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Mathematics Subject Classification (2010): 65H05, 65D05, 65D99.
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1. Introduction

Consider the nonlinear scalar equation

f(x) = 0, (1.1)

where f : D ⊆ R→ R is a continuous and differentiable as many times as necessary.
Let α be a solution of (1.1). Let Rm,p be the set of rational functions with degree of
numerator m and degree of denominator p. Suppose f has a formal Taylor series

f(z) = c0 + c1z + c2z
2 + · · · .

For any pair (m, p) ∈ N× N, rm,p ∈ Rm,p is the type (m, p) Padé approximant
to f if their Taylor series at z = 0 agree as far as possible:

(f − rm,p)(z) = O(zmax) (1.2)

We will use three different strategies based on Padé approximation in order to
obtain automatically high order method:

• a direct strategy;
• inverse interpolation;
• modified methods.
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The features of Maple CAS allow us to generate methods of arbitrary orders.
See [4] or [6] for details. The pade procedure from the numapprox package computes a
Padé approximation of degree (m, p) about a given point. The paper [3] and the book
[2] contain several interesting examples of using Computer Algebra for the derivation
of numerical methods. In the sequel we will consider one-step methods, i.e. methods
of the form

xn+1 = F (xn), x0 given.

For the sake of brevity we will use the notations fn = f(xn) and f
(k)
n = f (k)(xn).

2. The direct approach

The first strategy is to approximate f by its (m, p) Padé approximant rm,p ∈
Rm,p and to solve the equation rm,p(x) = 0. The iteration will have the form

xn+1 = F (xn),

where F (x) is the root of rm,p(x) = 0 as a function of x. In order to avoid the solution
of higher order equations, we will choose m = 1.

For example, for m = 1 and p = 0, we obtain the Newton’s method.

> restart;

> with(numapprox):

> F:=pade(f(t),t=x[n],[1,0]):

> G:=collect(solve(%,t),x[n]);

G := xn −
f (xn)

D (f) (xn)
or,

xn+1 = xn −
fn
f ′n
.

For m = 1 and p = 1, we obtain Halley’s method.

> F:=pade(f(t),t=x[n],[1,1]):

> G:=collect(solve(%,t),x[n]);

G := xn − 2
D (f) (xn) f (xn)

2 (D (f) (xn))
2 −

(
D(2)

)
(f) (xn) f (xn)

or,

xn+1 = xn −
2f ′nfn

2 (f ′n)
2 − f ′′nfn.

This formula was obtained using direct Padé approximation in [2].

These are in fact particular cases of Householder-type methods. They could be
obtained by considering (1, p) Padé approximation and solving the equation r1,p = 0.
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Their order is p + 2. If f ∈ Cp+1(V ), where V is a neighborhood of α, Househelder
showed in [9] that the general form of iteration is

xn+1 = xn + (p+ 1)

(
1
f

)(p)
(

1
f

)(p+1)

∣∣∣∣∣∣∣
xn

.

The generation of such a method is straightforward with the following one-line
Maple code

> Phi:=(x,p)->x+(p+1)*(D@@(p))(1/f)(x)/(D@@(p+1))(1/f)(x):

We give two examples, for p = 2 and p = 3. The results were converted to
mathematical notation.

> F_2:=x+normal(Phi(x,2)-x);

> F_3:=x+normal(Phi(x,3)-x);

F2 := x− 3

[
2f ′2(x)− f ′′(x)f(x)

]
f(x)

f ′′′(x)f2(x) + 6f ′3(x)− 6f ′′(x)f ′(x)f(x)
(2.1)

F3 := x+
4
[
f ′′′(x)f2(x) + 6f ′3(x)− 6f ′′(x)f ′(x)f(x)

]
f(x)

Q(x)
, (2.2)

where

Q(x) = f (4)(x)f3(x)− 8f ′′′(x)f ′(x)f2(x)− 24f ′4(x)+

36f ′′(x)f ′2(x)f(x)− 6f ′′2(x)f2(x) (2.3)

3. Inverse interpolation

Suppose there exists g = f−1 on a neighborhood V of α. The inverse interpola-
tion consists of approximating

α = g(0),

by the value of an interpolant ĝ for g at 0

α = ĝ(0).

In this section we will use inverse Padé interpolation. The formula we look for
will have the form

xk+1 = rm,p(xk), k = 0, 1, ,

where rm,p is the (m, p) Padé approximant for g(0). For details on inverse interpo-
lation see [1], [5], [7]. The paper [7] uses rational interpolation to derive methods
for the solution of scalar nonlinear equations. The Maple procedure invpade gen-
erates the iteration function based on (m, p)-inverse Padé interpolation.

> invPade:=proc(m::nonnegint,p::nonnegint)
> local f,x;
> x+collect(eval(pade((f@@(-1))(y),y=f(x),[m,p]),y=0)-x,
> x,simplify);
> end proc;
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We give examples for (m, p) ∈ {(1, 1), (2, 1), (2, 2)}. The results were edited, in
order to fit on page.

