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Abstract. Some inequalities of Hermite-Hadamard type for AH-convex functions
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functions of one real variable is explored in depth. Applications for special means
are provided as well.
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1. Introduction

The following inequality holds for any convex function f defined on R

(b− a)f

(
a+ b

2

)
≤
∫ b

a

f(x)dx ≤ (b− a)
f(a) + f(b)

2
, a, b ∈ R, a < b. (1.1)

It was firstly discovered by Ch. Hermite in 1881 in the journal Mathesis (see [41]).
But this result was nowhere mentioned in the mathematical literature and was not
widely known as Hermite’s result.

E. F. Beckenbach, a leading expert on the history and the theory of convex
functions, wrote that this inequality was proven by J. Hadamard in 1893 [5]. In
1974, D. S. Mitrinović found Hermite’s note in Mathesis [41]. Since (1.1) was known
as Hadamard’s inequality, the inequality is now commonly referred as the Hermite-
Hadamard inequality.

For related results, see [1]-[19], [22]-[24], [25]-[34] and [35]-[44].
Let X be a vector space over the real or complex number field K and x, y ∈

X, x 6= y. Define the segment

[x, y] := {(1− t)x+ ty, t ∈ [0, 1]}.
We consider the function f : [x, y]→ R and the associated function

g(x, y) : [0, 1]→ R, g(x, y)(t) := f [(1− t)x+ ty], t ∈ [0, 1].
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Note that f is convex on [x, y] if and only if g(x, y) is convex on [0, 1].

For any convex function defined on a segment [x, y] ⊂ X, we have the Hermite-
Hadamard integral inequality (see [20, p. 2], [21, p. 2])

f

(
x+ y

2

)
≤
∫ 1

0

f [(1− t)x+ ty]dt ≤ f(x) + f(y)

2
, (1.2)

which can be derived from the classical Hermite-Hadamard inequality (1.1) for the
convex function g(x, y) : [0, 1]→ R.

Let X be a linear space and C a convex subset in X. A function f : C → R\ {0}
is called AH -convex (concave) on the convex set C if the following inequality holds

f ((1− λ)x+ λy) ≤ (≥)
1

(1− λ) 1
f(x) + λ 1

f(y)

=
f (x) f (y)

(1− λ) f (y) + λf (x)
(AH)

for any x, y ∈ C and λ ∈ [0, 1] .

An important case which provides many examples is that one in which the
function is assumed to be positive for any x ∈ C. In that situation the inequality
(AH) is equivalent to

(1− λ)
1

f (x)
+ λ

1

f (y)
≤ (≥)

1

f ((1− λ)x+ λy)

for any x, y ∈ C and λ ∈ [0, 1] .

Therefore we can state the following fact:

Criterion 1.1. Let X be a linear space and C a convex subset in X. The function
f : C → (0,∞) is AH-convex (concave) on C if and only if 1

f is concave (convex) on

C in the usual sense.

If we apply the Hermite-Hadamard inequality (1.2) for the function 1
f then we

state the following result:

Proposition 1.2. Let X be a linear space and C a convex subset in X. If the function
f : C → (0,∞) is AH-convex (concave) on C, then

f (x) + f (y)

2f (x) f (y)
≤ (≥)

∫ 1

0

dλ

f ((1− λ)x+ λy)
≤ (≥)

1

f
(
x+y
2

) (1.3)

for any x, y ∈ C.

Motivated by the above results, in this paper we establish some new Hermite-
Hadamard type inequalities for AH -convex (concave) functions, first in the general
setting of linear spaces and then in the particular case of functions of a real variable.
Some examples for special means are provided as well.

