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1. Introduction

The complex Ginzburg-Landau equation on a bounded domain G in R or R2

with sufficiently regular boundary ∂G is

dX(t) = (a1 + ia2)∆X(t)dt+ (λ1 + iλ2)|X(t)|2X(t)dt+ γX(t)dt, (1.1)

X(0) = X0,

where X : G× [0,∞)→ C and a1, a2, λ1, λ2, γ are certain real parameters.

Throughout this paper i is the imaginary unit, Rez, Imz are, respectively, the
real part and imaginary part of a complex number z, z̄ denotes its complex conjugate
and |z| =

√
(Rez)2 + (Imz)2 its modulus. Further we use the notations: R∗ := R\{0}

and N∗ := {1, 2, . . .}.
Equation (1.1) is a nonlinear Schrödinger type equation with complex coeffi-

cients and power-type nonlinearity. Different forms of this evolution equation have
applications in physics, see for example [5, 6, 8, 10, 11, 12, 13].

In this paper we consider a method to approximate the solution of the following
stochastic complex Ginzburg-Landau evolution equation in dimension one perturbed
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by a multiplicative noise term

dX(t) = ia∆X(t) dt− λ|X(t)|2X(t) dt+ γX(t)dt+ i

∞∑
k=1

bk(t)X(t) dWk(t) (1.2)

with initial condition X(0) = X0 and homogeneous Neumann boundary condition.
Here, X is a complex-valued stochastic process depending on t ∈ [0, T ] and x ∈ G ⊂ R,
a ∈ R∗, λ, γ, T > 0 are fixed, (Wk)k∈N is a sequence of independent real-valued
Wiener processes and (bk)k∈N is a sequence of real-valued functions, whose properties
will be detailed later. The stochastic equation (1.2) corresponds to the case when
in the deterministic equation (1.1) the parameters are a1 = 0, a2 = a ∈ R∗ and
λ1 = −λ < 0, λ2 = 0, γ > 0.

The existence of the solution of the stochastic Ginzburg-Landau equations is
studied for example in [9, 1, 2, 5] with different noise terms than in our paper. In [9]
the Galerkin method for the stochastic equation is used, while in [1] there are studied
mild solutions and Strichartz’ estimates are applied. In [5] the equation is studied
on a three dimensional torus and has an additive noise term. A similar noise term is
considered in [2], where the martingale solution is investigated.

In this paper we prove the existence of the solution by using a deterministic
Ginzburg-Landau type equation. Moreover, we present a method to approximate the
solution of (1.2) and give error estimates for this approximation. In the context of
computer simulations error estimates are very important.

The paper has the following structure: Section 2 contains some notations, pre-
liminary results, and the variational formulation of the stochastic, as well as the
deterministic Ginzburg-Landau equation. In Section 3 we prove the existence and
uniqueness of the considered evolution equation. In the last section we give some ap-
proximation results and error estimates for both the solution of the deterministic and
stochastic Ginzburg-Landau equation.

2. Preliminaries

For simplicity we take the domain G = (0, 1). Consider the complex Hilbert
spaces H := L2(0, 1) and V := H1(0, 1), the inner product in H is given by

(u, v) :=

∫ 1

0

u(x) v̄(x) dx, for all u, v ∈ H,

while the inner product in V is

(u, v)V :=

∫ 1

0

[
u(x) v̄(x) +

du

dx
(x)

dv̄

dx
(x)

]
dx, for all u, v ∈ V.

The corresponding norms in H and V are ‖·‖ and ‖·‖V , respectively. Furthermore,
let V ∗ be the dual space of V and 〈·, ·〉 the duality pairing of V ∗ and V .

Let A : V → V ∗ be the operator defined by

〈Au, v〉 :=

∫ 1

0

du

dx
(x)

dv̄

dx
(x) dx, for all u, v ∈ V. (2.1)
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Let (µk)k∈N be the increasing sequence of real eigenvalues and let (hk)k∈N be the
corresponding eigenfunctions of A with respect to homogeneous Neumann boundary
conditions. The eigenfunctions (hk)k∈N form an orthonormal system in H and they
are orthogonal in V . Obviously, for all u ∈ H and all v ∈ V , it holds that

u =

∞∑
k=1

(u, hk)hk, Av =

∞∑
k=1

µk(v, hk)hk ,

and
Im〈Av, v〉 = 0, (2.2)

Re〈Av, v〉 = 〈Av, v〉 =

∞∑
k=1

µk |(v, hk)|2 ≥ 0.

