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Well-posedness and exponential decay for
a laminated beam with distributed delay term

Madani Douib, Salah Zitouni and Abdelhak Djebabla

Abstract. In this paper, we study the well-posedness and the asymptotic behavior
of a one-dimensional laminated beam system with a distributed delay term in the
first equation, where the heat conduction is given by Fourier’s law effective in the
rotation angle displacements. We first give the well-posedness of the system by
using the semigroup method. Then, we show that the system is exponentially
stable under the assumption of equal wave speeds.
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1. Introduction

Recent advances in smart laminated composite structures in the past two decades
resulted in the application of these new generation of structures in modern industries,
including automotive, robot arms, aerospace and civil engineering. Such structures are
mainly work in harsh dynamic conditions, particularly the design of their piezoelectric
materials can be used as both actuators and sensors. Hansen and Spies in [8, 9] derived
the mathematical model for two-layered beams with structural damping due to the
interfacial slip, the system is given by the following equations:

prpw + G (Y — ¢z), =0,

p2 (Bw =)y — G (Y —¢z) = D (Bw—1),, =0, (1.1)

powi + G (Y — o) + 570 + 5Pw; — Dwgy =0,
where (z,t) € (0,1) x (0,+00), and ¢ = ¢(x,t) is the transversal displacement,
1 = 1) (x,t) denotes the rotational displacement, and w = w (z,t) is proportional to
the amount of slip along the interface at time ¢ and longitudinal spatial variable z. The
coefficients p1, G, p2, D, 7y, 8 > 0 are the density of the beams, the shear stiffness, mass
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moment of inertia, flexural rigidity, adhesive stiffness of the beams and the adhesive
damping parameter, respectively.

In recent years, an increasing interest has been developed to determine the as-
ymptotic behavior of the solution of several laminated beam problems, we refer the
reader to [3, 12, 13, 14, 15, 23, 24] and the references therein. In [23], Raposo consid-
ered system (1.1) with two frictional dampings of the form:

prpu + G (Y — @r), + kg =0,
p2 (Bw =), — G (Y —9z) =D (Bw =), + k2 3w —¢), =0,
pP2w + G (1# - Qoz) + %'Yw + %Bwt — Dwgy =0,

where (z,t) € (0,1) x (0,+00), and obtained the exponential decay result under
appropriate initial and boundary conditions. In [24], Wang, Xu and Yung considered
system (1.1) with the cantilever boundary conditions and two different wave speeds

(4/ pgl and 4/ p%). W. Liu and W. Zhao [14] considered a coupled system of a laminated
beam with Fourier’s type heat conduction, which has the form:

poie+G (Y —pz), =0,

I, Bw—1), — G —¢z) —DBw—1),, +0b, =0,
Ipwtt + G (¢ - @w) + %’yw + %ﬁwt - Dw:pw = 07

kO — 1010 + 0 (3w — ), =0,

where (z,t) € (0,1) x (0,+00), they used the energy method to prove an exponential
decay result for the case of equal wave speeds. (See also [1, 5, 11, 16, 17]).

Time delays arise in many applications of most phenomena naturally modulate
by partial differential equations problems, depending not only on the present state but
also on some past occurrences. The presence of delay may be a source of instability.
It may turn a well-behaved system into a wild one. For example, it was shown in
[6, 7, 10, 20, 21, 25] that an arbitrarily small delay may destabilize a system that
is uniformly asymptotically stable in the absence of delay unless additional control
terms have been used. In [21], Nicaise and Pignotti considered wave equation with
linear frictional damping and internal distributed delay

T2
Ugy —Au—l—ulut—i—a(x)/ to (s)ue (t—s)ds =0, in Q x (0,00),
T1
with initial and mixed Dirichlet-Neumann boundary conditions and a is a function
chosen in an appropriate space. They established exponential stability of the solution
under the assumption that

T2
Jall [ pa(s)ds < o
T1

Regarding the similar result concerning boundary distributed delay see [2, 18, 19].
Moreover, Nicaise, Pignotti and Valein [22] replaced the constant delay term in the
boundary condition of [20] by a time-varying delay term and obtained an exponential
decay result under an appropriate assumption on the weights of the damping and
delay.



