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Local existence and blow up of solutions
to a logarithmic nonlinear wave equation
with time-varying delay

Abdelbaki Choucha and Djamel Ouchenane

Abstract. In this work, we are concerned with a problem of a logarithmic nonlin-
ear wave equation with time-varying delay term. We established the local exis-
tence result and we proved a blow up result for the solution with negative initial
energy under suitable conditions. This improves earlier results in the literature
[11] for time-varying delay.
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1. Introduction

In this paper, we are concerned with the following problem
utt −∆u+ µ1ut(x, t) + µ2ut(x, t− τ(t)) = u|u|p−2ln|u|k

u (x, t) = 0, x ∈ ∂Ω,

ut(x, t− τ(0)) = f0(x, t− τ(0)), (x, t) ∈ Ω× (0, τ(0))

u (x, 0) = u0 (x) , ut (x, 0) = u1 (x) , x ∈ Ω,

(1.1)

where

(x, t) ∈ Ω× (0,+∞),

and τ(t) > 0 represents the time varying delay and p ≥ 2, k, µ1 are positive constants,
µ2 is a real number.
This type of problems is encountered in many branches of physics such as Nuclear
Physics, Optics and Geophysics. It is well known, from the Quantum Field Theory,
that such kind of nonlinearity appears naturally in inflation cosmology and in super
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symmetric field theories (see [1], [2], [7], [8], [14]).
In [10], the authors considered the following problem

utt −∆u+ u− u log |u|2 + ut + u|u|2 = 0, x ∈ Ω, t ∈ [0, T ]

u (x, t) = 0, x ∈ ∂Ω,

u (x, 0) = u0 (x) , ut (x, 0) = u1 (x) , x ∈ Ω.

(1.2)

The authors studied the global existence of weak solution. Another related mathe-
matical work involving the logarithmic terms by Cazenave and Haraux [6], where they
established the existence and uniqueness of a solution for the following problem in
the (R3) 

utt −∆u+ ut − u log |u|2 = 0,

u (x, t) = 0, x ∈ ∂Ω,

u (x, 0) = u0 (x) , ut (x, 0) = u1 (x) , x ∈ Ω,

(1.3)

We can also mention some other works on the logarithmic Schrodinger equation as in
[5], [4], [9].
In the case of constant delay, that is for τ(t) = τ , the system (1.1) has been studied
by Kafini and Messaoudi [11], they considered with the following delay wave equation
with logarithmic nonlinear source term

utt −∆u+ µ1ut + µ2ut(x, t− τ) = u|u|p−2 ln |u|k , x ∈ Ω, t > 0

u (x, t) = 0, x ∈ ∂Ω

ut(x, t− τ) = f0(x, t− τ), t ∈ (0, τ)

u (x, 0) = u0 (x) , ut (x, 0) = u1 (x) , x ∈ Ω,

(1.4)

under the assumption |µ2| ≤ µ1, they established the local existence by the semigroup
theory and proved a finite time blow up result.
The case of time-varying delay in the wave equation has been studied recently by
Nicaice et al [13], they proved the exponential stability under the condition

µ2 <
√

1− dµ1

where d is a constant satisfies

τ ′(t) ≤ d < 1,∀t > 0 (1.5)

For the wave equation ant with a time-varying delay, in [13] the authors which con-
siders the system 

utt −∆u = 0

u(x, t) = 0

du

dv
(x, t) = µ1ut(x, t) + µ2ut(x, t− τ(t)),

where the time-varying delay τ(t) > 0 satisfies

0 ≤ τ(t) ≤ τ , ∀t > 0 (1.6)

τ ′(t) ≤ 1,∀t > 0 (1.7)
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and
τ(t) ∈W 2,∞([0, T ]),∀T > 0 (1.8)

They proved the exponential stability, under suitable conditions.
This paper is organized as follows: in the section 2, under the assumption

|µ2| ≤
√

1− dµ1, (1.9)

we establish a local existence and in section 3, we prove a blow-up result under
assumption on the delay by the energy method and Lyapunov function.