Formula for (1, 1) is the Halley’s formula.

> F11:=invPade(1,1);

F11 := x+ 2
f ′(x)f(x)

f ′′(x)f(x)− 2f ′2(x)

Formula for (2, 1) was given and studied in [10].

> F21:=invPade(2,1);

> convert(%,diff);

F21 := x−
f(x)

[
f(x)f ′(x)f ′′′(x)− 3

2f(x)f ′′2(x) + 3f ′2(x)f ′′(x)
]

f ′(x) [f(x)f ′(x)f ′′′(x)− 3f(x)f ′′2(x) + 3f ′2(x)f ′′(x)]
(3.1)

Note that the formula for (1, 2) is different from (2.1) (that is, the direct approach
and inverse interpolation generates different formulas for (1,2) pair of degrees). The
(2, 2)-type formula is

F22 = x+
U

V
, (3.2)

where

U = 6ff ′
[
f (f ′)

2
f (4) − 6ff ′f ′′f ′′′ + 6f (f ′′)

3
+ 4f ′′′ (f ′)

3 − 6 (f ′′)
2

(f ′)
2
]

(x)

and

V = f2
(

3 (f ′)
2
f (4)f ′′ − 4 (f ′)

2
(f ′′′)

2 − 6 f ′ (f ′′)
2
f ′′′ + 9 (f ′′)

4
)

(x)

− 6 f (f ′)
2
(

(f ′)
2
f (4) − 8 f ′f ′′f ′′′ + 9 (f ′′)

3
)

(x)

− 12 (f ′)
4
(

2 f ′f ′′′ − 3 (f ′′)
2
)

(x).

4. Modified methods

Following the ideas of Sebah and Gourdon [8], we look for an iteration of the
form

xn+1 = xn + hn + a2
h2n
2!

+ a3
h3n
3!

+ · · · , (4.1)

where hn = − f(xn)
f ′(xn)

. Under the assumptions that f is sufficiently differentiable and

hn + a2
h2
n

2! + a3
h3
n

3! + · · · is small, we start from Taylor expansion of f(xn+1) about
xn, and using the side-relation f(xn) + hnf

′(xn) = 0, we try to choose an’s so that
to cancel as many terms as possible in the expansion.

The Maple procedure modPade below returns the coefficients (ak) and the modi-
fied method (4.1) truncated to a given number of terms.
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> modPade:=proc(nmax::nonnegint)
> local k, inc,dT, dT2, sol, a, ec, so, it, n ;
> inc:=h+add(a[k]*h^k/k!,k=2..max(nmax+1,3));
> dT:=convert(taylor(f(x[n]+t),t=0,nmax+1),polynom);
> dT:=simplify(subs(t=inc,dT),[f(x[n])+h*D(f)(x[n])=0]):
> dT2:=collect(dT,h,simplify):
> for k from 2 to nmax+1 do
> ec[k]:=coeff(dT2,h,k);
> end;
> so:=solve([seq(ec[k],k=2..nmax+1)],[seq(a[k],k=2..nmax+1)]);
> assign(so);
> it:=x[n]+eval(subs(h=-f(x[n])/D(f)(x[n]),factor(inc)));
> return a,it;
> end proc:

modPade computes for ak, k = 2, . . . , 6, the following values

a2 = −f
′′
n

f ′n

a3 =
3 (f ′′n )

2 − f ′′′n f ′n
(f ′n)

2

a4 = −f
(4)
n (f ′n)

2 − 10f ′′′n f
′′
nf
′
n + 15 (f ′′n )

3

(f ′n)
3

a5 =
105 (f ′′n )

4 − 105f ′′′n (f ′′n )
2
f ′n + 15f

(4)
n f ′′n (f ′n)

2
+ 10 (f ′n)

2
(f ′′′n )

2 − f (5)n (f ′n)
3(

f (4)
)4

a6 = − 7

(f ′n)
5

(
135 (f ′′n )

5 − 180f ′′′n (f ′′n )
3
f ′n + 30f (4)n (f ′′n )

2
(f ′n)

2
+ 40f ′′n (f ′′′n )

2
(f ′n)

2

−3f (5)n f ′′n (f ′n)
3 − 5f ′′′n f

(4)
n (f ′n)

3
)

For nmax = 4, modPade gives the fourth-order formula

xn+1 = xn −
f (xn)

f ′ (xn)
− f ′′ (xn) f2 (xn)

2 (f ′ (xn))
3 +

(
f ′′′ (xn) f ′ (xn)− 3 (f ′′ (xn))

2
)
f3 (xn)

6 (f ′ (xn))
5

(4.2)
For nmax = 5, modPade gives the fifth-order formula

xn+1 = xn −
f (xn)

f ′ (xn)
− f ′′ (xn) f2 (xn)

2 (f ′ (xn))
3 +

(
f ′′′ (xn) f ′ (xn)− 3 (f ′′ (xn))

2
)
f3 (xn)

6 (f ′ (xn))
5

−

(
f (4) (xn) (f ′ (xn))

2 − 10f ′′′ (xn) f ′′ (xn) f ′ (xn) + 15 (f ′′ (xn))
3
)
f4 (xn)

24 (f ′ (xn))
7

(4.3)

Remark 4.1. These methods are the same as Chebyshev methods and could be gene-
rated using inverse Taylor interpolation (see [1, 7]).