A laminated beam with distributed delay 547

In this work, we consider the laminated beam system where the heat flux is given
by Fourier’s law with distributed delay term. The system is written as

p1pee + G (Y — ©u), + pops + [17 () i (.t — 5)ds = 0,
p2 (Bw =), — G —¢z) — D @Bw—1),, +0b, =0, (1.2)
p2wtt+G('¢)_§0$)+ %’Yw""_%ﬁwt_Dwmx =0, .
kO — 1010 + 0 (3w — ), =0,
where (z,t) € (0,1) x (0,+00), and p1, G, p2, D, o, v, B, k, T are positive constant
coefficients, with the Dirichlet-Neumann boundary conditions:

{ @(Ovt) = ¢z(07t) = wx(oat) = 9(07t) =0, te [0,+OO), (1 3)
sz(lvt):w(lvt):w(lﬂt)ZGm (1775):0» te [0,+OO), .
and the initial conditions:

cp(x, 0) = @0(I>7 L)075('7570) = (pl('r)a T € [07 1] )

1/)(]"70) Z%(Jf)a%(%o) :¢1($), RS [0’ 1]7

w(z,0) = wo(x),w(z,0) =wi(x), x€]l0,1], (1.4)

0(x,0) = Oy(x), x €[0,1],

ei(x, —t) = fo(x, 1), (5t) € (0,1) x (0,72),

where 7y and 7 are two real numbers with 0 < 71 < 7o, g is a positive constant, and
w11, m2] — Ris an L function, p > 0 almost everywhere, and the initial data
(90, p1,3we — o, 3wy — Y1, wp, w1, by, fo) belong to a suitable Sobolev space.

Here, we prove the well-posedness and stability results for problem on the fol-
lowing parameter, under the assumption

Lo > /72 w(s)ds. (1.5)

1
The rest of our paper is organized as follows. In Section 2, by using Hille-Yosida
theorem, we state and prove the well posedness of problem (1.2)-(1.4). In Section 3,
by using the perturbed energy method, we then establish the exponential result if and

if 2L — P2
only if & = 3.

2. Well-posedness of the problem

In this section, we will prove that system (1.2)-(1.4) are well posed using semi-
group theory by introducing the following new variable as in [21].

z(z,p,t,8) = @i (x,t —ps), x€(0,1), p€(0,1), t>0, s € (11,72). (2.1)
Then, we have
sz(x,p,t,s) + zp(x, p,t,8) =0, € (0,1), pe(0,1), t>0, s€ (r,m2). (22)
Therefore, problem (1.2) takes the form:
proue + G (O — @u), + powr + [2 () 2(x,1,¢, s)ds = 0,
p2 (3w — )y, — G (1 — ps) — D (3w — )., + 0t =0, 23

P2Wet + G ('(/) - QOLE) + %7“1 + %ﬁwt - Dwx;ﬂ = 07
kO — 1010 + 0 (Bw — ), =0,
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with the Dirichlet-Neumann boundary conditions:

©(0,t) = 9,(0,t) = w,(0,t) = 6(0,¢t) =0, € [0, +00), (2.4)
e (1,8) =9 (1,t) =w(1,t) =0, (1,t) =0, [0, +00), ’
and the initial conditions:
4,0(-7370) - 500(1")7 @t(l‘vo) = Ql(x)a HAIS [Oa 1]7
TP(Z’?O) = 1/’0(33)7 d)t(x70) = 1/)1(5'3)’ HAS [Oa 1]7
w(x,0) = wo(x), wi(z,0) =wi(z), z €0,1],
9(%70) - HO(x y T E [07 1]3 (25)
ot(z, —t) = fo(z,t), (z,t) € (0,1) x (0,72)
z(2,0,t,8) = ¢t (z,t) on (0,1) x (0,00) X (11,72),
< (xapaoas) = fO (J;apa S) on (07 1) X (07 1) X (T177—2) .
Introducing the vector function
U= ((pa Pt 3w — IZ’: (3w - w)t , W, Wt, 07 Z)T )
problem (2.3)-(2.5) can be written as
{ oU = AU, (2.6)
U (z,0) = U°(2) = (¢o, 1, 3wo — Yo, 3w — Y1, wo, wy, Oo, fo)T . '

