ensure that one can always find such a flag curve degeneration of a generic curve
of genus g in which these e marked points specialize to a subcurve of the flag curve
having relatively small arithmetic genus. To make sure this is possible, we employ a
strategy already used in [15], which relies on considering all flag curves of genus g
at once and using certain basic facts about the geometry of the (rational) parameter
space of such a curves.

We set some further notation. Let j : M0,g →Mg the map assigning to a stable

rational pointed curve [R, p1, . . . , pg] ∈M0,g fixed smooth elliptic tails E1, . . . , Eg at
the marked points p1, . . . , pg. We denote the resulting compact type curve by

X := R ∪p1 E1 ∪ . . . ∪pg Eg,

that is, pa(X) = g and let pR : X → R be the map contracting each elliptic component
Ei to the point pi. We introduce the universal n-pointed curve Cg,n =Mg,n+1 of genus

g and denote by π : Cg,n →Mg,n the morphism forgetting the (n+1)-st marked point.

For e ≥ 1, we write πe : Ceg,n →Mg,n for the e-fold fibre product of Cg,n over Mg,n.
We finally introduce the map

χ : M0,g ×Mg
Ceg → C

e

0,g, (2.3)

which collapses the fixed elliptic tails E1, . . . , Eg and projects the corresponding
marked points onto the rational spine R. With the notation introduced above, we
thus have

χ
(

[R, p1, . . . , pg], (x1, . . . , xe)
)

=
(

[R, p1, . . . , pg], pR(x1), . . . , pR(xe)
)
,

where x1, . . . , xe ∈ X.
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Let DJ ⊆ Ceg be the closure of the locus of generalized de Jonquières divisors on
smooth curves of genus g, that is, of the following determinantal variety

DJ :=
{

[C, x1, . . . , xe] : [C] ∈Mg, xi ∈ C, ∃` = (L, V ) ∈ Grd(C) such that

dim
∣∣V (−a1 · x1 − · · · − ae · xe)

∣∣ ≥ r − |µ|+ f
}
.

Since we assume that Σfµ(C) 6= ∅ for a general curve [C] ∈Mg, we have that

πe
(
DJ
)

=Mg,

where recall that πe : Ceg →Mg. Next, we define the locus

U := χ
(
M0,g ×Mg

DJ
)
⊆ Ce0,g. (2.4)

We use the commutativity of the following diagram, where the horizontal upper arrow
is induced via the stabilization isomorphism Cg,n ∼= Mg,n+1, see [20, page 175] by
taking fibre products

Ce0,g

πe

��

// Ceg

πe

��
M0,g

j //Mg

in order to conclude that πe(U) = M0,g. We denote by e − m the generic fibre

dimension of the map πe|U : U →M0,g. Thus 0 ≤ m ≤ e and

dim
(
U ∩ π−1e [R, p1, . . . , pg]

)
= e−m,

for a general stable curve [R, p1, . . . , pg] ∈M0,g.
We introduce the birational map

ϑ : Ce0,g →M
g−3+e
0,4

∼= (P1)g−3+e

whose components are the forgetful morphisms πi : M0,g+e →M0,4 which for i = 4,
. . . , g + e only retain the marked points labelled by 1, 2, 3 and i respectively. Fixing
for instance the first three marked points as usual p1 = 0, p2 = 1 and p3 = ∞ ∈ P1,
by slightly abusing notation we can think of ϑ as the map assigning(

[R, p1, . . . , pg], x1, . . . , xe
) ϑ7→

(
p4, . . . , pg, x1, . . . , xe

)
∈ (P1)g−3+e.