Moreover,
‖Av‖V ∗ ≤ ‖v‖V , for all v ∈ V. (2.3)

Recall that V ↪→ H is a compact embedding, (V,H, V ∗) is a triplet of rigged
Hilbert spaces (Gelfand triple), and 〈Au, v〉 = (Au, v), for each u, v ∈ V , such that
Au ∈ H.

In [4, Lemma 1.1] it is stated that

sup
x∈[0,1]

|v(x)|2 ≤ ‖v‖
(
‖v‖+ 2

∥∥∥∥dvdx
∥∥∥∥) ≤ 2‖v‖2V , for all v ∈ V. (2.4)

Recall that H1(0, 1) ↪→ C[0, 1].
For each n ∈ N∗ set Hn := sp{h1, h2, . . . , hn} with the norm being induced from

H. The norms ‖ · ‖ and ‖ · ‖V are equivalent on Hn.

The map Πn : H → Hn defined by Πnh :=

n∑
k=1

(h, hk)hk is the orthogonal

projection of H onto Hn. Then, Πnh = h, for each h ∈ Hn, and ‖Πnh‖ ≤ ‖h‖, for
each h ∈ H. Moreover, for each h ∈ Hn it holds

Ah =

n∑
k=1

µk(h, hk)hk ∈ Hn,

and then

〈Ah, h〉 = (Ah, h) =

n∑
k=1

µk |(h, hk)|2 = ‖h‖2V − ‖h‖2, (2.5)

(Ah,Ah) =

n∑
k=1

µ2
k |(h, hk)|2 , for each h ∈ Hn. (2.6)

Further, we mention some results used throughout the paper.

Lemma 2.1. Let u, v ∈ V such that Av ∈ H and |u|2v ∈ V , then

Re(|u|2v,Av) ≥ 0. (2.7)

Especially, if |v|2v ∈ V , it holds

Re(|v|2v,Av) ≥ 0. (2.8)
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Proof. We have

Re(Av, |u|2v) = Re

∫ 1

0

dv

dx
(x)

d|u|2v̄
dx

(x) dx

= Re

∫ 1

0

(
v̄(x)

dv

dx
(x)

d|u|2

dx
(x) + |u(x)|2

∣∣∣∣dvdx (x)

∣∣∣∣2
)
dx

=

∫ 1

0

((
1

2

d|v|2

dx
(x)

)
d|u|2

dx
(x) + |u(x)|2

∣∣∣∣dvdx (x)

∣∣∣∣2
)
dx ≥ 0.

Therefore,

Re(|u|2v,Av) = Re(|u|2v,Av) = Re(Av, |u|2v) ≥ 0.

�

Lemma 2.2. Let z1, z2 ∈ C. Then the following inequalities hold∣∣|z1|2z1 − |z2|2z2∣∣ ≤ 3
(
|z1|2 + |z2|2

)
|z1 − z2|; (2.9)

Re
(
(|z1|2z1 − |z2|2z2) (z̄1 − z̄2)

)
≥ 0. (2.10)

Proof. See, e.g., [9, Lemma 7.2, Lemma 7.3]. �

Lemma 2.3. Let S be a bounded set in L2([0, T ];V ), which is equicontinuous in
C([0, T ];V ∗). Then, S is relatively compact in L2([0, T ];H).

Proof. We use [14, Theorem 4.1] applied for V ↪→ H ↪→ V ∗, where V ↪→ H is
compact. �

In what follows we assume that (Ω,F , P ) is a complete probability space
and (Wk)k∈N a sequence of independent real-valued standard Brownian motions on
[0, T ] generating an increasing family of σ-algebras

(
Ft
)
t∈[0,T ]

. For each k ≥ 1, let

bk : [0, T ]→ R be square integrable functions such that
∞∑
k=1

∫ T

0

b2k(s) ds <∞. (2.11)

Throughout the paper let λ, γ, T > 0, a ∈ R∗, X0 ∈ V be fixed.