2. Some Hermite-Hadamard type inequalities

The following result holds:
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Theorem 2.1. Let X be a linear space and C a convex subset in X. If the function
f : C → (0,∞) is AH-convex (concave) on C, then for any x, y ∈ C we have∫ 1

0

f ((1− λ)x+ λy) dλ ≤ (≥)
G2 (f (x) , f (y))

L (f (x) , f (y))
, (2.1)

where the Logarithmic mean of positive numbers a, b is defined as

L (a, b) :=


b−a

ln b−ln a if a 6= b

a if a = b,

and the geometric mean is G =
√
ab.

Proof. Let x, y ∈ C with x 6= y. If f : C → (0,∞) is AH -convex (concave) on C, then
1
f is concave (convex) on C. This implies that the function

ϕx,y : [0, 1]→ (0,∞), ϕx,y (t) =
1

f ((1− λ)x+ λy)

is concave (convex) on [0, 1] and therefore continuous on (0, 1) with ϕx,y (0) = 1
f(x)

and ϕx,y (1) = 1
f(y) . The function [0, 1] 3 t 7→ f ((1− t)x+ ty) is continuous on (0, 1)

and since f (x) , f (y) > 0 are finite, then the Lebesgue integral
∫ 1

0
f ((1− t)x+ ty) dt

exists and by (AH) we have∫ 1

0

f ((1− λ)x+ λy) dλ ≤ (≥) f (x) f (y)

∫ 1

0

dλ

(1− λ) f (y) + λf (x)
. (2.2)

If f (y) = f (x) , then ∫ 1

0

dλ

(1− λ) f (y) + λf (x)
=

1

f (y)
.

If f (y) 6= f (x) , then by changing the variable u = λ (f (x)− f (y)) + f (y) we have∫ 1

0

dλ

(1− λ) f (y) + λf (x)
=

ln f (x)− ln f (y)

f (x)− f (y)
=

1

L (f (x) , f (y))
.

By the use of (2.2) we get the desired result (2.1). �

Remark 2.2. Using the following well known inequalities

H (a, b) ≤ G (a, b) ≤ L (a, b)

we have ∫ 1

0

f ((1− λ)x+ λy) dλ ≤ G2 (f (x) , f (y))

L (f (x) , f (y))
≤ G (f (x) , f (y)) (2.3)

for any x, y ∈ C, provided that f : C → (0,∞) is AH -convex.
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If f : C → (0,∞) is AH -concave, then∫ 1

0

f ((1− λ)x+ λy) dλ ≥ G2 (f (x) , f (y))

L (f (x) , f (y))
(2.4)

≥ G (f (x) , f (y))

L (f (x) , f (y))
H (f (x) , f (y))

for any x, y ∈ C.

Theorem 2.3. Let X be a linear space and C a convex subset in X. If the function
f : C → (0,∞) is AH-convex (concave) on C, then for any x, y ∈ C we have

f

(
x+ y

2

)
≤ (≥)

∫ 1

0
f ((1− λ)x+ λy) f (λx+ (1− λ) y) dλ∫ 1

0
f ((1− λ)x+ λy) dλ

. (2.5)

Proof. By the definition of AH -convexity (concavity) we have

f

(
u+ v

2

)
≤ (≥)

2f (u) f (v)

f (u) + f (v)
(2.6)

for any u, v ∈ C.
Let x, y ∈ C and λ ∈ [0, 1]. If we take in (2.6) u = (1− λ)x + λy and v =

λx+ (1− λ) y, then we get

f

(
x+ y

2

)
≤ (≥)

2f ((1− λ)x+ λy) f (λx+ (1− λ) y)

f ((1− λ)x+ λy) + f (λx+ (1− λ) y)
,

which is equivalent to

1

2
f

(
x+ y

2

)
[f ((1− λ)x+ λy) + f (λx+ (1− λ) y)] (2.7)

≤ (≥) f ((1− λ)x+ λy) f (λx+ (1− λ) y) .