Where the operator A is defined by

Pt
G 1 .
_7(w_ﬁpx)r_i?<ﬂt—a TI2M(S)Z(x717t,S)dS

P1 p
(3w - d})t
o

D
(¢ =) + — Bw =), — —bs
P2

AU = E P2
Wy

G 4 4
(- ) — 2w — —Bwt + 2w,

02 i 3@2 3p2 P2

—1
—S5 "Zp

We consider the following spaces

Hi (Oal) = {X/XEHl (0’1):X(0)

0
Hy(0,1) = {x/xeH"(0,1):x(1)=0}.

b
}

Let

H = H!0,1)x L*(0,1) x H' (0,1) x L*(0,1) x H} (0,1)
xL?(0,1) x L*(0,1) x L* ((0,1) x (m1,72),H' (0,1)) ,
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be the Hilbert space equipped with the inner product
1
<U, U> - / 1063t + pa (3w — ), (3@ - zp) 4 3pow, Wydz + k00
H 0 t
i + G (6= ¢2) (9= @a) + D (3w =), (35— )

+3Dw, W, dx—i—/ / / (x,p,8)Z (z,p, s) dpdsdzx.

The domain of A is
UceH|pe H?(0,1)NHL(0,1), 6 € H:(0,1),
_ 2 7l
D(A) = SwIw,weH (071)ﬁH*(0~,11), @7
QDtEH* (071)3(3w7w)t5wt€H* (Oal)v
¢z (1,1) = Y2 (0,1) = wy (0,2) = 0,0 (x) = 2 (2,0, s)in(0,1)

and it is dense in H. The well-posedness of problem (2.6) is ensured by

Theorem 2.1. Assume that U° € H and (1.5) holds, then problem (2.6) exists a unique
weak solution U € C (RT;H). Moreover, if UY € D (A), then

UeC(RYDA)NC (RYH)). (2.8)
Proof. To prove the well-posedness result, it suffices to show that A : D (A) — H is
a maximal monotone operator, which means A is dissipative and Id — A is surjective.
First, we prove that A is dissipative.
For any U = (¢, ¢4, 3w — 1, (3w — 1), , w, w, 0, z)T € D (A), by using the inner prod-
uct and integrating by parts, we have

00 = - [ G- [ >(/T2u<s>z<x,1,s>ds)do:
—46/01111 // 2 (2,1, 5) dsda
—T/Oleidx—kQ/n p(s)ds/o ©? (z) d.

Now, using Young’s and Cauchy—Schwarz’ inequalities, we can estimate,

_/Olwt(x) (/:u(s)z(x,1,s)ds> da
< ;(/ﬁmu(s)ds)/ogot Yo+ = // 2 (2,1, 5) dsda.

Therefore, from the assumption (1.5) we have
(AU, U)y,

1 1 2 1
—T/ 02dx — 4ﬁ/ wide + (—,uo —I—/ w(s) ds) / ©? (z)dx < 0.
0 0 m 0

Consequently, A is a dissipative operator.
Next, we prove that the operator Id — A is surjective.
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Given F = (fl,fg,fg,f4,f5,f6,f7,f8)T € H, we prove that there exists a unique
U= (¢,¢0,3w—1, (3w — ), ,w,wy, 0, 2)7 € D (A) such that

(Id— A)U = F, (2.9)
that is,
Y — Pt = fl) .
(p1+ o) pr — Gozw — G (Bw — ), +3Gwy + [* p(s) z (x,1,t,5) ds
= p1fe,

(Bw =) = (Bw =), = fs,
p2 (Bw =), + Gy, + G Bw —1) — D Bw — ), —3Gw + 06,
= p2fa,
w—w = f5,
(Pz + %) wy — G, — G (Bw — ) + (3G+ 4%) w — Dwgy = p2 fo,
kO — 1055 + 0 3w — ), = kfr,
z+s 1z, = fs.

