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Positive solution of Hilfer fractional differential
equations with integral boundary conditions

Mohammed A. Almalahi, Satish K. Panchal and Mohammed S. Abdo

Abstract. In this article, we have interested the study of the existence and unique-
ness of positive solutions of the first-order nonlinear Hilfer fractional differential
equation

Dα,β

0+
y(t) = f(t, y(t)), 0 < t ≤ 1,

with the integral boundary condition

I1−γ
0+

y(0) = λ

∫ 1

0

y(s)ds+ d,

where 0 < α ≤ 1, 0 ≤ β ≤ 1, λ ≥ 0, d ∈ R+, and Dα,β

0+
, I1−γ

0+
are fractional ope-

rators in the Hilfer, Riemann-Liouville concepts, respectively. In this approach,
we transform the given fractional differential equation into an equivalent inte-
gral equation. Then we establish sufficient conditions and employ the Schauder
fixed point theorem and the method of upper and lower solutions to obtain the
existence of a positive solution of a given problem. We also use the Banach con-
traction principle theorem to show the existence of a unique positive solution.
The result of existence obtained by structure the upper and lower control func-
tions of the nonlinear term is without any monotonous conditions. Finally, an
example is presented to show the effectiveness of our main results.

Mathematics Subject Classification (2010): 34A08, 34B15, 34B18, 34A12, 47H10.
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1. Introduction

Fractional differential equations have high significance due to their application in
many fields such as applied and engineering sciences, etc. In the recent years, there has
been a significant development in ordinary and partial differential equations involving
fractional derivatives, see the monographs of Kilbas et al.[8], Miller and Ross [10],
Podlubny[12], Hilfer [7] and reference therein. In particular, many interesting results
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of the existence of positive solutions of nonlinear fractional differential equations have
been discussed, see [2, 4, 5, 9, 11, 13, 14] and reference therein. The integral boundary
conditions have various applications in applied fields such as, underground water
flow, blood flow problems, thermo-elasticity, population dynamics, chemical engineer-
ing, and so forth. Since only positive solutions are useful for many applications. For
example, Abdo et al in [1] discussed the existence and uniqueness of a positive solution
for the nonlinear fractional differential equations with integral boundary condition of
the form

cDα
0+y(t) = f(t, y(t)), t ∈ [0, 1]

y(0) = λ

∫ 1

0

y(s)ds+ d, λ ≥ 0, d ∈ R+,

where cDα
0+ is the Caputo fractional derivative of order α ∈ (0, 1) , and f satisfied

some appropriate assumptions.
Ardjouni and Djoudi in [3], discussed the existence and uniqueness of a positive

solution for the nonlinear fractional differential equations

Dα
1+x(t) = f(t, x(t)), t ∈ [1, e]

x(1) = λ

∫ e

1

x(s)ds+ d,

where Dα
1+ is the Caputo-Hadamard fractional derivative of order α ∈ (0, 1), λ ≥ 0,

d ∈ R+, and f satisfies some suitable hypotheses. On the other hand, Long et al. [9]
investigated some existence of positive solutions of period boundary value problems
of fractional differential equations{

Dα,β
0+ x(t) = λx(t) + f(t, x(t)), t ∈ (0, b]

lim
t−→0+

t1−γx(t) = lim
t−→b−

t1−γx(0), γ = α+ β − αβ

where λ < 0, Dα,β
0+ is the Hilfer fractional derivative of order α ∈ (0, 1) and type

β ∈ [0, 1] and f satisfied some appropriate conditions.
Motivated by the above works, in this paper, we discuss the existence and unique-

ness of positive solution of the following nonlinear Hilfer fractional differential equa-
tions with integral boundary condition in a weighted space of continuous functions

Dα,β
0+ y(t) = f(t, y(t)), 0 < t ≤ 1 (1.1)

I1−γ
0+ y(0) = λ

∫ 1

0

y(s)ds+ d, (1.2)

where Dα,β
0+ is the left-sided Hilfer fractional derivative of order α ∈ (0, 1) of type

β ∈ [0, 1], λ ≥ 0, d ∈ R+ and f : [0, 1] × R+ −→ R+ is a continuous, I1−γ
0+ is the