Using essentially only the elementary fact that the diagonal of P1 × P1 is am-
ple, we then establish in [15, Proposition 2.2], that depending on whether ϑ(U) ⊆
(P1)g−3+e intersects the small diagonal (x1 = · · · = xe) in (P1)g−3+e or not, one of
the following three possibilities occur:

• There exists a point (p4, . . . , pg, x1, . . . , xe) ∈ ϑ(U) with x1 = · · · = xe and at least
g −m− 3 of the points p4, . . . , pg are mutually distinct.
• There exists a point (p4, . . . , pg, x1, . . . , xe) ∈ ϑ(U) such that at least g −m of the
points p4, . . . , pg are equal to a point r ∈ P1 r {x1, . . . , xe}.
• There exists a point (p4, . . . , pg, x1, . . . , xe) ∈ ϑ(U) such that e − 1 of the marked
points x1, . . . , xe are equal and at least g −m of the points p4, . . . , pg are equal to 0.
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Investigating the fibres of the map ϑ in each of these cases we find the following,
see [15]:

Proposition 2.1. Keeping the notation above, if dim(U) = g − 3 + e−m, there exists
a point (

[R, p1, . . . , pg], x1, . . . , xe
)
∈M0,g ×Mg

DJ,

such that on the flag curve X = R ∪p1 E1 ∪ . . . ∪pg Eg the limiting de Jonquières
divisor (x1, . . . , xe) satisfies either (i) x1 = · · · = xe ∈ R r {p1, . . . , pg}, or else,
(ii) x1, . . . , xe all lie on a connected subcurve Y ⊆ X of genus at most m and with∣∣Y ∩ (X r Y )

∣∣ ≤ 1.

2.2. The proof of Theorem 1.1

We fix a partition µ = (a1, . . . , ae) and a positive integer f ≥ |µ|−r. We assume
that the variety Σfµ(C) ⊆ Grd(C) × Ce is not empty for every smooth curve C of
genus g. Keeping the notation above, we denote by e−m the fibre dimension of the
surjective morphism πe : U →M0,e. Recall that we defined DJ ⊆ Ceg to be the closure
of the universal locus of de Jonquières divisors and we assume that e−n is the generic
fibre dimension of the surjective morphism

πe|DJ : DJ→Mg.

When specializing to the subvariety of flag curves via the map j : M0,g ↪→ Mg the
fibre dimension of πe can only go up, we have that m ≤ n. We now apply Proposition
2.1 and let X = R∪E1∪ . . .∪Eg be the corresponding flag curve of genus g as above,
where for i = 1, . . . , g we denote by pi ∈ R the node corresponding to the intersection
of the spine R (which may itself well be reducible) with the subtree of X ending in
the elliptic tail Ei. We denote by Y ⊆ X the connected subcurve of X onto which
the marked points x1, . . . , xe (limiting a generalized de Jonquières divisor) specialize.
According to Proposition 2.1 there are two possibilities:

(i) pa(Y ) = m ≤ min{e, g}, or
(ii) x1 = · · · = xe ∈ Rr {p1, . . . , pg}.

We first treat case (i). Let Y ′ := X r Y be the subcurve of X complementary
to Y and set {p} := Y ∩ Y ′. When m = g, then set Y := X and Y ′ = ∅ and we let
p ∈ X be a general (smooth) point. The divisor a1 · x1 + · · · + ae · xe is a limit of
generalized de Jonquières divisors on smooth curves of genus g neighboring the genus
g curve of compact type X. Applying the formalism of stable reduction, we can find
a flat family of nodal curves of genus g

ϕ : X → (T, t0)

over a smooth pointed curve, together with sections s1, . . . , se : T → X such that:

(1) The generic fibre ϕ−1(t) = Xt is a smooth curve of genus g, whereas the central
fibre

X̃ := ϕ−1(0)

is stably equivalent to X, that is, it is a curve of arithmetic genus g obtained from X
by possibly attaching chains of smooth rational curves at the singularities of X.
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(2) si(0) = xi ∈ X̃reg for all i = 1, . . . , e.

(3) There exists a line bundle Lη of related degree d defined on the complement of
the central fibre Xη = X rϕ−1(0), and a subvector bundle Vη ⊆ ϕ∗(Lη) of rank r+1,
such that for t 6= 0, setting Lt = Lη|Xt ∈ Pic(Xt) and Vt = Vη|t ⊆ H0(Xt, Lt), we
have that (

(Lt, Vt), s1(0), . . . , se(t)
)
∈ Σfµ(Xt),

that is, dim
∣∣Vt(−a1 · s1(t)− · · · − ae · se(t))

∣∣ ≥ r − |µ|+ f .