Integrating the inequality on [0, 1] over λ ∈ [0, 1] and taking into account that∫ 1

0

f ((1− λ)x+ λy) dλ =

∫ 1

0

f (λx+ (1− λ) y) dλ

we deduce from (2.7) the desired result (2.5). �

Remark 2.4. By the Cauchy-Bunyakovsky-Schwarz integral inequality we have∫ 1

0

f ((1− λ)x+ λy) f (λx+ (1− λ) y) dλ (2.8)

≤
[∫ 1

0

f2 ((1− λ)x+ λy) dλ

∫ 1

0

f2 (λx+ (1− λ) y) dλ

]1/2
=

∫ 1

0

f2 ((1− λ)x+ λy) dλ

for any x, y ∈ C.
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If the function f : C → (0,∞) is AH -convex on C, then we have

f

(
x+ y

2

)
≤
∫ 1

0
f ((1− λ)x+ λy) f (λx+ (1− λ) y) dλ∫ 1

0
f ((1− λ)x+ λy) dλ

(2.9)

≤
∫ 1

0
f2 ((1− λ)x+ λy) dλ∫ 1

0
f ((1− λ)x+ λy) dλ

.

If the function ψx,y (t) = f ((1− t)x+ ty) , for some given x, y ∈ C with x 6= y,
is monotonic nondecreasing on [0, 1] , then χx,y (t) = f (tx+ (1− t) y) is monotonic

nonincreasing on [0, 1] and by Čebyšev’s inequality for monotonic opposite functions
we have ∫ 1

0

f ((1− λ)x+ λy) f (λx+ (1− λ) y) dλ

≤
∫ 1

0

f ((1− λ)x+ λy) dλ

∫ 1

0

f (λx+ (1− λ) y) dλ

=

(∫ 1

0

f ((1− λ)x+ λy) dλ

)2

.

So, for some given x, y ∈ C with x 6= y, ψx,y (t) = f ((1− t)x+ ty) is monotonic
nondecreasing (nonincreasing) on [0, 1] and if the function f : C → (0,∞) is AH -
convex on C, then we have

f

(
x+ y

2

)
≤
∫ 1

0
f ((1− λ)x+ λy) f (λx+ (1− λ) y) dλ∫ 1

0
f ((1− λ)x+ λy) dλ

(2.10)

≤
∫ 1

0

f ((1− λ)x+ λy) dλ.

If (X, ‖·‖) is a normed space, then the function g : X → [0,∞), g (x) = ‖x‖p ,
p ≥ 1 is convex and then the function f : C ⊂ X → (0,∞) , f (x) = 1

‖x‖p is AH -

concave on any convex subset of X which does not contain {0} .
Utilising (2.1) we have∫ 1

0

dλ

‖(1− λ)x+ λy‖p
≥ 1

L (‖x‖p , ‖y‖p)
, (2.11)

for any linearly independent x, y ∈ X and p ≥ 1.

Making use of (2.5) we also have∫ 1

0

dλ

‖(1− λ)x+ λy‖p
(2.12)

≥
∥∥∥∥x+ y

2

∥∥∥∥p ∫ 1

0

dλ

‖(1− λ)x+ λy‖p ‖λx+ (1− λ) y‖p

for any linearly independent x, y ∈ X and p ≥ 1.
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3. More results for scalar case

If the function f is defined on an interval I and a, b ∈ I with a < b, then∫ 1

0

f ((1− λ)x+ λy) dλ =
1

b− a

∫ b

a

f (t) dt

and the inequalities (1.3), (2.1) and (2.5) can be written as

f (a) + f (b)

2f (a) f (b)
≤ (≥)

1

b− a

∫ b

a

1

f (t)
dt ≤ (≥)

1

f
(
a+b
2

) , (3.1)

1

b− a

∫ b

a

f (t) dt ≤ (≥)
G2 (f (a) , f (b))

L (f (a) , f (b))
, (3.2)

and

f

(
a+ b

2

)
≤ (≥)

∫ b

a
f (t) f (a+ b− t) dt∫ b

a
f (t) dt

, (3.3)

respectively, where f : I → (0,∞) is assumed to be AH -convex (concave) on I.
The following proposition holds:

Proposition 3.1. Let f : I → (0,∞) be AH-convex (concave) on I. Let x, y ∈ I̊, the
interior of I, then there exists ϕ (y) ∈

[
f ′− (y) , f ′+ (y)

]
such that

f (y)

f (x)
− 1 ≤ (≥)

ϕ (y)

f (y)
(y − x) (3.4)

holds.