Riemann–Liouville fractional integral of order 1 − γ, with γ = α + β(1 − α). The
Hilfer fractional derivative can be regarded as an interpolator between the Riemann–
Liouville derivative (β = 0) and Caputo derivative (β = 1). Furthermore, there are
studies addressed the given problem in cases of β = 0, 1, however, to the best of our
knowledge, there are no results of the Hilfer problem (1.1)-(1.2), hence, our article
aims to fill this gap.
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This article is constructed as follows: In Section 2, we recall some concepts which
will be useful throughout this article. Section 3, contains certain sufficient conditions
to establish the existence criterions of positive solution by using the Schauder fixed
point theorem and the technique of upper and lower solutions. Section 4, demonstrates
the uniqueness of the positive solution by using the Banach contraction principle. We
are given an example in last section.

2. Preliminaries

Let C1−γ [0, 1] be a weighted space of all continuous function defined on the
intervel (0, 1], such that

C1−γ [0, 1] =
{
y : (0, 1]→ R+; t1−γy(t) ∈ C [0, 1]

}
, 0 ≤ γ ≤ 1

with the norm
‖y‖c1−γ[0,1] = max

t∈[0,1]

∣∣t1−γy(t)
∣∣ .

It is clear that C1−γ ([0, 1] ,R+) is Banach space with the above norm. Define the cone
Ω ⊂ C1−γ [0, 1] by

Ω = {y(t) ∈ C1−γ [0, 1] : y(t) ≥ 0, t ∈ (0, 1]} .

Definition 2.1. [8] The left-sided Riemann-Liouville fractional integral of order α > 0
with the lower limit zero for a function y : R+ −→ R is defined by

(Iα0+y)(t) =
1

Γ(α)

∫ t

0

(t− s)α−1y(s)ds,

provided the right-hand side is pointwise on R+, where Γ is the gamma function.

Definition 2.2. [8] The left-sided Riemann-Liouville fractional derivative of order 0 <
α < 1 with the lower limit zero of a function y : R+ −→ R is defined by

Dα
0+y(t) =

1

Γ(1− α)

d

dt

∫ t

0

(t− s)α−1y(s)ds.

provided the right-hand side is pointwise on R+.

Definition 2.3. [8] The left-sided Caputo fractional derivative of order 0 < α < 1 with
the lower limit zero of a function y : R+ −→ R is given by

cDα
0+y(t) =

1

Γ(1− α)

∫ t

0

(t− s)α−1y′(s)ds.

provided the right-hand side is pointwise on R+.

Definition 2.4. [6] The left-sided Hilfer fractional derivative of order 0 < α < 1 and
type 0 ≤ β ≤ 1 with the lower limit zero of a function y : R+ −→ R is given by

Dα,β
0+ y(t) = I

β(1−α)
0+ DI

(1−β)(1−α)
0+ y(t),

where D = d
dt . One has,

Dα,β
0+ y(t) = I

β(1−α)
0+ Dγ

0+y(t), (2.1)
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where

Dγ
0+y(t) = DI1−γ

0+ y(t), γ = α+ β(1− α).

In the forthcoming analysis, we need the following spaces:

Cα,β1−γ [0, 1] =
{
y ∈ C1−γ [0, 1] : Dα,β

0+ y ∈ C1−γ [0, 1]
}
,

and

Cγ1−γ [0, 1] =
{
y ∈ C1−γ [0, 1] : Dγ

0+y ∈ C1−γ [0, 1]
}
. (2.2)

Since Dα,β
0+ y = I

β(1−α)
0+ Dγ

0+y, it is obvious that Cγ1−γ [0, 1] ⊂ Cα,β1−γ [0, 1].

Lemma 2.5. [2] Let α > 0, β > 0 and γ = α+ β − αβ. If y ∈ Cγ1−γ [0, 1], then

Iγ0+D
γ
0+y = Iα0+ Dα,β

0+ y,

and

Dγ
0+I

α
0+y = D

β(1−α)
0+ y.

Theorem 2.6. [6] Let y ∈ Cγ [0, 1], 0 < α < 1, and 0 ≤ γ < 1. Then

Dα
0+Iα0+y(t) = y(t), ∀t ∈ (0, 1].