Definition 2.4. An
(
Ft
)
t∈[0,T ]

adapted process

X ∈ L2(Ω;C([0, T ];H)) ∩ L4(Ω× [0, T ];V )

is called a variational solution of the stochastic Ginzburg-Landau equation (1.2) with
initial condition X0 ∈ V if

(X(t), v) =(X0, v)− ia

∫ t

0

〈AX(s), v〉ds− λ
∫ t

0

(|X(s)|2X(s), v)ds (2.12)

+ γ

∫ t

0

(X(s), v)ds+ i

∞∑
k=1

∫ t

0

bk(s)(X(s), v)dWk(s)

holds for all t ∈ [0, T ], v ∈ V , and a.e. ω ∈ Ω.
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Remark 2.5. Let (2.11) be satisfied. Recall that the real-valued stochastic integral
with respect to countably many Brownian motions

R(t) :=

∞∑
k=1

∫ t

0

bk(s)dWk(s), t ∈ [0, T ],

is a continuous square integrable martingale with respect to the filtration
(
Ft
)
t∈[0,T ]

,

see [3, Lemma 2.1], having the quadratic variation equal to

[R]t =

∞∑
k=1

∫ t

0

b2k(s)ds, t ∈ [0, T ].

Moreover, for each U ∈ L2(Ω;C([0, T ];H)) the H-valued stochastic integral

I(t) :=

∞∑
k=1

∫ t

0

bk(s)U(s) dWk(s), t ∈ [0, T ],

is a continuous square integrable H-valued martingale with respect to the filtration(
Ft
)
t∈[0,T ]

and

E
(
‖I(t)‖2

)
= E

∞∑
k=1

∫ t

0

b2k(s)‖U(s)‖2ds, t ∈ [0, T ].

Similar to the method from the paper [7], we associate to (2.12) a deterministic
equation, which has the same initial condition X0 ∈ V . For this we denote

Y (t) := exp

(
−γt− 1

2

∞∑
k=1

∫ t

0

b2k(s) ds− i

∞∑
k=1

∫ t

0

bk(s) dWk(s)

)
for all t ∈ [0, T ] and a.e. ω ∈ Ω. The

(
Ft
)
t∈[0,T ]

adapted real-valued process

(Y (t))t∈[0,T ] is the solution of the following stochastic linear differential equation

Y (t) = 1− γ
∫ t

0

Y (s) ds−
∞∑
k=1

∫ t

0

b2k(s)Y (s) ds− i

∞∑
k=1

∫ t

0

bk(s)Y (s) dWk(s)

for all t ∈ [0, T ] and a.e. ω ∈ Ω, where the stochastic integral in this equation is a
real-valued continuous martingale (see Remark 2.5). For all t ∈ [0, T ] let

B(t) :=
1

|Y (t)|2
= exp

(
2γt+

∞∑
k=1

∫ t

0

b2k(s) ds

)
, (2.13)

and then 0 < B(t) ≤ B(T ) <∞ for all t ∈ [0, T ].

Definition 2.6. If Z ∈ C([0, T ];H)) ∩ L4([0, T ];V ) satisfies the evolution equation

(Z(t), v) = (X0, v)− ia

∫ t

0

〈AZ(s), v〉 ds− λ
∫ t

0

B(s)(|Z(s)|2Z(s), v) ds (2.14)

for all t ∈ [0, T ] and all v ∈ V , then Z is called a variational solution of the determi-
nistic Ginzburg-Landau type equation.



312 Brigitte E. Breckner and Hannelore Lisei

3. Existence results

Theorem 3.1. There exists a unique solution

Z ∈ C([0, T ];H) ∩ L4([0, T ];V )

of (2.14). Moreover, the following inqualities hold

sup
t∈[0,T ]

‖Z(t)‖2 ≤ ‖X0‖2,

∫ T

0

‖Z(t)‖2V dt ≤ T‖X0‖2V ,
∫ T

0

‖Z(t)‖4V dt ≤ T‖X0‖4V .