(2.10)

From (2.10)4,(2.10)3 and (2.10)5 we have

wy = w — f5.

or =9 — f1,
{ Buw —v), = Bw — 1) — fs, (2.11)

Inserting (2.11) into (2.10)3, (2.10)4, (2.10)¢ and (2.10)7, we get

(o + p1) ¢ — Gz — G (3w — ), + 3Gw, + f:f w(s)z(x,1,t,5)ds
= p1 (f1 + f2) + o f1,

p2 (Bw — ) + G, + G Bw —v) — D 3w — ), —3Gw+ o6,
=p2 (f3+ f1),
(2.12)
(b2 + %) w—Gpo — G Bu—9) + (3G + %) w— Du,

=p2 (f5 + fo) + 22 fs,

k6 — Texa: +o (3’[0 - 1/))75 =0 (f3)g¢ + kf7a
z+s7 1z, = fs.

Using (2.11) and the fact that z (x,0, s) = ¢; (x), we get
P
z(x,p,8) = p(x)e " — fre™ P 4+ se_ps/ fs(z,0,5)e%ds, (2.13)
0
In order to solve (2.10), we consider the following variational formulation

B <(ap,3w —p,w,0)7T ((,57 3 — @, @, §)T> -y ((,5, 3@ — 9, @, §)T7 (2.14)
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~ - 2
where B : {Hi (0,1) x HL(0,1) x H} (0,1) x L2 (0, 1)} — R is the bilinear form
defined by

B <(<p,3w — w07, (g,z, 30 — J,w,é)T>
- /1G<—%+w> (—sm{z?)dwf (uo+p1>so;5dx+/lk05dx
0 X ) 01 0
+/O p2 (3w — 1) (3w—w) da:+/0 (3p2 + 48 + 4v) wwdz
+/1D(3w—¢)m (35 - ) dm+/1 3Dwmwzdx+7/19m'ézdx
0 x 0 0
+U/101<3{D{/;>d:17+0/1(3ww)wadz
0 0

1 Ty
—I-/ @(ﬁ/ w(s) e *dsdx,
0 T1

and L : [Hi (0,1) x H (0,1) x H! (0,1) x L2 (0, 1)} 4 R is the linear form defined
by
~ T
L (557 3125 - '(/]7{67 9)
1 1 1 .
= [ ottir et [ ot [ pntht 10 (35-0) do
0 0 0

1

1 1 ~ L
+/0 3p2 <f5+f6) ’L/Ed.ﬁ-i-/() 4ﬂf5’ljl5d$l)‘+/0 O'(fg)z de—i—/o kf0dx

1 T2
- / @/ w(s) zo (z, s) dsdz.
0 T1

Now, for V.= H2 (0,1) x H!(0,1) x H!(0,1) x L2 (0,1) equipped with the norm
2 2 2 2 2 2
1@, 3w — ¥, w,0) [y, = | =pa + Yll5 + [I@lly + [Bwa = Pally + lwellz + 102l -

It is easy to verify that B (.,.) is continuous and coercive, and L (.) is continuous.
So applying the Lax-Milgram theorem, problem (2.14) admits a unique solution

oe H!(0,1), (3w—1) e H!(0,1), we H!(0,1), 6 L?*(0,1).
The substitution of ¢, 3w — ¢ and w into (2.11), we obtain
@€ H1(0,1), (Bw—v), € H(0,1), w; € H!(0,1).
Applying the classical elliptic regularity, it follows from (2.12) that
¢ € H?(0,1)NH!(0,1),(3w—v)e H*(0,1)NH! (0,1),0 € H! (0,1),
w e H?(0,1)NH0,1), 0, (1) = (3w — ), (0) = w, (0) = 0.