We shall denote by Ỹ ⊆ X̃ the inverse image of Y under the contraction mor-

phism X̃ → X. Then set Ỹ ′ := X̃ r Ỹ and we still denote by p the point of intersection

of Ỹ and Ỹ ′.

Since when forming the family X → T we allow us the possibility of a further
base change and that of resolving the resulting singularities, we may furthermore

assume that the flag curve X̃ carries a (refined) limit linear series

` =
{
`Z = (LZ , VZ) : Z is a component of X̃

}
∈ Grd

(
X̃
)

obtained following the procedure described by Eisenbud and Harris [13] as a limit of
the linear series (Lt, Vt). Furthermore, the sublinear series described in (3) induce a
limit linear series

`′ =
{
`′Z = (LZ(−DZ), V ′Z) : Z is a component of X̃

}
∈ Gr−|µ|+fd−|µ|

(
X̃
)
,

where DZ is an effective divisor on Z supported on the union of the points

s1(0), . . . , se(0) that happen to lie on Z and the point of intersection Z ∩ X̃ r Z
(which is a smooth point of Z), and V ′Z ⊆ H0(Z,L′Z) is respectively a subspace of
sections of dimension r + 1− |µ|+ f .

Note that p is a smooth point of both subcurves Ỹ and Ỹ ′ of X̃, therefore it

is a smooth point of a unique irreducible component of Ỹ , respectively of a unique

irreducible component of Ỹ ′. We consider the respective aspects of ` and slightly
abusing notation, we denote by

a`Ỹ (p) =
(
a0 < · · · < ar

)
the sequence obtained by ordering the vanishing orders at p of the sections corre-

sponding to the irreducible component of Ỹ containing p. Similarly, we let

a`Ỹ ′ (p) =
(
b0 < · · · < br

)
be the sequence obtained by ordering the vanishing orders at p of the sections con-

tained in the aspect of ` corresponding to the component of Ỹ ′ containing p. Note
that ai+ br−i = d for i = 0, . . . , r. Furthermore, by ordering the vanishing orders at p

of the aspect of `′ corresponding to the component of Ỹ containing p, we obtain the
sequence

a`
′
Ỹ (p) =

(
ai0 < · · · < air−|µ|+f

)
.
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Clearly, this is a subsequence of a`Ỹ (p). The entries in the complementary subsequence
can be ordered as well and we denote this subsequence by(

aj0 < aj1 < · · · < aj|µ|−f−1

)
.

Note that {
ai0 , . . . , air−|µ|+f

}
∪
{
aj0 , . . . , aj|µ|−f−1

}
=
{
a0, . . . , ar

}
.

While the entries in the sequence (aj0 < · · · < aj|µ|−f−1
) corresponding to vanishing

orders of sections of a linear series on a single irreducible component of Ỹ , using the
procedure described in [15, Lemma 2.1], one can construct a sublimit linear series

`]
Ỹ
∈ G

|µ|−f−1
d (Ỹ ) of `Ỹ such that its vanishing sequence a`

]

Ỹ (p) equals precisely(
aj0 < · · · < a|µ|−f−1

)
.

We first assume Ỹ ′ 6= ∅. The point p ∈ Ỹ is a smooth point and lies on one

of its rational component. In particular the genus m pointed curve [Ỹ , p] verifies

the strong Brill-Noether Theorem, that is, both varieties G
r−|µ|+f
d−|µ|

(
Ỹ , (p, α`

′
Ỹ (p))

)
and G

|µ|−f−1
d

(
Ỹ , (p, α`

]

Ỹ
(p))
)

have the expected dimension given by the corresponding
adjusted Brill-Noether numbers, in particular these numbers must be non-negative,
cf. [14, Theorem 1.1]. We thus obtain the following two inequalities by writing this
for out for the limit linear series `Ỹ and `Ỹ ′ respectively:

dim G
|µ|−f−1
d

(
Ỹ ,
(
p, α`

]

Ỹ
(p))) = ρ

(
`]
Ỹ
, p
)

(2.5)

= ρ
(
m, |µ| − f − 1, d

)
− aj0 − · · · − aj|µ|−f−1

+

(
|µ| − f

2

)
≥ 0,

as well as

dim G
r−|µ|+f
d−|µ|

(
Ỹ ,
(
p, α`

′
Ỹ (p)

))
= ρ(`′

Ỹ
, p) (2.6)

= ρ
(
m, r − |µ|+ f, d− |µ|

)
− ai0 − · · · − ar−|µ|+f +

(
r + 1− |µ|+ f

2

)
≥ 0.