Proof. Let x, y ∈ I̊ . Since the function 1
f is concave (convex) then the lateral deriva-

tives f ′− (y) , f ′+ (y) exists for y ∈ I̊ and
(

1
f

)′
−(+)

(y) = − f ′−(+)(y)

f2(y) .

Since 1
f is concave (convex) then we have the gradient inequality

1

f (y)
− 1

f (x)
≥ (≤)λ (y) (y − x) = −λ (y) (x− y)

with λ (y) ∈
[
− f ′+(y)

f2(y) ,−
f ′−(y)

f2(y)

]
, which is equivalent to

1

f (y)
− 1

f (x)
≥ (≤)

ϕ (y)

f2 (y)
(x− y) (3.5)

with ϕ (y) ∈
[
f ′− (y) , f ′+ (y)

]
.

The inequality (3.5) can be also written as

1− f (y)

f (x)
≥ (≤)

ϕ (y)

f (y)
(x− y)

or as
f (y)

f (x)
− 1 ≤ (≥)

ϕ (y)

f (y)
(y − x)

and the inequality (3.4) is proved. �
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Corollary 3.2. Let f : I → (0,∞) be AH-convex (concave) on I. If f is differentiable

on I̊ then for any x, y ∈ I̊, we have

f (y)

f (x)
− 1 ≤ (≥)

f ′ (y)

f (y)
(y − x) . (3.6)

The following result also holds:

Theorem 3.3. Let f : I → (0,∞) be AH-convex (concave) on I. If a, b ∈ I with a < b,
then we have the inequality

1

b− a

∫ b

a

f2 (t) dt ≤ (≥)

[
b− s
b− a

f (b) +
s− a
b− a

f (a)

]
f (s) (3.7)

for any s ∈ [a, b] .
In particular, we have

1

b− a

∫ b

a

f2 (t) dt ≤ (≥) f

(
a+ b

2

)
f (a) + f (b)

2
(3.8)

and
1

b− a

∫ b

a

f2 (t) dt ≤ (≥) f (a) f (b) . (3.9)

Proof. If the function f : I → (0,∞) is AH -convex (concave) on I, then the function
f is differentiable almost everywhere on I and we have the inequality

f (t)

f (s)
− 1 ≤ (≥)

f ′ (t)

f (t)
(t− s) (3.10)

for every s ∈ [a, b] and almost every t ∈ [a, b] .
Multiplying (3.10) by f (t) > 0 and integrating over t ∈ [a, b] we have

1

f (s)

∫ b

a

f2 (t) dt−
∫ b

a

f (t) dt ≤ (≥)

∫ b

a

f ′ (t) (t− s) dt. (3.11)

Integrating by parts we have∫ b

a

f ′ (t) (t− s) dt = f (b) (b− s) + f (a) (s− a)−
∫ b

a

f (t) dt

and by (3.11) we get the desired result (3.7).
We observe that (3.8) follows by (3.7) for s = a+b

2 while (3.9) follows by (3.7)
for either s = a or s = b. �

Remark 3.4. By the Cauchy-Bunyakovsky-Schwarz integral inequality we have(
1

b− a

∫ b

a

f (t) dt

)2

≤ 1

b− a

∫ b

a

f2 (t) dt

and if we assume that f : I → (0,∞) is AH -convex on I, then we have

1

b− a

∫ b

a

f (t) dt ≤

(
1

b− a

∫ b

a

f2 (t) dt

)1/2

≤

√
f

(
a+ b

2

)
f (a) + f (b)