2. Local existence

In order to prove the existence of a unique solution of problem (1.1)-(2.6), we
introduce the new variable

z(x, ρ, t) = ut(x, t− τ(t)ρ), (2.1)

then we obtain {
τ(t)zt(x, ρ, t) + (1− τ ′(t)ρ)zρ(x, ρ, t) = 0

z(x, 0, t) = ut(x, t)
(2.2)

consequently, the problem is equivalent to{
utt −∆u+ µ1ut(x, t) + µ2z(x, 1, t) = u|u|p−2ln|u|k.
τ(t)zt(x, ρ, t) + (1− τ ′(t)ρ)zρ(x, ρ, t) = 0

(2.3)

where
(x, ρ, t) ∈ Ω× (0, 1)× (0,∞).

with the initial and boundary conditions
u(x, t) = 0, in ∂Ω

u(x, 0) = u0(x), ut(x, 0) = u1(x)

z(x, ρ, 0) = f0(x,−ρτ(0)),

(2.4)

for all (x, ρ, t) ∈ Ω× (0, 1)× (0,∞), where the function τ(t) satisfies (1.5), (1.8) and
the condition

0 < τ0 < τ(t) < τ, ∀t > 0. (2.5)

Let v = ut and denote by

U = (u, v, z)T , and J(U) = (0, u|u|p−2 ln |u|k, 0)T

Therefore, (1.1) can be rewritten as{
Ut(t) +AU(t) = J(U(t)), t > 0

U(0) = U0

(2.6)

where U0 = (u0, u1, f0(.,−ρτ(0))T and the operator A is defined by

A

 u
v
z

 =

 −v−∆u+ µ1v + µ2z(x, 1, t)
(1−τ ′(t))
τ(t) zρ.

 (2.7)
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We define the energy space

H = H1
0 (Ω)× L2(Ω)× L2(Ω, (0, 1))

H is a Hilbert space with respect to the inner product

< U,U >H =

∫
Ω

∇u∇udx+

∫
Ω

vvdx+

∫
Ω

∫ 1

0

zzdρdx (2.8)

for all U = (u, v, z)T , U(u, v, z)T .
The domain of A is

D(A) =

(
(u, v, z)T ∈ H / u ∈ H2(Ω), v ∈ H1

0 (Ω), z(x, 1, t) ∈ L2(Ω)

z, zρ ∈ L2(Ω, (0, 1))), z(x, 0, t) = v.

)
(2.9)

Before establishing the local existence result, we need the following lemma

Lemma 2.1. For any ε > 0, there exist A > 0, such that the real function

j(s) = |s|p−2 ln |s|, p > 2

satisfies

|j(s)| ≤ A+ |s|p−2+ε

Proof. Since lim
|s|→+∞

(
ln |s|
|s|ε

)
= 0, then there exists B > 0, such that

ln |s|
|s|ε

< 1, ∀|s| > B

So

|j(s)| ≤ |s|p−2+ε

since p > 2, then |j(s)| ≤ A, for some A > 0 and for all |ε| < B
thus

|j(s)| ≤ A+ |s|p−2+ε

then, we have following local existence result. �

Theorem 2.2. Assume that (1.5)-(1.9) and 2 < p <
2(n− 1)

n− 2
, if n ≥ 3

p > 2, if n = 1, 2
(2.10)

then for all U0 ∈ H, problem (2.6) has a unique weak solution U ∈ C([0, T ],H).

Proof. We will show that A is a monotone maximal operator on H and J is a locally
Lipschitz function on H.
First, for all U ∈ D(A), we define the time-dependent inner-product on H, (which is
equivalent to the classical inner product).

< U,U >t =

∫
Ω

∇u∇udx+

∫
Ω

vvdx

+ξτ(t)

∫
Ω

∫ 1

0

z(x, ρ)z(x, ρ)dρdx, (2.11)
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where ξ satisfies
|µ2|√
1− d

≤ ξ ≤
(

2µ1 −
|µ2|√
1− d

)
. (2.12)

Thanks to hypothesis (1.9).
Let us set

κ(t) =
(τ ′(t)2 + 1)

1
2

2τ(t)
.

In this step, we prove the monotony of the operator A(t) = A(t) + τ(t)I.
For a fixed t and U = (u, v, z)T ∈ D(A(t)), we have

< A(t)U,U >t = µ1

∫
Ω

v2dx+ µ2

∫
Ω

vz(x, 1)dx

+ξ

∫
Ω

∫ 1

0

(1− τ ′(t)ρ)z(x, ρ)zρ(x, ρ)dρdx. (2.13)

Observe that∫ 1

0

∫ 1

0

(1− τ ′(t)ρ)z(x, ρ)zρ(x, ρ)dρdx =
1

2

∫ 1

0

∫ 1

0

(1− τ ′(t)ρ)
d

dρ
z2dρdx

=
τ ′(t)