Proof. Fix n ∈ N∗. We consider the finite dimensional deterministic equation corre-
sponding to (2.14)

(Zn(t), hj) = (X0, hj)− ia

∫ t

0

〈AZn(s), hj〉 ds− λ
∫ t

0

B(s)(|Zn(s)|2Zn(s), hj) ds, (3.1)

for all t ∈ [0, T ], j ∈ {1, ..., n}. In what follows we study the existence and uniqueness
of the solution Zn ∈ C([0, T ];Hn) of (3.1).

From (2.2) and (2.10) it follows by standard arguments that the solution of (3.1)
is unique in C([0, T ];Hn), and that the solution of (2.14) is unique in C([0, T ];H) ∩
L4([0, T ];V ).

The existence of Zn ∈ C([0, T ];Hn) follows from the finite dimensional theory
for differential equations with locally Lipschitz nonlinearities. Note that (2.9) assures
that the nonlinearity in (3.1) is locally Lipschitz. The solution is global on [0, T ] by
the estimate (3.4) below: By taking the complex conjugate in (3.1) we have

(Zn(t), hj) = (X0, hj) + ia

∫ t

0

〈AZn(s), hj〉ds− λ
∫ t

0

B(s)(|Zn(s)|2Zn(s), hj)ds (3.2)

for all t ∈ [0, T ], j ∈ {1, ..., n}.
For z ∈ C we recall the following identities

z − z̄ = 2i Imz and z + z̄ = 2 Rez. (3.3)

By using (3.1), (3.2), the chain rule for the product

(Zn(·), hj) · (Zn(·), hj), j ∈ {1, ..., n},

as well as (3.3) and the property

‖Zn(t)‖2 =

n∑
j=1

|(Zn(t), hj)|2 ∈ R, t ∈ [0, T ],

we obtain for all t ∈ [0, T ]

‖Zn(t)‖2 = ‖ΠnX0‖2 + 2aIm

∫ t

0

〈AZn(s), Zn(s)〉 ds

− 2λRe

∫ t

0

B(s)(|Zn(s)|2Zn(s), Zn(s)) ds.
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By (2.2) and (2.8) we conclude

sup
t∈[0,T ]

‖Zn(t)‖2 ≤ ‖X0‖2. (3.4)

Further we obtain estimates for sup
t∈[0,T ]

‖Zn(t)‖2V . Using (3.1) and (3.2) as above, we

have for all t ∈ [0, T ] and j ∈ {1, ..., n}

µj |(Zn(t), hj)|2 =µj |(X0, hj)|2 + 2aIm

∫ t

0

µ2
j |(Zn(s), hj)|2ds

− 2λRe

∫ t

0

B(s)(|Zn(s)|2Zn(s), µj(Zn(s), hj)hj) ds.

Summing up from j = 1 to n, then, by (2.5) and (2.6), we obtain for all t ∈ [0, T ]

(AZn(t), Zn(t)) = (AΠnX0,ΠnX0)− 2λRe

∫ t

0

B(s)(|Zn(s)|2Zn(s), AZn(s))ds.

By (2.8) and (2.5) it follows for all t ∈ [0, T ]

‖Zn(t)‖2V − ‖Zn(t)‖2 ≤ (AΠnX0,ΠnX0) ≤ 〈AX0, X0〉 = ‖X0‖2V − ‖X0‖2.

Therefore by (3.4) it follows

sup
t∈[0,T ]

‖Zn(t)‖2V ≤ ‖X0‖2V . (3.5)

Then, we conclude Zn ∈ L4([0, T ];V ).
By (3.1) and (2.3) we have for all r, t ∈ [0, T ] with r < t

‖Zn(t)− Zn(r)‖2V ∗ ≤ 2

∫ t

r

‖AZn(s)‖2V ∗ds+ 2λ2
∫ t

r

B2(s)‖|Zn(s)|2Zn(s)‖2V ∗ds

≤ 2

∫ t

r

‖Zn(s)‖2V ds+ 2λ2CB2(T )

∫ t

r

‖|Zn(s)|2Zn(s)‖2ds,

where C is the embedding constant of H ↪→ V ∗. Moreover, by (2.4) we write for all
r, t ∈ [0, T ] with r < t∫ t

r

‖|Zn(s)|2Zn(s)‖2ds =

∫ t

r

(∫ 1

0

|Zn(s)|6dx
)
ds ≤ 4

∫ t

r

‖Zn(s)‖4V ‖Zn(s)‖2ds.

