On a singular elliptic problem with variable exponent
DOI:
https://doi.org/10.24193/subbmath.2023.1.03Keywords:
singular elliptic problem, variable exponent, variational methods.Abstract
In the present note we study a semilinear elliptic Dirichlet problem involving a singular term with variable exponent of the following type
$$
\left\{
\begin{array}{ll}
-\Delta u= \frac{f(x)}{u^{\gamma(x)} }, & \mbox{ in }\Omega, \\
u>0, & \mbox{ in }\Omega, \\
u=0, & \mbox{ on }\partial \Omega.
\end{array}
\right.
$$
Existence and uniqueness results are proved when \(f\geq 0\).
References
Agmon, S., The L_p approach to the Dirichlet problem, Ann. Sc. Norm. Super. Pisa Cl. Sci., 13(1959), 405-448.
Bal, K., Garain, P., Mukherjee, T., On an anisotropic p-Laplace equation with variable singular exponent, Adv. Differential Equations, 26(2021), 535-562.
Boccardo, L., Orsina, L., Semilinear elliptic equations with singular nonlinearities, Calc. Var. Partial Di erential Equations, 37(2010), 363-380.
Canino, A., Degiovanni, M., A variational approach to a class of singular semilinear elliptic equations, J. Convex Anal., 11(2004), 147-162.
Canino, A., Sciunzi, B., A uniqueness result for some singular semilinear elliptic equations, Commun. Contemp. Math., 18(2016), 9 pp.
Canino, A., Sciunzi, B., Trombetta, A., Existence and uniqueness for p-Laplace equations involving singular nonlinearities, NoDEA Nonlinear Di erential Equations Appl., 23(2016), 18 pp.
Carmona, J., Martinez-Aparicio, P.J., A singular semilinear elliptic equation with a variable exponent, Adv. Nonlinear Stud., 16(2016), 491-498.
Crandall, M.G., Rabinowitz, P.H., Tartar, L., On a Dirichlet problem with a singular nonlinearity, Comm. Partial Differential Equations, 2(1977), 193-222.
Faraci, F., Smyrlis, G., Three solutions for a singular quasilinear elliptic problem, Proc. Edinb. Math. Soc., 62(2019), 179-196.
Fulks, W., Maybee, J.S., A singular non-linear equation, Osaka Math. J., 12(1960), 1-19.
Giacomoni, J., Schindler, I., Takac, P., Sobolev versus Holder minimizers and global multiplicity for a singular and quasilinear equation, Ann. Sc. Norm. Super. Pisa Cl. Sci.,
(2007), 117-158.
Godoy, T., Kaufmann, U., On Dirichlet problems with singular nonlinearity of indefinite sign, J. Math. Anal. Appl., 428(2015), 1239-1251.
Hirano, N., Saccon, C., Shioji, N., Brezis-Nirenberg type theorems and multiplicity of positive solutions for a singular elliptic problem, J. Differential Equations, 245(2008),
-2037.
Loc, N.H., Schmitt, K., Applications of sub-supersolution theorems to singular nonlinear elliptic problems, Adv. Nonlinear Stud., 11(2011), 493-524.
Oliva, F., Petitta, F., On singular elliptic equations with measure sources, ESAIM Control Optim. Calc. Var., 22(2016), 289-308.
Perera, K., Silva, E.A.B., Existence and multiplicity of positive solutions for singular quasilinear problems, J. Math. Anal. Appl., 323(2006), 1238-1252.
Zhang, Z., Critical points and positive solutions of singular elliptic boundary value problems, J. Math. Anal. Appl., 302(2005), 476-483.
Downloads
Published
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Transfer of copyright agreement: When the article is accepted for publication, the authors and the representative of the coauthors, hereby agree to transfer to Studia Universitatis Babeș-Bolyai Mathematica all rights, including those pertaining to electronic forms and transmissions, under existing copyright laws, except for the following, which the authors specifically retain: the authors can use the material however they want as long as it fits the NC ND terms of the license. The authors have all rights for reuse according to the license.