2

∫ 1

0

∫ 1

0

z2(x, ρ)dρdx

+
1

2

∫ 1

0

z2(x, 1)(1− τ ′(t))dx

−1

2

∫ 1

0

z2(x, 0)dx, (2.14)

whereupon

< A(t)U,U >t = µ1

∫
Ω

v2dx+ µ2

∫
Ω

vz(x, 1)dx

+
ξτ ′(t)

2

∫ 1

0

∫ 1

0

z2(x, ρ)dρdx

+
ξ

2

∫ 1

0

z2(x, 1)(1− τ ′(t))dx− ξ

2

∫ 1

0

v2dx. (2.15)

By using Cauchy-Schwartz inequality and (1.5), we get

< A(t)U,U >t =

(
µ1 −

|µ2|
2
√

1− d
− ξ

2

)∫ 1

0

v2dx

+

(
ξ

(1− d)

2
− |µ2|

√
1− d

2

)∫ 1

0

z2(x, 1)dx

−κ(t) < U,U >t .

Condition (2.12) allows to write

µ1 −
|µ2|

2
√

1− d
− ξ

2
≥ 0 , ξ

(1− d)

2
− |µ2|

√
1− d

2
≥ 0. (2.16)
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Consequently, the operator A(t) is monotone. To show that A is maximal, we prove
that each

F = (f1, f2, f3)T ∈ H
there exists U(u, v, z)T ∈ D(A), such that (I +A)U = F

u− v = f1

v −∆u+ µ1v + µ2z(x, 1, t) = f2

z + (1−τ ′(t))
τ(t) zρ = f3.

(2.17)

Noting that v = u− f1, we have deduce from (2.17)3

z(x, 0) = v(x), x ∈ Ω. (2.18)

Following the same approach as in [11], we obtain
z(x, ρ) = v(x)e−ρτ(t) + τ(t)e−ρτ(t)

∫ ρ

0

f3(x, y)eyτ(t)dy, if τ ′(t) = 0

z(x, ρ) = v(x)eηρ(t) + eηρ(t)

∫ ρ

0

τ(t)

1− τ ′(t)y
f3(x, y)e−ηy(t)dy, if τ ′(t) 6= 0,

where ηρ(t) = τ(t)
τ ′(t) ln(1− τ ′(t)ρ). Whereupon, from (2.17)1, we obtain

z(x, ρ) = u(x)e−ρτ(t) − f1e
−ρτ(t) + τ(t)e−ρτ(t)

∫ ρ

0

f3(x, y)eyτ(t)dy,

z(x, ρ) = u(x)eηρ(t) − f1e
ηρ(t) + eηρ(t)

∫ ρ

0

τ(t)

1− τ ′(t)y
f3(x, y)e−ηy(t)dy,

(2.19)

and in particular {
z(x, 1) = u(x)e−τ(t) + z0(x), if τ ′(t) = 0

z(x, 1) = u(x)eη1(t) + z0(x), if τ ′(t) 6= 0,
(2.20)

where
z0(x) = −f1e

−τ(t) + τ(t)e−τ(t)

∫ 1

0

f3(x, y)eyτ(t)dy, if τ ′(t) = 0

z0(x) = −f1e
η1(t) + eη1(t)

∫ 1

0

τ(t)

1− τ ′(t)y
f3(x, y)e−ηy(t)dy, if τ ′(t) 6= 0,

with

z0 ∈ L2(Ω).

Substituting (2.20) in (2.17)2, we get

Γu−∆u = G,

where {
Γ = 1 + µ1 + µ2e

−τ(t), if τ ′(t) = 0

G = f2 + (1 + µ1)f1 − µ2z0 ∈ L2(Ω),
(2.21)
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and {
Γ = 1 + µ1 + µ2e

η1(t), if τ ′(t) 6= 0

G = f2 + (1 + µ1)f1 − µ2z0 ∈ L2(Ω).
(2.22)

Now, we define, over H1
0 (Ω), the bilinear and linear forms

B(u, φ) = Γ

∫
Ω

uφ+

∫
Ω

∇u.∇φ, L(φ) = Gφ

It is easy to verify that B is continuous and coercive and L is continuous on H1
0 (Ω).