2
(3.12)
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and

1

b− a

∫ b

a

f (t) dt ≤

(
1

b− a

∫ b

a

f2 (t) dt

)1/2

≤
√
f (a) f (b). (3.13)

The following result also holds:

Theorem 3.5. Let f : I → (0,∞) be AH-convex (concave) on I. If a, b ∈ I with a < b,
then we have the inequality∫ b

a

ln f (t) dt+
1

f (s)

∫ b

a

f (t) dt (3.14)

≤ (≥) b− a+ (b− s) ln f (b) + (s− a) ln f (a)

for any s ∈ [a, b] .

In particular, we have

1

b− a

∫ b

a

ln f (t) dt+
1

f
(
a+b
2

) 1

b− a

∫ b

a

f (t) dt (3.15)

≤ (≥) 1 + ln
√
f (b) f (a)

and

1

b− a

∫ b

a

ln f (t) dt+

[
f (b) + f (a)

2f (a) f (b)

]
1

b− a

∫ b

a

f (t) dt (3.16)

≤ (≥) 1 + ln
√
f (b) f (a).

Proof. Integrating the inequality (3.10) over t ∈ [a, b] we have

1

f (s)

∫ b

a

f (t) dt− (b− a) ≤ (≥)

∫ b

a

f ′ (t)

f (t)
(t− s) dt. (3.17)

Observe that∫ b

a

f ′ (t)

f (t)
(t− s) dt =

∫ b

a

(ln f (t))
′
(t− s) dt

= (t− s) ln f (t)|ba −
∫ b

a

ln f (t) dt

= (b− s) ln f (b) + (s− a) ln f (a)−
∫ b

a

ln f (t) dt

and by (3.17) we get

1

f (s)

∫ b

a

f (t) dt− (b− a)

≤ (≥) (b− s) ln f (b) + (s− a) ln f (a)−
∫ b

a

ln f (t) dt,
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which is equivalent to∫ b

a

ln f (t) dt+
1

f (s)

∫ b

a

f (t) dt

≤ (≥) b− a+ (b− s) ln f (b) + (s− a) ln f (a)

for any s ∈ [a, b] .

If we take in (3.14) s = a+b
2 then we get the desired result (3.15).

If we take in (3.14) s = a and s = b we get∫ b

a

ln f (t) dt+
1

f (a)

∫ b

a

f (t) dt ≤ (≥) b− a+ (b− a) ln f (b)

and ∫ b

a

ln f (t) dt+
1

f (b)

∫ b

a

f (t) dt ≤ (≥) b− a+ (b− a) ln f (a) ,

which by addition produces

2

∫ b

a

ln f (t) dt+
1

f (a)

∫ b

a

f (t) dt+
1

f (b)

∫ b

a

f (t) dt

≤ (≥) 2 (b− a) + (b− a) ln f (b) + (b− a) ln f (a)

and then ∫ b

a

ln f (t) dt+

[
f (b) + f (a)

2f (a) f (b)

] ∫ b

a

f (t) dt

≤ (≥) b− a+ (b− a) ln
√
f (b) f (a),

which is equivalent to (3.16). �

Remark 3.6. We observe that

(b− s) ln f (b) + (s− a) ln f (a) = 0

iff

s =
b ln f (b)− a ln f (a)

ln f (b)− ln f (a)
=

L (f (a) , f (b))

L
(

[f (a)]
a
, [f (b)]

b
) .