Using these estimates, as well as (3.4) and (3.5), it follows for all r, t ∈ [0, T ] with
r < t

‖Zn(t)− Zn(r)‖2V ∗ ≤ 2(t− r)‖X0‖2V
(
1 + 4λ2CB2(T )‖X0‖2V ‖X0‖2

)
.

We observe that S := (Zn)n≥1 is equicontinuous in C([0, T ];V ∗) and it is bounded in
L2([0, T ];V ) and also in L4([0, T ];V ) (see (3.5)).

It follows that there exist U ∈ L2([0, T ];H) ∩ L4([0, T ];V ) and a subsequence
(Znk

)k≥1 which is:
• strongly convergent in L2([0, T ];H) to U (by Lemma 2.3)
and
• weakly convergent in L4([0, T ];V ) and, also in L2([0, T ];V ), to U .
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Recall that L4([0, T ];V ) ↪→ L2([0, T ];V ) ↪→ L2([0, T ];H); these are reflexive Banach
spaces and we can use [15, Proposition 21.23(i), Proposition 21.35(c)].

Since (Znk
)k≥1 is strongly convergent to U in L2([0, T ];H), one can prove by

using (2.9) that
(
|Znk
|2Znk

)
k≥1 is weakly convergent to |U |2U in L2([0, T ];H). In

(3.1) we take nk instead of n, then let k → ∞, and using the above convergence
results, we get for all j ∈ N∗ that

(U(t), hj) = (X0, hj)− ia

∫ t

0

〈AU(s), hj〉 ds− λ
∫ t

0

B(s)(|U(s)|2U(s), hj) ds (3.6)

holds for a.e. t ∈ [0, T ].

There exists an H-valued function that is equal to U for a.e. t ∈ [0, T ] and is
equal to the right side of (3.6) for all t ∈ [0, T ]. This function we denote by Z. By the
properties of U we have

Z ∈ C([0, T ];H) ∩ L4([0, T ];V )

and Z is the solution of (2.14).

The estimate

sup
t∈[0,T ]

‖Z(t)‖2 ≤ ‖X0‖2

is obtained similarly to (3.4) by using (2.12). By the weak convergence of (Znk
)k≥1

to Z in L2([0, T ];V ) and also in L4([0, T ];V ), we get from (3.5)∫ T

0

‖Z(t)‖2V dt ≤ lim inf
k→∞

∫ T

0

‖Znk
(t)‖2V dt ≤ T‖X0‖2V ,

∫ T

0

‖Z(t)‖4V dt ≤ lim inf
k→∞

∫ T

0

‖Znk
(t)‖4V dt ≤ T‖X0‖4V .

�

Remark 3.2. In [13, Chapter IV, Theorem 5.1] and [8, Chap. 10, Théorème 10.1] the
reader may find alternative ideas for the proof of the existence of the solution of (2.14).
The purpose of our detailed proof, using classical methods from partial differential
equations, was to obtain the estimates stated in Theorem 3.1, which will be used in
the computation of error bounds in Section 4.

Theorem 3.3. There exists a unique variational solution of (2.12)

X ∈ L2(Ω;C([0, T ];H)) ∩ L4(Ω× [0, T ];V ).

Moreover, X ∈ C([0, T ];H)∩L4([0, T ];V ) for a.e. ω ∈ Ω and the following inqualities
hold for a.e. ω ∈ Ω

sup
t∈[0,T ]

‖X(t)‖2 ≤ B(T )‖X0‖2,

∫ T

0

‖X(t)‖2V dt ≤ TB(T )‖X0‖2V ,
∫ T

0

‖X(t)‖4V dt ≤ TB2(T )‖X0‖4V .
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Proof. By the Itô formula and the uniqueness of the solution of (2.14) one has that

X(t) := Z(t)Y −1(t), for all t ∈ [0, T ] and a.e. ω ∈ Ω,

is the unique solution of (2.12). The estimates for X follow from Theorem 3.1 and we
also have

E sup
t∈[0,T ]