326 Radu T. Tr̂ımbiţaş

5. Numerical examples

We wish to compare the different iterations on the solution of the equation

xex + x2 − 6 = 0. (5.1)

First, we compute the solution using fsolve function with Digits set to 400.

> Digits:=400:

> eq:=x*exp(x)+x^2-6:

> root1:=fsolve(eq,x);

root1 :=1.25716946808154244322416171370599680292013126504290076\
142355162009975113083056615579120160569103718598288101\
140558803113433921630435939810988753086636 . . .

Then, for each method we execute a small number of iteration steps and count
the number of correct digits and compute the absolute error as the modulus of the
difference between root1 and the computed approximation.

• Padé (1, 2), order 4 (formula (2.1))

x1 = 1.26(257 . . . ) 2 digits

x2 = 1.2571694681(095 . . . ) 10 digits

x3 = 1.2571694680815424432241617137059968029201312(853 . . . ) 43 digits

x4 = 1.25716946808154244322416171370599680292013126504(. . . ) 176 digits

• inverse Padé (2, 1), order 4 (formula (3.1))

x1 = 1.2(727 . . . ) 1 digits

x2 = 1.2571694(737 . . . ) 8 digits

x3 = 1.2571694680815424432241617137059969(004 . . . ) 34 digits

x4 = 1.2571694680815424432241617137059968029201312650(. . . ) 137 digits

• modified method, order 4 (formula (4.2))

x1 = 1.3(106 . . . ) 1 digits

x2 = 1.25717(411 . . . ) 5 digits

x3 = 1.257169468081542443224(458 . . . ) 21 digits

x4 = 1.25716946808154244322416171370599680292013126504(. . . ) 86 digits

• Padé (1, 3), order 5 (formulas (2.2) and (2.3))

x1 = 1.257(703 . . . ) 3 digits

x2 = 1.257169468081542443(624 . . . ) 18 digits

x3 = 1.257169468081542443224161713705996802920131265(. . . ) 94 digits

x4 = 1.25716946808154244322416171370599680292013126504(. . . ) 472 digits

Note that this method was tested for Digits set to 500.
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• inverse Padé (2, 2), order 5 (formula (3.2))

x1 = 1.26(. . . ) 2 digits

x2 = 1.2571694680815(682 . . . ) 13 digits

x3 = 1.257169468081542443224161713705996802920131265(. . . ) 69 digits

x4 = 1.25716946808154244322416171370599680292013126504(. . . ) 348 digits

• modified method, order 5 (formula (4.3))

x1 = 1.(2846 . . . ) 1 digits

x2 = 1.257169(479 . . . ) 7 digits

x3 = 1.257169468081542443224161713705996802920(249 . . . ) 39 digits

x4 = 1.2571694680815424432241617137059968029201312650(. . . ) 199 digits

Tables 1 and 2 give the error after each iteration for 4th order and for 5th order
methods, respectively.

Iteration Padé Inverse Padé Modified
(1, 2) (2, 1) order 4

1 5.4033e− 03 1.5528e− 02 5.3445e− 02
2 2.7982e− 11 5.6144e− 09 4.6404e− 06
3 2.0247e− 44 9.7495e− 35 2.9607e− 22
4 5.5508e− 177 8.8659e− 138 4.9061e− 87

Table 1. Errors for each iteration, 4th order methods

Iteration Padé Inverse Padé Modified
(1, 3) (2, 2) order 5

1 5.3370e− 04 3.7722e− 03 2.7441e− 02
2 4.0001e− 19 2.5751e− 14 1.0904e− 08
3 9.4690e− 95 3.8318e− 70 1.1775e− 40
4 7.0386e− 473 2.7954e− 349 1.7284e− 200

Table 2. Errors for each iteration, 5th order methods

6. Conclusions

All methods presented computes a large number of correct digits in a small
number of iterations. Direct Padé and inverse Padé methods are superior to modified
methods. Direct Padé methods, (in fact, Householder methods) have a better accuracy
than methods based on inverse Padé interpolation of the same total degree, at least for
equation (5.1). The approach presented in this paper could be useful in the context of
symbolic computation, when a large number of digits is required, and to automatically
generate numerical methods for the solution of nonlinear equations.
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Babeş-Bolyai University,
Faculty of Mathematics and Computer Sciences,
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