If

s =
L (f (a) , f (b))

L
(

[f (a)]
a
, [f (b)]

b
) ∈ I

then from (3.14) we have

1

b− a

∫ b

a

ln f (t) dt+
1

f

(
L(f(a),f(b))

L([f(a)]a,[f(b)]b)

) 1

b− a

∫ b

a

f (t) dt ≤ (≥) 1. (3.18)
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Let (X, ‖·‖) be a normed space and x, y ∈ X two linearly independent vectors
on X. Since the function g : [0, 1]→ (0,∞), g (t) = ‖(1− t)x+ ty‖p , p ≥ 1 is convex
on [0, 1] , then the function f : [0, 1]→ (0,∞), g (t) = 1

‖(1−t)x+ty‖p is AH -concave on

[0, 1] .
Making use of the inequalities (3.8) and (3.9) we get∥∥∥∥x+ y

2

∥∥∥∥p ∫ 1

0

1

‖(1− t)x+ ty‖2p
dt ≥ ‖x‖

p
+ ‖y‖p

2 ‖x‖p ‖y‖p
(3.19)

and ∫ 1

0

1

‖(1− t)x+ ty‖2p
dt ≥ 1

‖x‖p ‖y‖p
. (3.20)

4. Applications for special means

Let us recall the following means:

a) The arithmetic mean

A (a, b) :=
a+ b

2
, a, b > 0,

b) The geometric mean

G (a, b) :=
√
ab; a, b ≥ 0,

c) The harmonic mean

H (a, b) :=
2

1
a + 1

b

; a, b > 0,

d) The identric mean

I (a, b) :=


1

e

(
bb

aa

) 1
b−a

if b 6= a

a if b = a

; a, b > 0

e) The logarithmic mean

L (a, b) :=


b− a

ln b− ln a
if b 6= a

a if b = a

; a, b > 0

f) The p−logarithmic mean

Lp (a, b) :=


(

bp+1 − ap+1

(p+ 1) (b− a)

) 1
p

if b 6= a, p ∈ R\ {−1, 0}

a if b = a

; a, b > 0.
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It is well known that, if L−1 := L and L0 := I, then the function R 3p 7→ Lp is
monotonically strictly increasing. In particular, we have

H (a, b) ≤ G (a, b) ≤ L (a, b) ≤ I (a, b) ≤ A (a, b) .

Consider the function

f (t) = tp =
1

t−p

if −p > 1 or −p < 0, i.e. p ∈ (−∞,−1) ∪ (0,∞) then the function f (t) = tp, t > 0 is
AH -concave. If p ∈ (−1, 0) then the function f (t) = tp, t > 0 is AH -convex.

Now, if we write the inequality (3.2) for the function f (t) = tp and 0 < a < b
we get

1

b− a

∫ b

a

tpdt ≤ (≥)
G2 (ap, bp)

L (ap, bp)
, (4.1)

where p ∈ (−1, 0) (p ∈ (−∞,−1) ∪ (0,∞)) .
Now, observe that

1

b− a

∫ b

a

tpdt =
bp+1 − ap+1

(p+ 1) (b− a)
= Lp

p (a, b) ,

L (ap, bp) =
bp − ap

ln bp − ln ap
=

bp − ap

p (b− a)

b− a
ln b− ln a

= Lp−1
p−1 (a, b)L (a, b) , p ∈ R\ {0, 1}

and
G2 (ap, bp) = G2p (a, b) .

Then by (4.1) we get

Lp
p (a, b)Lp−1

p−1 (a, b)L (a, b) ≤ (≥)G2p (a, b) , (4.2)

where p ∈ (−1, 0) (p ∈ (−∞,−1) ∪ (0,∞) \ {1}) .
If we write the inequality (3.8) for the function f (t) = tp and 0 < a < b we get

1

b− a

∫ b

a

t2pdt ≤ (≥)

(
a+ b

2

)p
ap + bp

2
(4.3)

where p ∈ (−1, 0) (p ∈ (−∞,−1) ∪ (0,∞)) .
Since

1

b− a

∫ b

a

t2pdt = L2p
2p (a, b) , p ∈ R\

{
−1

2
, 0

}
,(

a+ b

2

)p

= Ap (a, b) ,
ap + bp

2
= A (ap, bp) ,

then by (4.3) we have

L2p
2p (a, b) ≤ (≥)Ap (a, b)A (ap, bp) (4.4)

where p ∈ (−1, 0) \
{
− 1

2

}
(p ∈ (−∞,−1) ∪ (0,∞)) .