Therefore, the operator Id — A is surjective. Consequently, the well-posedness result
stated in Theorem 2.1 follows from the Hille-Yosida theorem (see [4]). O
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3. Exponential stability of solution
In this section, we show that, under the assumption pg > f: 1 (s)ds and for

% = £ the solution of problem (2.3)-(2.5) decays exponentially to the study state. To

achleve our goal we use the energy method to produce a suitable Lyapunov functional.
We define the energy functional E (t) as

E(t) =5 Jo [+ po (Bu — W + 3paw? + G (1 — )° + dyw? + ko2

(3.1)
+D (3wx —,)° + 3Dw’ }dm—&— fo fo fﬁ sp(s) 2% (x, p, s,t) dsdpdz.

Theorem 3.1. Assume that & = % and (1.5) holds. Let U° € H , then there exists
positive constants ¢y, ¢ such that the energy E (t) associated with problem (2.3)-(2.5)
satisfies,

E(t) < coe™ "t > 0. (3.2)

In order to prove this result, we need the following lemmas.

Lemma 3.2. Let (p,¢,w,0,z) be the solution of (2.3)-(2.5) and assume (1.5) holds.
Then the energy functional, defined by (3.1) satisfies

T2 1
th < 4ﬁ/ wtdx—T/ 02dx — (,uo—/ w(s) ds)/ e?dr < 0. (3.3)
T1 0

Proof. Multiplying (2.3)1, (2.3)2, (2.3)3 and (2.3)4 by ¢4, 3 (w — ), , 3w, and 6, re-
spectively, and integrating over (0,1), using integration by parts and the boundary
conditions in (2.4), we get

jt[l (m/o %dﬂc/ (v — ) dw)]
—G/ (W — @u wtda?—uo/o gotdx—/ <pt/ x,t —s)dsdx, (3.4)

I (o [ s D/ (e de) |

= / (Y — pz) Bw — ), /9 3w — ), (3.5)
d 1 3 1 2dx + 4 1 2dx + 3D 1 2d
dt{(pg/wtqu’y/ow T + /szx>}

1 1
= —3G/ (VY — o) wydr — 48 | wide, (3.6)
0 0

and

d 1 1 1 1
— 7k/ 62dx :a/ (Bw—w)tezdx—T/ 02dz. (3.7)
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On the other hand, multiplying (2.2) by u(s)z(z,p,s,t) and integrating over
(0,1) x (0,1) x (11, 72), we obtain

/// z(x,p,s,t) z (z, p, 5, t) dsdpdx
/// z(x,p,s,t) 2, (x,p, s,t) dsdpdx = 0,

2dt/ / / (z,p,s,t)dsdpdx
1 T2 1 )
= —= (x,1,s,t)dsdx + = 5 w(s)ds | ide. (3.8)
T1 0

Summing up (3.4)—(3.8), we arrive at

0 - o e o[ 4
_T/ 92dm_/ Spt/ z(x,1,s,t)dsdx
_,/ / 2 (2,1, 5, 1) dsda.

Young’s and Cauchy—Schwarz’ inequalities applied to the fourth term on the right-
hand side yield

/cpt/ z(z,1,s8,t)dsde < ;(/Tz ()ds)/o1 ©rda
A/ 2(x,1,s,t) dsdz.

(3.10)

thus, we have

(3.9)

Simple substitution of (3.10) into (3.9) and using (1.5) give (3.3), which concludes
the proof. O

Now, we are going to construct a Lyapunov functional equivalent to the energy. For
this, we will prove several lemmas with the purpose of creating negative counterparts
of the terms that appear in the energy.