The same considerations can be applied to the complementary subcurve Ỹ ′ of X̃. The

point of attachment p lies on a rational component component of Ỹ ′, therefore the
strong Brill-Noether inequality holds for `Y ′ as well, and we obtain:

dim G
r

d

(
Ỹ ′, (p, α`Ỹ ′ (p))

)
= ρ(`Ỹ ′ , p) = ρ(g−m, r, d)−

(
b0 + · · ·+ br

)
+

(
r + 1

2

)
≥ 0.

(2.7)
We add the inequalities (2.5), (2.6) and (2.7) together and use the fact that (`Ỹ , `Ỹ ′)

form a refined limit linear series, therefore the vanishing orders of `′
Ỹ

, `]
Ỹ

and those

of `Ỹ ′ respectively add up, that is,

r∑
k=0

bk +

r−|µ|+f∑
k=0

aik +

|µ|−f−1∑
k=0

ajk =

r∑
k=0

(
ak + br−k

)
= (r + 1)d.
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We obtain the following estimate:

0 ≤ ρ(g −m, r, d) + ρ
(
m, r − |µ|+ f, d− |µ|

)
+ ρ
(
m, |µ| − f − 1, d

)
−(r + 1)d+

(
r + 1

2

)
+

(
r + 1− |µ|+ f

2

)
+

(
|µ| − f

2

)
= ρ(g, r, d)− f(r + 1− |µ|+ f) +m ≤ ρ(g, r, d)− f(r + 1− |µ|+ f) + e,

which is precisely the second half of Theorem 1.1. Note that in the last inequality,
the assumption m ≤ e guaranteed by Proposition 2.1 is absolutely essential.

In the case m = g, when necessarily e ≥ g and Ỹ = X̃, we proceed along similar
lines. We add together inequalities (2.5) and (2.6) to obtain:

ρ(g, r, d) + e− f(r + 1− |µ|+ f)

=

ρ(g, r − |µ|+ f, d− |µ|
)
−
r−|µ|+f∑
k=0

aik +

(
r + 1− |µ|+ f

2

)
+

(
ρ
(
g, |µ| − f − 1, d

)
−
e−f−1∑
k=0

ajk +

(
e− f

2

))

+

r−|µ|+f∑
k=0

aik +

|µ|−f−1∑
k=0

ajk −
(
r + 1

2

)
+ e− g

= dim G
r−|µ|+f
d−|µ|

(
Ỹ ,
(
p, α`

′
Ỹ (p)

))
+ dim G

|µ|−f−1
d

(
Ỹ ,
(
p, α`

]

Ỹ
(p)))

+

r−|µ|+f∑
k=0

aik +

|µ|−f−1∑
k=0

ajk −
(
r + 1

2

)
+ e− g ≥ 0,

since
r−|µ|+f∑
k=0

aik +

|µ|−f−1∑
k=0

ajk =

r∑
k=0

ak ≥
(
r + 1

2

)
and, as explained, e ≥ g.

Assume finally we are in the case (ii), that is, when x1 = · · · = xe ∈ Rr {p1, . . . , pg}.
Keeping the previous notation, we observe that the limit linear series ` ∈ Grd(X̃) has
vanishing sequence at x1

a`(x1) ≥
(

0, 1, . . . , |µ| − f − 1, |µ|, |µ|+ 1, . . . , r + f − 1, r + f
)
,

therefore wt`(x1) ≥ f(r + 1 − |µ| + f). Taking into account that [X̃, q] satisfies the
strong Brill-Noether Theorem, cf. [14, Theorem 1.1], Theorem 1.1, we obtain the
inequality

0 ≤ dim G
r

d

(
X̃,
(
x1, α

`(x1)
)

≤ ρ(g, r, d)− f(r + 1− |µ|+ f)

≤ ρ(g, r, d) + e− f(r + 1− |µ|+ f).
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This concludes the proof that the assumption Σfµ(C) 6= ∅ for a general curve of genus
g implies that ρ(g, r, d) + e− f(r + 1− |µ|+ f) ≥ 0.