Now consider the function f (t) = ln t, t > 1. The function

g (t) :=
1

ln t
, t > 1
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is convex on (1,∞) . If we apply the inequality (3.2) for the AH -concave function
f (t) = ln t, t > 1 on [a, b] ⊂ (1,∞) , then we get

ln I (a, b) ≥ G2 (ln a, ln b)

L (ln a, ln b)
. (4.5)
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Napoca, 1978, viii+92 pp.

[9] Cerone, P., Dragomir, S.S., Midpoint-type rules from an inequalities point of view, Ed.
G. A. Anastassiou, Handbook of Analytic-Computational Methods in Applied Mathe-
matics, CRC Press, New York, 135-200.

[10] Cerone, P., Dragomir, S.S., New bounds for the three-point rule involving the Riemann-
Stieltjes integrals, in: Advances in Statistics Combinatorics and Related Areas, C. Gulati,
et al.(Eds.), World Science Publishing, 2002, 53-62.

[11] Cerone, P., Dragomir, S.S., Roumeliotis, J., Some Ostrowski type inequalities for n-time
differentiable mappings and applications, Demonstratio Math., 32(1999), no. 2, 697-712.

[12] Cristescu, G., Hadamard type inequalities for convolution of h-convex functions, Ann.
Tiberiu Popoviciu Semin. Funct. Eq. Approx. Convexity, 8(2010), 3-11.

[13] Dragomir, S.S., Ostrowski’s inequality for monotonous mappings and applications, J.
KSIAM, 3(1999), no. 1, 127-135.

[14] Dragomir, S.S., The Ostrowski’s integral inequality for Lipschitzian mappings and ap-
plications, Comp. Math. Appl., 38(1999), 33-37.

[15] Dragomir, S.S., On the Ostrowski’s inequality for Riemann-Stieltjes integral, Korean J.
Appl. Math., 7(2000), 477-485.

[16] Dragomir, S.S., On the Ostrowski’s inequality for mappings of bounded variation and
applications, Math. Ineq. Appl., 4(2001), no. 1, 33-40.



Inequalities of Hermite-Hadamard type for AH-convex functions 501

[17] Dragomir, S.S., On the Ostrowski inequality for Riemann-Stieltjes integral
∫ b

a
f (t) du (t)

where f is of Hölder type and u is of bounded variation and applications, J. KSIAM,
5(2001), no. 1, 35-45.

[18] Dragomir, S.S., Ostrowski type inequalities for isotonic linear functionals, J. Inequal.
Pure Appl. Math., 3(2002), no. 5, Art. 68.

[19] Dragomir, S.S., An inequality improving the first Hermite-Hadamard inequality for con-
vex functions defined on linear spaces and applications for semi-inner products, J. In-
equal. Pure Appl. Math., 3(2002), no. 2, Article 31, 8 pp.

[20] Dragomir, S.S., An inequality improving the first Hermite-Hadamard inequality for con-
vex functions defined on linear spaces and applications for semi-inner products, J. In-
equal. Pure Appl. Math., 3(2002), No. 2, Article 31.

[21] Dragomir, S.S., An inequality improving the second Hermite-Hadamard inequality for
convex functions defined on linear spaces and applications for semi-inner products, J.
Inequal. Pure Appl. Math., 3(2002), no. 3, Article 35.

[22] Dragomir, S.S., An Ostrowski like inequality for convex functions and applications, Re-
vista Math. Complutense, 16(2003), no. 2, 373-382.

[23] Dragomir, S.S., Operator Inequalities of Ostrowski and Trapezoidal Type, Springer Briefs
in Mathematics, Springer, New York, 2012. x+112 pp.

[24] Dragomir, S.S., Cerone, P., Roumeliotis, J., Wang, S., A weighted version of Ostrowski
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