Then, Lax-Milgram theorem implies that the equation

B(u, φ) = L(φ), ∀φ ∈ H1
0 (Ω), (2.23)

has a unique solution u ∈ H1
0 (Ω). Hence, v = u− f1 ∈ H1

0 (Ω).
Consequently, from (2.19), we have z, zρ ∈ L2(Ω× (0, 1)). Thus, U ∈ H.
Using (2.23), we get

Γ

∫
Ω

uφ+

∫
Ω

∇u.∇φ =

∫
Ω

Gφ, ∀φ ∈ H1
0 (Ω).

The elliptic regularity theory implies that u ∈ H1
0 (Ω) and, in addition, Green’s formula

and (2.17)2 give∫
Ω

[(1 + µ1)v −∆u+ µ2z(x, 1, t)− f2]φ = 0, ∀φ ∈ H1
0 (Ω).

Hence

(1 + µ1)v −∆u+ µ2z(x, 1, t) = f2 ∈ L2(Ω).

Therefore,

U = (u, v, z)T ∈ D(A).

Therefore, the operator I +A is surjective for any fixed t > 0. Since τ(t) > 0 and

I +A(t) = (1 + κ(t))I +A(t),

we deduce that the operator I +A(t) is also surjective for any t > 0 and then A(t) is
maximal.
Consequently, from the above analysis, we deduce that the problem{

U t +A(t)U = 0

U(0) = U0,
(2.24)

has a unique solution U ∈ C([0,∞),H).
Now, let

U(t) = eβ(t)U(t),
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with β(t) =
∫ t

0
τ(s)ds, then we have using (2.24)

Ut(t) = τ(t)eβ(t)U(t) + eβ(t)U t(t)

= τ(t)eβ(t)U(t)− eβ(t)A(t)U

= eβ(t)(τ(t)U(t)−A(t)U)

= eβ(t)A(t)U

= A(t)eβ(t)U

= A(t)U(t).

Consequently, U(t) is the unique solution of problem.
Finally, we show that J : H → H is locally Lipschitz. So, if we set

F (s) = |s|p−2s ln |s|k,

then

F ′(s) = k[1 + (p− 1) ln |s|]|s|p−2.

Hence

‖J(U)− J(U)‖2H = ‖(0, u|u|p−2 ln |u|k − u|u|p−2 ln |u|k, 0, 0)‖2H
= ‖u|u|p−2 ln |u|k − u|u|p−2 ln |u|k‖2L
= ‖F (U)− F (U)‖2L. (2.25)

As a consequence of the mean value theorem, we have, for 0 ≤ θ ≤ 1,

|F (U)− F (U)| = |F ′(θu+ (1− θ)u)(u− u)|
≤ k[1 + (p− 1) ln |θu+ (1− θ)u|]|θu+ (1− θ)u|p−2|u− u|
≤ k|θu+ (1− θ)u|p−2|u− u|

+k(p− 1)|j(θu+ (1− θ)u)||u− u|. (2.26)

By recalling Lemma 2.1, we arrive at

|F (U)− F (U)| = k|θu+ (1− θ)u|p−2|u− u|+ k(p− 1)A|u− u|
+k(p− 1)|θu+ (1− θ)u|p−2+ε|u− u|

≤ k(|u|+ |u|)p−2|u− u|+ k(p− 1)A|u− u|
+k(p− 1)(|u|+ |u|)p−2+ε|u− u|. (2.27)

As u, u ∈ H1
0 (Ω), we then use Holder’s inequality and the Sobolev embedding

H1
0 (Ω) ↪→ Lr(Ω), ∀1 ≤ r ≤ 2n

n− 2
,
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to get ∫
Ω

[(|u|+ |u|)p−2|u− u|]2dx =

∫
Ω

[(|u|+ |u|)2(p−2)|u− u|2]dx

≤ C

(∫
Ω

(|u|+ |u|)2(p−2)dx

) (p−2)
(p−1)

×
(∫

Ω

(|u− u|)2(p−2)dx

)1/(p−1)

≤ C[‖u‖2(p−1)

L2(p−1)(Ω)
+ ‖u‖2(p−1)

L2(p−1)(Ω)
]
(p−2)
(p−1)

×‖u− u‖2L2(p−1)(Ω)

≤ C[‖u‖2(p−1)

H1
0 (Ω)

+ ‖u‖2(p−1)

H1
0 (Ω)

]
(p−2)
(p−1)

×‖u− u‖2H1
0 (Ω). (2.28)

Similarly, we estimate∫
Ω

[(|u|+ |u|)p−2+ε|u− u|]2dx =

∫
Ω

[(|u|+ |u|)2(p−2+ε)|u− u|2]dx

≤ C

(∫
Ω

(|u|+ |u|)
2(p−2+ε)(p−1)