‖X(t)‖2 ≤ B(T )‖X0‖2,

E

∫ T

0

‖X(t)‖2V dt ≤ TB(T )‖X0‖2V , E

∫ T

0

‖X(t)‖4V dt ≤ TB2(T )‖X0‖4V . �

4. Approximation of the solution

We will approximate the solution of (2.12) by a sequence of stochastic processes
(XN )N≥1, where, for each N ∈ N∗, we consider XN := ZNY

−1, ZN being the solution
of the following linearized deterministic problem in variational formulation

(ZN (t), v) = (X0, v)− ia

∫ t

0

〈AZN (s), v〉 ds− λ
∫ t

0

B(s)(|ZN−1(s)|2ZN (s), v) ds, (4.1)

for all t ∈ [0, T ] and all v ∈ V . We take Z0 := X0.

Theorem 4.1. For each N ∈ N∗ there exists a unique solution

ZN ∈ C([0, T ];H) ∩ L4([0, T ];V )

of (4.1).

Proof. The result is obtained successively: Let N ≥ 1. If

ZN−1 ∈ C([0, T ];H) ∩ L4([0, T ];V ), then ZN ∈ C([0, T ];H) ∩ L4([0, T ];V )

is a solution of (4.1).
The existence and uniqueness of the solution of (4.1) is proved analogously to

Theorem 3.1. We use (2.7), Lemma 2.3, and the Galerkin method associated to (4.1)
in order to obtain the following estimates for each N ∈ N∗

sup
t∈[0,T ]

‖ZN (t)‖2 ≤ ‖X0‖2,∫ T

0

‖ZN (t)‖2V dt ≤ T‖X0‖2V ,
∫ T

0

‖ZN (t)‖4V dt ≤ T‖X0‖4V . �

Theorem 4.2. For each N ∈ N∗ it holds

sup
t∈[0,T ]

‖ZN (t)− Z(t)‖2 ≤ 3λTB(T )

2N−4
‖X0‖2‖X0‖2V exp

(
20λTB(T )‖X0‖2V

)
.

Proof. By using (4.1) and (2.14), we have

‖ZN (t)− Z(t)‖2 = 2aIm

∫ t

0

〈AZN (s)−AZ(s), ZN (s)− Z(s)〉 ds (4.2)

− 2λRe

∫ t

0

B(s)(|ZN−1(s)|2ZN (s)− |Z(s)|2Z(s), ZN (s)− Z(s)) ds,
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for all t ∈ [0, T ]. We define

e(t) = exp

(
−20λ

∫ t

0

B(s)‖Z(s)‖2V ds
)
, for all t ∈ [0, T ].

Then, by (4.2) and (2.2), we have for all t ∈ [0, T ]

e(t)‖ZN (t)− Z(t)‖2 = (4.3)

− 2λRe

∫ t

0

e(s)B(s)(|ZN−1(s)|2ZN (s)− |Z(s)|2Z(s), ZN (s)− Z(s)) ds

− 20λ

∫ t

0

e(s)B(s)‖Z(s)‖2V ‖ZN (s)− Z(s)‖2ds.

We compute

− Re(|ZN−1|2ZN − |Z|2Z,ZN − Z)

= −Re(|ZN−1|2(ZN − Z), ZN − Z) + Re((|Z|2 − |ZN−1|2)Z,ZN − Z).

Denote Q = ZN−1, R = ZN (we omit writing the dependence on s and x). Due to the
definition of the scalar product (·, ·) in H, we write

− Re(|ZN−1|2(ZN − Z), ZN − Z) = −
∫ 1

0

|Q|2|R− Z|2dx

= −
∫ 1

0

(
|Q− Z|2 + |Z|2 + 2Re[(Q− Z)Z̄]

)
|R− Z|2dx

≤
∫ 1

0

(
− |Q− Z|2|R− Z|2 − |Z|2|R− Z|2 + 2|Q− Z||Z||R− Z|2

)
dx

≤
∫ 1

0

(
− 1

2
|Q− Z|2|R− Z|2 + |Z|2|R− Z|2

)
dx,

as well as

Re((|Z|2 − |ZN−1|2)Z,ZN − Z) = Re

∫ 1

0

(|Z|2 − |Q|2)Z(R̄− Z̄)dx

= Re

∫ 1

0

(
− |Q− Z|2 − 2Re[(Q− Z)Z̄]

)
Z(R̄− Z̄)dx

≤
∫ 1

0

(1

2
|Q− Z|2|R− Z|2 + |Z|2|R− Z|2 +

3

2
|Z|2|Q− Z|2

)
dx .