Lemma 3.3. Let (o, ¢, w,0,z) be the solution of (2.3)-(2.5). Then the functional

1
Fi(t) := —p1/ pprdx (3.11)
0
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satisfies the estimate

1 1 1
@t < -2 <pfda:+()1/ (¢ — gpx)de+C'2/ (3w, — 1,)* da
0

< 2/,
+Cg/ w2dx + = / / 2(x,1,5,t)dsd. (3.12)
where
3G 2 T2 T2
c, = ——i—@—i—/ w(s)ds, Co= G+ +2/ u(s)ds,
2 P1 1 f1 ol
8#0 "
Cs = 9G+ p +18 w(s) ds.
1 T1

Proof. Taking the derivative of F (t) with respect to ¢, using the first equation in
(2.3), and integrating by parts, gives

1 1 1
Fi(t) = —m/ pidr — G (w—%)%dwruo/ prpdr
0 0

/ / (z,1,t,s) dsdx.
Note that

1 1 1
J— —_— 2 — _
—G/O (w—wm)%dw—G/O (Y — o) dx G/O Y (Y — pp) dx

Then, we deduce that

1 1 1
Fl(t) = *pl/o wfderG/ (%/J*som)de*G/O O (6 — po) da

+u0/ <pt<pd$—|—/ / z(x,1,t,s) dsdx.
0

We then use Young’s inequality, we obtain

1 1 1
3G G
ro < 4w Y [ w-etes S [ e

T 1
Ho 1/2 )/ 2
+ + ds dx
<2P1 2 (s) 0 7
/ / 2(x,1,s,t) dsd.

By using (1.5) and the trivial relation

1 1 1
/sonxSZ/ (¢—<px)2d$+2/ Yidz,
0 0 0
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we obtain
o1 1 3G ,U/2 T2 1 5
ro < -2 [ e (Fr s [Tuea) [[o- et
2 Jo 2 P1 1 0
G 2 T2 1
—&-(4—“0—&-/ u(s)ds)/ Y2dx
2 P1 0
/ / (z,1,s,t) dsdx.
Note that

1 1 1 1
/ Yidr = / (1 — 3wy + 3wy)? da < 2/ (3w, — the)? da + 18/ wide.
0 0 0 0
Then the estimate (3.12) is established. O
Lemma 3.4. Let (¢, v, w,0,2) be the solution of (2.3)-(2.5). Then the functional

By (t) = po /0 (3w — ) (3w — ), da (3.13)

satisfies the estimate

1 1
R < -2 / B =) do+ o [ Gu— ) da

G2

+5 (w ©a)? d:c+—/ 02dz. (3.14)

Proof. By differentiating F (¢ ) with respect to ¢, then exploiting the second equation
n (2.3), and integrating by parts, we obtain

1 1
Fi(t) = -D / (3w — 12)? da + ps / (Buwn — )° da

1 1
—I—G/ (v — pz) Bw — ) dr + O'/ (Bw — ), Odx. (3.15)
0 0
Using Young’s inequality, we obtain estimate (3.14). O
Lemma 3.5. Let (¢,v,w,0,2) be the solution of (2.3)-(2.5). Then the functional

1
F;(t) := pg/ wwdz (3.16)
0

satisfies, for any 1 > 0, the estimate

4 1 1 1
Fi(t) < (;l - 61) /0 widx — D/o wide + C,y (51)/0 widx

2 1
o . s)? da. (3.17)

where
62
C = —
4 (1) = pa + 9,
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Proof. By differentiating Fj (t) with respect to ¢, then exploiting the third equation
n (2.3), and integrating by parts, we obtain

1 1 1
4
F(t) = Pz/ w?dx—G/ w(d}—wx)dx—gv/ wdz
0 0 0

4 1 1
—=p wwidr — D widx.
3 T
0 0

Using Young’s inequality with €1 > 0, we obtain estimate (3.17). O
Lemma 3.6. Let (¢,v,w,0,2) be the solution of (2.3)-(2.5). Then the functional

k xr
Fy(t) := P2 (Bw — ¢)t/ Odydx (3.18)
g Jo 0
satisfies, for any 9 > 0, the estimate

1 1 1
Fi(t) < —%2 i (3w, — 1/1t)2dx—|—05(€2)/ 02dx+52/0 (Y — pg)° dx

1
+€2/ (Bwy — 1,)* dz —l——/ 02dz, (3.19)
0
where
k2D? k2G?
4820’2 4620’2.