We come now to the dimensionality statement for the variety

Σfµ(C) ⊆ Grd(C)× Ce,

when C is a general curve of genus g. Recalling from the Introduction that
π2 : Σfµ(C) → Ce is the natural projection, with our notation we have

dim π2
(
Σfµ(C)

)
= e − n ≤ e − m, where e − n has been defined as the minimal

fibre dimension of the surjection DJ→Mg. We now estimate the fibre dimension of
π2 over a general point (y1, . . . , ye) ∈ π2(Σfµ). To that end, we specialize once more
to the locus of flag curves. For an e-pointed curve [X,x1, . . . , xe] of compact type,
where the marked points are pairwise distinct smooth points of X, we denote by
Σfµ(X,x1, . . . , xe) the subvariety of G

r

d(X) consisting of limit linear series

` =
{
`Z = (`Z , VZ) : Z is a component of X

}
∈ Grd(X)

possessing a sublimit linear series of the form

`′ =
{
`′Z =

(
LZ(−DZ), V ′Z

)
: Z is a component of X

}
∈ Gr−|µ|+fd−|µ| (X),

where supp(DZ) = Z∩
(
(X r Z)∪{x1, . . . , xe}

)
. As already explained, via Proposition

2.1 we may consider a further degeneration to a flag curve [X̃, x1, . . . , xe], where

X̃ = Ỹ ∪ Ỹ ′ with Ỹ ∩ Ỹ ′ = {p} satisfies the conditions (1)-(3). Recall that x1, . . . , xe ∈
Ỹreqr{p}. It follows that for the generic fibre dimension of π2 the following inequality
holds:

dim π−12 (y1, . . . , ye) ≤ dim Σfµ
(
X̃, x1, . . . , xe

)
.

Furthermore, the dimension of Σfµ
(
X̃, x1, . . . , xe) cannot exceed the dimension of the

space of triples
(
`′
Ỹ
, `]
Ỹ
, `Ỹ ′

)
described earlier, which as explained, via the estimates

(2.5), (2.6) and (2.7) equals

dim G
r−|µ|+f
d−|µ|

(
Ỹ ,
(
p, α`

′
Ỹ (p)

))
+ dim G

|µ|−f−1
d

(
Ỹ ,
(
p, α`

]

Ỹ
(p)))

+ dim G
r

d

(
Ỹ ′, (p, α`Ỹ ′ (p))

)
= ρ(g, r, d)− f(r + 1− |µ|+ f) +m.

It follows that

dim Σfµ(C) ≤ dim π2
(
Σfµ(C)

)
+ dim Σfµ

(
X̃, x1, . . . , xe

)
≤ e− n+m+ ρ(g, r, d)− f(r + 1− |µ|+ f)

≤ e− f(r + 1− |µ|+ f),

since, as explained, m ≤ n. This brings the proof of Theorem 1.1 to an end. �
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Remark 2.2. A natural extension of Theorem 1.1 could be to consider the transver-
sality of curves C ⊆ Pr with respect to non-linear spaces. For instance, staying at the
level of space curves, it is expected that a general curve C ⊆ P3 has finitely many 8-
secant conics (but no 9-secant conics), finitely many 12-secant twisted cubics (but not
13-secant twisted cubics) and so on. The smooth curves confirming this expectation
have been recently characterized as those for which the blow-up of Pr along C yields
a threefold with big and nef anticanonical divisor, see [6]. The (virtual) number of
8-secant conics to C ⊆ P3 has been computed by Katz [18] as an iteration of multiple
point formulas. It would be interesting to have a study of the enumerative validity
of this and other similar formulas mirroring Theorem 1.1. In this case however more
subtle phenomena, related to the (Strong) Maximal Rank Conjecture [2, Conjecture
5.1], must come into play and which go beyond the Brill-Noether genericity of the
curve in question. It is for instance clear that whenever C ⊆ P3 lies on a quadric there
is a positive dimensional family of 8-secant conics, so at the very least these curves
will have to be excluded, probably other as well.
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