(p−2) dx

) (p−2)
(p−1)

×
(∫

Ω

(|u− u|)2(p−2)dx

)1/(p−1)

≤ C

(∫
Ω

(|u|+ |u|)2(p−1)+
2ε(p−1)
(p−2) dx

) (p−2)
(p−1)

×‖u− u‖2L2(p−1)(Ω). (2.29)

Since, p < (n− 1)/(n− 2), we can choose ε > 0 so small that

p∗ = 2(p− 2) +
2ε(p− 1)

(p− 2)
≤ 2n

n− 2
.

Hence, we have∫
Ω

[(|u|+ |u|)p−2+ε|u− u|]2dx = C[‖u‖p
∗

Lp∗ (Ω)
+ ‖u‖p

∗

Lp∗ (Ω)
]
(p−2)
(p−1)

‖u− u‖2L2(p−1)(Ω)

≤ C[‖u‖p
∗

H1
0 (Ω)

+ ‖u‖p
∗

H1
0 (Ω)

]
(p−2)
(p−1)

‖u− u‖2H1
0 (Ω). (2.30)
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Therefore, by combining (2.25)-(2.30), we obtain

‖J(U)− J(U)‖2H = [k2(p− 1)2A2]‖u− u‖2H1
0 (Ω)

+C[(‖u‖2(p−1)

H1
0 (Ω)

+ ‖u‖2(p−1)

H1
0 (Ω)

)(p−2)/(p−1)

+(‖u‖p
∗

H1
0 (Ω)

+ ‖u‖p
∗

H1
0 (Ω)

)(p−2)/(p−1)]‖u− u‖2H1
0 (Ω)

≤ C(‖u‖H1
0 (Ω), ‖u‖H1

0 (Ω))‖u− u‖2H1
0 (Ω). (2.31)

Therefore, J is locally Lipschitz. Thanks to ([12], [15]), the proof is completed. �

3. Blow up

We introduce the energy functional

Lemma 3.1. Assume that (1.9)holds and the hypotheses (1.5), (1.8) and (2.2) are
satisfied, let u(t) be a solution of (1.1), then E(t) is non-increasing, that is

E(t) =
1

2
‖ut‖22 +

1

2
‖∇ut‖22 +

k

p2
‖u‖pp

+
ξ

2
τ(t)

∫
Ω

∫ 1

0

z2(x, ρ, t)dρdx

−1

p

∫
Ω

|u|p ln |u|kdx. (3.1)

satisfies

E(t) ≤ −c1(‖ut‖22 +

∫
Ω

z2(x, 1, t)dx) ≤ 0. (3.2)

Proof. By multiplying the equation (2.3)1 by ut and integrating over Ω, we get

1

2

d

dt
‖ut‖22 +

1

2

d

dt
‖∇ut‖22 + µ1‖ut‖22 + µ2

∫
Ω

utz(x, 1, t)dx

=

∫
Ω

utu|u|p−2 ln |u|kdx. (3.3)

Now, we multiply (2.3)2 by ξz and integrate the resulting equation over Ω × (0, 1)
with respect to ρ and x, respectively, to obtain

ξ

2

d

dt

∫
Ω

∫ 1

0

τ(t)z2(x, ρ, t)dρdx = −ξ
∫

Ω

∫ 1

0

(1− τ ′(t)ρ)zzρdρdx

+
ξ

2
τ(t)

∫
Ω

∫ 1

0

z2(x, ρ, t)dρdx

= −ξ
2

∫
Ω

∫ 1

0

d

dρ
(1− τ ′(t)ρ)z2(x, ρ, t)dρdx

=
ξ

2

∫
Ω

[z2(x, 0, t)− z2(x, 1, t)]dx

+
ξτ ′(t)

2

∫
Ω

z2(x, 1, t)dx. (3.4)
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By (3.3) and (3.4), we get (3.1) and

d

dt
E(t) = −

(
µ1 −

ξ

2

)
‖ut‖22 −

(
ξτ ′(t)

2
− ξ

2

)∫
Ω

z(x, 1, t)dx

−µ2

∫
Ω

utz(x, 1, t)dx. (3.5)