Cs(e2) =k+—

Proof. By differentiating Fy (t) with respect to t, using the second and the fourth
equations in (2.3), and integrating by parts, we obtain

1 ) kG 1 T
FO = [ Gu-vtdos D [0 [ odyds
0 g Jo 0
LD 1 1 1
— | Buw-1v), 9d$+kz/ 0 dx + @/ (Bw — 1)), Oy dx.
g Jo 0 g Jo
(3.20)
Then, using Young’s and Poincaré inequalities with e > 0, we arrive at (3.19). O
Lemma 3.7. Let (¢,v,w,0,2) be the solution of (2.3)-(2.5). Then the functional

1 1 Dp1
F5 (t) = pQ/ Wt ('l/} — SDI) dx + pQ/ U}tsﬁmdl’ - ?
0 0

satisfies, for any €3 > 0, the estimate
G 16+2

1
FLt) < -3 (1/1 ©x) dm+53/0 3wy — y)° da + e

1
(weppr — warp) dr (3.21)
0

w?dx
0

2G

/ / (x,1,s,t)dsdx, (3.22)

Duo + brel f M dS, 07 (53) = 166 + 22 +9€3

1 1
D
+C’6/ widr + Cy (53)/ 2dr + — Hlo @2dx
0

where Cg =
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Proof. Using the first and the third equations in (2.3), and integrating by parts, we

obtain
d 1
o {PQ/ Wt (w—ww)dw}
0
D d [ 1 D !
= él{dt/ (Wazpr — Watp) dfc—/ wtt%d:ﬂ}wLMO/ wyprdx
0

G/ww/ @txt—s)dsdx—G/ (¥ — gow) dz

1
S RN PR R w—%)dwm/ wibrdz
3 0 3 0 0

d L !
i {pg/ wtsﬁwdﬂﬁ} + PQ/ Wit Pz dT
0 0

We conclude for

p2 P
F5 (1) (5 E) / Wit ppdr + 7/ Wy prdx

D

5/ / (aclst)dsda:—G/ (1 — @g)* da
4/_}/ 4/8 1 1

- w(i/)—%)dx—* wi (Y — pz)dx + pa | withda.
3 Jo 3 Jo 0
Using Young’s inequality and % = 2, we obtain (3.22). O

Lemma 3.8. Let (p, 9, w,0,z) be the solution of (2.3)-(2.5) and (2.2). Then the func-

tional
1 1 TS
= / / / se P (s) 2% (x, p, s,t) dsdpdx (3.23)
0 0 T1

satisfies, for some positive constant n, the following estimate

—n/ / / (z,p, s,t) dsdpdx

1
—n/ / 2(x,1,5,1) dsda:—l—uo/ ida. (3.24)
0

Proof. By differentiating Fg (t) with respect to ¢, and using the equation (2.2), we

obtain
F(;(t) = —2/ / / e (x,p,8,t) 2, (x, p, 5,t) dsdpdx

/ /n e*2% (2,1, 5,t) — 2% (2,0, 5,1)] dsdz

—/ // se” P (s) 2% (x, p, s, t) dsdpdz. (3.25)
0 0 T1
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Using the fact that z (z,0,s,t) = ¢y and e7® < e < 1, for all 0 < p < 1, we obtain

T2 1
/ / 2(x,1,s,1) dsder/ w(s) ds/ orda
T1 T1 0
—nl/ / / (z,p, s,t) dsdpdz. (3.26)

Because —e™* is an increasing function, we have —e™* < —e~ "2 for all s € [y, T2].
Finally, setting n = e~ ™ and recalling (1.5), we obtain (3.24). O

S

Next, we define a Lyapunov functional L (¢) and show that it is equivalent to
the energy functional E (t).