Then,

− 2λRe(|ZN−1|2ZN − |Z|2Z,ZN − Z)

≤ λ
∫ 1

0

(
4|Z|2|ZN − Z|2 + 3|Z|2|ZN−1 − Z|2

)
dx

≤ 8λ‖Z‖2V ‖ZN − Z‖2 + 6λ‖Z‖2V ‖ZN−1 − Z‖2,
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where in the last inequality we apply (2.4). Using the result obtained above, we get,
by (4.3), for all t ∈ [0, T ]

e(t)‖ZN (t)− Z(t)‖2 + 12λ

∫ t

0

e(s)B(s)‖Z(s)‖2V ‖ZN (s)− Z(s)‖2ds (4.4)

≤ 6λ

∫ t

0

e(s)B(s)‖Z(s)‖2V ‖ZN−1(s)− Z(s)‖2ds.

This implies, for each N ∈ N∗∫ T

0

e(s)B(s)‖Z(s)‖2V ‖ZN (s)− Z(s)‖2ds

≤ 1

2

∫ T

0

e(s)B(s)‖Z(s)‖2V ‖ZN−1(s)− Z(s)‖2ds

. . . ≤ 1

2N

∫ T

0

e(s)B(s)‖Z(s)‖2V ‖X0 − Z(s)‖2ds

≤ 1

2N−1
B(T )

(
‖X0‖2 + sup

s∈[0,T ]

‖Z(s)‖2
) ∫ T

0

‖Z(s)‖2V ds

≤ TB(T )

2N−2
‖X0‖2‖X0‖2V .

Note that in the last inequality we take into consideration the estimates from Theorem
3.1. Using the above result in (4.4), we obtain for each N ∈ N∗

sup
t∈[0,T ]

‖ZN (t)− Z(t)‖2 ≤ 6λ
TB(T )

2N−3e(T )
‖X0‖2‖X0‖2V

≤ 3λTB(T )

2N−4
‖X0‖2‖X0‖2V exp

(
20λTB(T )‖X0‖2V

)
.

�

Applying Theorem 3.3 and Theorem 4.2, we obtain the main result of our paper.

Theorem 4.3. For a.e. ω ∈ Ω and for each N ∈ N∗ let

XN (t) := ZN (t)Y −1(t), for all t ∈ [0, T ].

The following approximation result holds for a.e. ω ∈ Ω and all N ∈ N∗

sup
t∈[0,T ]

‖XN (t)−X(t)‖2 ≤ 3TλB2(T )

2N−4
‖X0‖2‖X0‖2V exp

(
20λTB(T )‖X0‖2V

)
,

where

B(T ) = exp

(
2γT +

∞∑
k=1

∫ T

0

b2k(s) ds

)
.

In particular, this implies

P
(

lim
N→∞

sup
t∈[0,T ]

‖XN (t)−X(t)‖2 = 0
)

= 1
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and

lim
N→∞

E sup
t∈[0,T ]

‖XN (t)−X(t)‖2 = 0.

Remark 4.4. We can obtain similar results as in this paper, if:
1) we consider homogeneous Dirichlet or periodic boundary conditions;
2) instead of the nonlinear term |X|2X we take |X|2σX, where σ ≥ 1, or combined
power-type nonlinearities such as |X|2σ1X + |X|2σ2X, where σ1, σ2 ≥ 1;
3) γ ≤ 0;
4) in (2.12) the operator −iaA is replaced by −(a1+ia2)A, where a2 ∈ R∗ and a1 > 0;
5) for each k ≥ 1, we assume bk : Ω× [0, T ]→ R to be

(
Ft
)
t∈[0,T ]

adapted processes

satisfying

E

(
exp

(
3

∞∑
k=1

∫ T

0

b2k(s) ds

))
<∞.
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