Thanks to Young’s inequality, the last term in (3.5) can be estimated as follows

µ2

∫
Ω

utz(x, 1, t)dx ≤ |µ2|
2
√

1− d

∫
Ω

u2
tdx+

|µ2|
√

1− d
2

∫
Ω

z2(x, 1, t)dx,

inserting (3.6) into (3.5), we obtain

d

dt
E(t) ≤ −

(
µ1 −

ξ

2
− |µ2|

2
√

1− d

)∫
Ω

u2
tdx

−
(
ξ

2
(τ ′(t)− 1)− |µ2|

√
1− d

2

)∫
Ω

z(x, 1, t)dx. (3.6)

Then, by using (2.16) and (1.5) our conclusion holds. �

Lemma 3.2. There exists a positive constant c > 0, depending on Ω only such that(∫
Ω

|u|p ln |u|kdx
)s/p

≤ c
(∫

Ω

|u|p ln |u|kdx+ ‖∇u‖22
)
, (3.7)

for any u ∈ Lp+1(Ω) and 2 ≤ s ≤ p, provided that∫
Ω

|u|p ln |u|kdx ≥ 0.

Proof. If

∫
Ω

|u|p ln |u|kdx > 1, then(∫
Ω

|u|p ln |u|kdx
)s/p

≤ c[
∫

Ω

|u|p ln |u|kdx+ ‖∇u‖22]. (3.8)

If
∫

Ω
|u|p ln |u|kdx ≤ 1, then we set

Ω1 = {x ∈ Ω, |u| > 1}
and, for any β ≤ 2, we have(∫

Ω

|u|p ln |u|kdx
)s/p

≤
(∫

Ω

|u|p ln |u|kdx
)β/p

≤
(∫

Ω1

|u|p ln |u|kdx
)β/p

≤
(∫

Ω

|u|p+1dx

)β/p
≤
(∫

Ω1

|u|p+1dx

)β/p
= ‖u‖β(p+1)/p

p+1 ..

We choose β = 2p/(p+ 1) < 2 to get(∫
Ω

|u|p ln |u|kdx
)s/p

≤ ‖u‖2p+1 ≤ c‖∇u‖22. (3.9)

Combining (3.8) and (3.9), we obtain (3.6). �
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Lemma 3.3. There exists a positive constant C > 0 depending on Ω only such that

‖u‖pp ≤ c
(∫

Ω

|u|p ln |u|kdx+ ‖∇u‖22
)
, (3.10)

for any u ∈ Lp(Ω), provided that
∫

Ω
|u|p ln |u|kdx ≥ 0.

Proof. We set

Ω+ = {x ∈ Ω, |u| > e}
Ω− = {x ∈ Ω, |u| ≤ e},

thus

‖u‖pp =

∫
Ω+

|u|pdx+

∫
Ω−

|u|pdx

≤
∫

Ω+

|u|p ln |u|kdx+

∫
Ω−

ep
∣∣∣u
e

∣∣∣p dx
≤

∫
Ω+

|u|p ln |u|kdx+ ep
∫

Ω−

∣∣∣u
e

∣∣∣p dx
≤

∫
Ω

|u|p ln |u|kdx+ ep
∫

Ω

∣∣∣u
e

∣∣∣p dx
≤ c

(∫
Ω

|u|p ln |u|kdx+ ‖∇u‖22
)
.

Using the fact that ‖u‖22 ≤ c‖u‖2p ≤ c(‖u‖pp)2/p, we have �

Corollary 3.4. There exists a positive constant C > 0 depending on Ω only such that

‖u‖22 ≤ c
(∫

Ω

|u|p ln |u|kdx
)2/p

+ ‖∇u‖4/p2 , (3.11)

provided that
∫

Ω
|u|p ln |u|kdx ≥ 0.

Lemma 3.5. There exists a positive constant C > 0 depending on Ω only such that

‖u‖sp ≤ c[‖u‖pp + ‖∇u‖22, (3.12)

for any u ∈ Lp+1(Ω) and 2 ≤ s ≤ p.

Proof. If ‖u‖p ≥ 1 then

‖u‖sp ≤ ‖u‖pp
If ‖u‖p ≤ 1 then, ‖u‖sp ≤ ‖u‖2p. Using Sobolev embedding theorems, we have

‖u‖sp ≤ ‖u‖2p ≤ c‖∇u‖22. �

Now we are ready to state and prove our main result. For this purpose, we define

H(t) = −E(t) =
1

p

∫
Ω

|u|p ln |u|kdx− 1

2
‖ut‖22 −

k

p2
‖u‖pp

−1

2
‖∇ut‖22 −

ξ

2
τ(t)

∫
Ω

∫ 1

0

z2(x, ρ, t)dρdx. (3.13)
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Theorem 3.6. Assume (1.5)-(1.9) and (2.10) hold. Assume further that
E(0) < 0, then the solution of problem (1.1) blow up in finite time.