Lemma 3.9. Let N, Ny, N3, Ny, N5, N > 0 and % = 55, we define
i=6
i=2
For two positive constants B, and By, we have
BE(t) < L(t) < BE(t),Vt>0. (3.28)

Proof. Now, let

LW =)+ NF @)

1 1
L)l < m/ \wtmxwng/ (3w — ) (B — ), | dz
kP2
+N3po |wwt\ dx + Ny—=
0

 Naps / fwe (i — g)| da + N5 22 / (w501 — warp)| da

dx

w— ), /0 0dy

+Ns5po / |wips| dz

s / / / e (Ia P, S, t)| dsdpdzx.

Exploiting Young’s, Poincaré, Cauchy-Schwarz inequalities, (3.1), and the fact that
e—*? <1 for all p € [0, 1], we obtain

L] < e fy [97+ Bue =6 +uf + (= 2) + Buog — ) + w2 + 0
+ 92] dx + cfo fo fn sp(s) 2% (x,p, 2, t) dsdpdx < cE (t).
Consequently, |L(t) — NE(t)| < c¢E(t), which yields
(N—c)E(t) <L) <(N+c)E(t).
Choosing such that (N —¢) > 0, we obtain estimate (3.28). O
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Now, we are ready to state and prove the main result of this section.

Proof. (of Theorem 3.1). By differentiating (3.27) and recalling (3.12), (3.14), (3.17),
(3.19), (3.22) and (3.24), we obtain

_ . D 1
L' < - (,Uo —/ p (s )ds) N+ 2 ? - ?ZVONs M0N6:| / i da
L T 0

1

9G

- NfT—”?Nd/ 02dx
202 0

[4 1 !
- %Ng*&‘lNg - 6,7 N5:| / w2d:17
L 0

1 2 1
— [DNg — 03 — 06N5]/ widx + |:0-DN2 + 05 (52) N4:| / 92d.’L‘
0 0
G G? G? !
[2 N5 - C) — ENQ - 2761]\73 - €2N4} /0 (Y — ) da
1
- [%N4 — p2No — €3N5} / (3w — ¢,)° dz
0

1
—[46]\[—04 (61)N3 —C7 (63) N5]/ wfdac
0
[ D

1
— 5N2 02 — €2N4:| / (wa — ¢w)2 dzx

—[nN6/ // sp(s) 22(z, p, 5, t)dsdpdx

— _nNG - 5 2GN5]/ / (x,1,s,t)dsdx. (3.29)

At this point, we need to choose our constants very carefully. First, we take N, large
enough, such that

D
ENQ —Cy > 0.

Then, we choose Ny and N5 large enough, so that

P2 G G2
— — > — N5 — - — > 0.
2N4 pgNQ_O, 2NO Cl DNQ_O

Next, we pick €7 small and choose N3 large enough, such that

16+2
DN; — C5 — CgNs > 0, 92 N5 > 0.
Then, we select N3 even smaller (if needed) and e9, €3 small enough, so that

D
ENQ — Cy —eaNy >0, %Nzl — palNg —e3Ns > 0,

G G? G?
— N5 —Cy — —Ng — — N3 —e9N, > 0.
B 5 1 D 2 %, 3 —E21V4 =2
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Furthermore, we choose Ng large enough, so that

Finally, we choose IV so large such that

T2 D
(Mo-/ﬁ u(s)ds)NH’;—Qé‘;NruoNG > 0,
4[3N—C4(€1)N3—C7(53)N5 > 0.

Thus, we deduce that there exist positive constants a; and ag such that (3.29) be-
comes

1 1
' < —alE(t)—[TN—Lng}/ 9§dx+a2/ 02da
20' 0 0

By (3.3), we obtain

L' (t) < —a1E(t) — asE' (1), (3.30)
for some a3 > 0. It is obvious that

Lt)=L({t)+asE(t)~E(t).
Next, exploiting (3.30), we get

L #)=L(t)+azE (t) < —a1E(t) < —c1£(1), (3.31)
for some ¢; > 0. Integration (3.31) over (0,t), leads to
L)< L£(0)e @t Vi>0. (3.32)
It gives the desired result theorem 3.1 when combined with the equivalence of L (t)
and F (t). O
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