Moreover, if y ∈ Cγ [0, 1] and I
1−β(1−α)
0+ y ∈ C1

γ [0, 1],then

Dα,β
0+ Iα0+y(t) = y(t), for a.e. t ∈ (0, 1].

Theorem 2.7. [6] Let α, β ≥ 0 and y ∈ C1
γ [0, 1], 0 < α < 1, and 0 ≤ γ < 1. Then

Iα0+I
β
0+y(t) = Iα+β

0+ y(t).

Lemma 2.8. [8] Let α ≥ 0, and σ > 0. Then

Iα0+tσ−1 =
Γ(σ)

Γ(α+ σ)
tα+σ−1, t > 0

and

Dα
0+tα−1 = 0, 0 < α < 1.

Lemma 2.9. [6] Let 0 < α < 1, 0 ≤ γ ≤ 1, if y ∈ Cγ [0, 1] and I1−α
0+ y ∈ C1

γ [0, 1], we
have

Iα0+Dα
0+y(t) = y(t)−

I1−α
0+ y(0)

Γ(γ)
tα−1, for all t ∈ (0, 1].

Lemma 2.10. [6] Let y ∈ Cγ [0, 1]. If 0 ≤ γ < α < 1, then

lim
t−→0+

Iα0+y(t) = Iα0+ y(0) = 0.
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3. Existence of positive solution

In this section we will discuss the existence of positive solution for equation 1.1
with condition 1.2 . Befor starting in prove our result , we interduce the following
conditions:

(H1) f : (0, 1]× [0,∞) −→ [0,∞) is continuous such that f(·, y(·)) ∈ C1−γ [0, 1]
for any y ∈ C1−γ [0, 1] .

(H2) There exist a positive constant Lf such that

|f(t, x)− f(t, y)| ≤ Lf ‖x− y‖C1−γ
.

The following lemmas are fundamental to our results.

Lemma 3.1. If Q(t) :=
∫ 1

τ
(s− τ)α−1ds , for τ ∈ [0, 1] , then

Q(τ)

Γ(α)
< e. (3.1)

Proof. According to the definition of gamma function with some simple computation,
we obtain

Q(τ)

Γ(α)
=

∫ 1

τ
(s− τ)α−1ds∫∞

0
sα−1e−sds

=

∫ 1−τ
0

sα−1ds∫∞
0
sα−1e−sds

≤
e
∫ 1−τ

0
sα−1e−sds∫∞

0
sα−1e−sds

< e.

�

Lemma 3.2. Assume that Q(τ) :=
∫ 1

τ
(s− τ)α−1ds for τ ∈ [0, 1] , µ := 1− λ

Γ(γ+1) 6= 0,

f ∈ C1−γ [0, 1] and y ∈ Cγ1−γ [0, 1] exist. A function y is the solution of

Dα,β
0+ y(t) = f(t, y(t)), 0 < t ≤ 1, (3.2)

I1−γ
0+ y(0) = λ

∫ 1

0

y(s)ds+ d, (3.3)

if and only if y satisfies the fractional integral equation

y(t) = Λtγ−1 +
λtγ−1

Γ(γ)µ

∫ 1

0

Q(τ)

Γ(α)
f(τ, y(τ))dτ +

1

Γ(α)

∫ t

0

(t− s)α−1f(s, y(s))ds, (3.4)

where Λ :=
(

λ
µΓ(γ)Γ(γ+1) + 1

Γ(γ)

)
d.

Proof. First, Assume that y satisfies equation (3.2), then by applying Iα0+ on both
side of equation (3.2) and use Lemma 2.9, integral condition, we obtain

y(t) =
λtγ−1

Γ(γ)

∫ 1

0

y(s)ds+
d

Γ(γ)
tγ−1 +

1

Γ(α)

∫ t

0

(t− s)α−1f(s, y(s))ds. (3.5)

Set A :=
∫ 1

0
y(s)ds. This the assumption with the equation (3.5) implies

A =
d

µΓ(γ + 1)
+

1

µ

∫ 1

0

Q(τ)

Γ(α)
f(τ, y(τ))dτ, (3.6)
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substituting (3.6) into (3.5), we attain

y(t) = Λtγ−1 +
λtγ−1

Γ(γ)µ

∫ 1

0

Q(τ)

Γ(α)
f(τ, y(τ))dτ +

1

Γ(α)

∫ t

0

(t− s)α−1f(s, y(s))ds,

for all t ∈ (0, 1].