Proof. From (3.1), we have

E(t) ≤ E(0) ≤ 0. (3.14)

Hence

H ′(t) = −E′(t) ≥ c1

(
‖ut‖22 +

∫
Ω

z2(x, 1, t)dx

)
≥ c1

∫
Ω

z2(x, 1, t)dx ≥ 0. (3.15)

and

0 ≤ H(0) ≤ H(t) ≤ 1

p

∫
Ω

|u|p ln |u|kdx. (3.16)

We set

K(t) = H1−α + ε

∫
Ω

uutdx+
εµ1

2

∫
Ω

u2dx. (3.17)

where ε > 0 to be specified later and

2(p− 2)

p2
< α <

p− 2

2p
< 1. (3.18)

By multiplying (1.1)1 by u and taking a derivative of (3.17), we obtain

K′(t) = (1− α)H−αH ′(t) + ε‖ut‖22 − ε‖∇u‖22

+ε

∫
Ω

|u|p ln |u|kdx− εµ2

∫
Ω

uz(x, 1, t)dx. (3.19)

Using

εµ2

∫
Ω

uz(x, 1, t)dx ≤ ε|µ2|{δ1‖u‖22 +
1

4δ1

∫
Ω

z2(x, 1, t)dx}. (3.20)

we obtain, from (3.19),

K′(t) ≥ (1− α)H−αH ′(t) + ε‖ut‖22 − ε‖∇u‖22 + ε

∫
Ω

|u|p ln |u|kdx

−ε|µ2|{δ1‖u‖22 +
1

4δ1

∫
Ω

z2(x, 1, t)dx}. (3.21)

Therefore, using (3.15) and by setting δ1 so that,
|µ2|

4δ1c1
= κH−α(t), substituting in

(3.21), we get

K′(t) ≥ [(1− α)− εκ]H−αH ′(t) + ε‖ut‖22 − ε‖∇u‖22

+ε

∫
Ω

|u|p ln |u|kdx− εH
α(t)

4c1κ
|µ2|2‖u‖22. (3.22)
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For 0 < a < 1, from (3.13)

ε

∫
Ω

|u|p ln |u|kdx = εp(1− a)H(t) +
εp(1− a)

2
‖ut‖22 +

ε(1− a)k

p
‖u‖pp

+
εp(1− a)

2
‖∇ut‖22 + εa

∫
Ω

|u|p ln |u|kdx

+
εp(1− a)

2

ξ

2
τ(t)

∫
Ω

∫ 1

0

z2(x, ρ, t)dρdx. (3.23)

substituting in (3.22), we get

K′(t) ≥ [(1− α)− εκ]H−αH ′(t) + ε[
p(1− a)

2
+ 1]‖ut‖22

+ε

[(
p(1− a)

2
− 1

)]
‖∇u‖22

+aε

∫
Ω

|u|p ln |u|kdx− εH
α(t)

4c1κ
|µ2|2‖u‖22

+εp(1− a)H(t) +
ε(1− a)k

p
‖u‖pp

+
εp(1− a)

2

ξ

2
τ(t)

∫
Ω

∫ 1

0

z2(x, ρ, t)dρdx (3.24)

Using (3.11), (3.16) and Young’s inequality, we find

Hα(t)‖u‖22 ≤
∫

Ω

|u|p ln |u|kdx)α‖u‖22

≤ c

{∫
Ω

|u|p ln |u|kdx)α+2/p +

(∫
Ω

|u|p ln |u|kdx
)α
‖∇u‖24/p

}
≤ c

{∫
Ω

|u|p ln |u|kdx)
(pα+2)
p + ‖∇u‖22

+

(∫
Ω

|u|p ln |u|kdx
) pα

(p−2)
)}

(3.25)

Exploiting (3.18), we have

2 < pα+ 2 ≤ p, and 2 <
αp2

p− 2
≤ p.

Thus, lemma 3.2 yields

Hα(t)‖u‖22 ≤ c
(∫

Ω

|u|p ln |u|kdx+ ‖∇u‖22
)
. (3.26)
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Combining (3.24) and (3.26), we obtain

K′(t) ≥ [(1− α)− εκ]H−αH ′(t) + ε

[
p(1− a)

2
+ 1

]
‖ut‖22

+ε

{(
p(1− a)

2
− 1

)
− c|µ2|2

4c1κ

}
‖∇u‖22

+ε

[
a− c|µ2|2

4c1κ

] ∫
Ω

|u|p ln |u|kdx

+εp(1− a)H(t) +
ε(1− a)k

p
‖u‖pp

+
εp(1− a)

2

ξ

2
τ(t)

∫
Ω

∫ 1

0

z2(x, ρ, t)dρdx (3.27)

At this point, we choose a > 0 so small that

α1 =
p(1− a)

2
− 1 > 0

then we choose κ so large that

α2 =

(
p(1− a)

2
− 1

)
− c|µ2|2

4c1κ
> 0

and

α3 = a− c|µ2|2

4c1κ
> 0

Once κ and a are fixed, we pick ε so small so that

α4 = (1− α)− εκ > 0

Thus, for some β > 0, estimate (3.27) becomes

K′(t) ≥ β{H(t) + ‖ut‖22 + ‖∇u‖22 +

∫
Ω

|u|p ln |u|kdx+ ‖u‖pp

+

∫
Ω

∫ 1

0

z2(x, ρ, t)dρdx}. (3.28)

and

K(t) ≥ K(0) > 0, t > 0. (3.29)

Next, using Holder’s and Young’s inequalities, we have

‖u‖2 =

(∫
Ω

u2dx

) 1
2

≤

[(∫
Ω

(|u|2)p/2dx

) 2
p
(∫

Ω

1dx

)1− 2
p

] 1
2

≤ c‖u‖p. (3.30)

and ∣∣∣∣∫
Ω

uutdx

∣∣∣∣ ≤ ‖u‖2.‖ut‖2 ≤ c‖u‖p.‖ut‖2
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which implies ∣∣∣∣∫
Ω

uutdx

∣∣∣∣ 1
1−α

≥ c‖u‖
1

1−α
p .‖ut‖

1
1−α
2

≤ c

[
‖u‖

µ
1−α
p + ‖ut‖

θ
1−α
2

]
. (3.31)

where
1

µ
+

1

θ
= 1.

we take θ = 2(1− α), to get

µ

1− α
=

2

1− 2α
≤ p

Therefore, for s = 2/(1− 2α), we obtain∣∣∣∣∫
Ω

uutdx

∣∣∣∣ 1
1−α

≤ c[‖u‖sp + ‖ut‖22].

hence, lemma 3.3 gives∣∣∣∣∫
Ω

uutdx

∣∣∣∣ 1
1−α

≤ c
[
‖∇u‖22 + ‖ut‖22 + ‖u‖pp

]
. (3.32)

Therefore,

K
1

1−α (t) =

(
H1−α + ε

∫
Ω

uutdx+
εµ1

2

∫
Ω

u2dx

) 1
1−α

≤ c

[
H(t) + |

∫
Ω

uutdx|
1

1−α + ‖u‖
2

1−α
2

]
c[H(t) + ‖∇u‖22 + ‖ut‖22 + ‖u‖pp]. (3.33)

According to (3.28) and (3.33), we get

K′(t) ≥ λK
1

1−α (t), (3.34)

where λ > 0, depending only on β and c.
A simple integration of (3.34), we obtain

K
α

1−α (t) ≥ 1

K
−α
1−α (0)− λ α

(1−α) t

Therefore, K(t) blows up in time

T ≤ T ∗ =
1− α

λαKα/(1−α)(0)

This completes the proof. �



Local existence and blow up of solutions 187

References

[1] Benaissa, A., Ouchenane, D., Zennir, Kh., Blow up of positive initial-energy solutions
to systems of nonlinear wave equations with degenerate damping andsource terms, Nonl.
Studies, 19(2012), no. 4, 523-535.

[2] Bialynicki-Birula, I., Mycielsk, J., Wave equations with logarithmic nonlinearities, Bull.
Acad. Polon. Sci. Ser. Sci. Math. Astron Phys., 23(1975), 461-466.

[3] Brezis, H., Functional Analysis, Sobolev Spaces and Partial Differential equations, New
York, Springer, 2010.

[4] Cazenave, T., Stable solutions of the logarithmic Schrödinger equation, Nonlinear Anal.,
7(1983), 1127-1140.

[5] Cazenave, T., Haraux, A., Equation de Schrödinger avec non-linearité logarithmique,
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