Conversely, assume that y satisfies (3.4). Applying I1−γ
0+ to both sides of (3.4) yields

I1−γ
0+ y(t) = ΛΓ(γ) +

λ

µ

∫ 1

0

Q(τ)

Γ(α)
f(τ, y(τ))dτ

+
1

Γ(1− γ + α)

∫ t

0

(t− s)α−γf(s, y(s))ds.

Taking the limit at t −→ 0+ of last equality and using Lemma 2.10 with 1 − γ <
1− γ + α, we get

I1−γ
0+ y(0) = ΛΓ(γ) +

λ

µ

∫ 1

0

Q(τ)

Γ(α)
f(τ, y(τ))dτ.

From the equation (3.6) with help of the definition of Λ, it follows that the integral

boundary conditions given in (3.3) is satisfied, i.e. I1−γ
0+ y(0) = λ

∫ 1

0
y(s)ds+ d.

Next, applying Dγ
0+ to both sides of (3.4) and using lemmas 2.5, 2.8, yields

Dγ
0+y(t) = D

β(1−α)
0+ f(t, y(t)) (3.7)

since y ∈ Cγ1−γ [0, 1], by (2.2), we have Dγ
0+y(t) ∈ C1−γ [0, 1] , therefore

D
β(1−α)
0+ f = DI

1−β(1−α)
0+ f ∈ C1−γ [0, 1] .

For f ∈ C1−γ [0, 1], it is clear that I
1−β(1−α)
0+ f ∈ C1

1−γ [0, 1] . Consequently, f and

I
1−β(1−α)
0+ f satisfy Lemma 2.9.

Now, we apply I
β(1−α)
0+ to both side of equation (??), then Lemma 2.9 and definition

of Hilfer operator imply that

Dα,β
0+ y(t) = f(t, y(t))−

I
1−β(1−α)
0+ f(0, y(0))

Γ(β(1− α))
tβ(1−α)−1

By virtue of Lemma 2.10, one can obtain

Dα,β
0+ y(t) = f(t, y(t)).

This completes the proof. �

Lemma 3.3. Assume that (H1) and (3.1) are satisfied. Then the operator ∆ : Ω −→ Ω
defined by

∆y(t) = Λtγ−1 +
λtγ−1

Γ(γ)µ

∫ 1

0

Q(τ)

Γ(α)
f(τ, y(τ))dτ +

1

Γ(α)

∫ t

0

(t− s)α−1f(s, y(s))ds (3.8)

is compact.
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Proof. We know that the operator ∆ : Ω −→ Ω is continuous, from fact that f(t, y(t))
is continuous and nonnegative. Define bounded set Br ⊂ Ω as follows

Br =
{
y ∈ Ω : ‖y‖C1−γ

≤ r
}
.

The function f : (0, 1]×Br −→ R+ is bounded, then there exist ξ > 0 such that

0 < f(t, y(t)) ≤ ξ.

In view of equation (3.8), Lemma 3.1, and for all y ∈ Br, t ∈ (0, 1], we have∣∣∆y(t)t1−γ
∣∣

≤ Λ +
λ

Γ(γ)µ

∫ 1

0

Q(τ)

Γ(α)
|f(τ, y(τ))| dτ +

t1−γ

Γ(α)

∫ t

0

(t− s)α−1 |f(s, y(s))| ds

≤ Λ +
λe

Γ(γ)µ

∫ 1

0

|f(τ, y(τ))| dτ +
t1−γ

Γ(α)

∫ t

0

(t− s)α−1 |f(s, y(s))| ds

≤ Λ +
λeξ

Γ(γ)µ
+
t1−γ+αξ

Γ(α+ 1)
,

which implies

‖∆y‖C1−γ
≤
[
Λ +

λeξ

Γ(γ)µ
+

ξ

Γ(α+ 1)

]
.

Thus, ∆(Br) is uniformly bounded.

Next, we prove that ∆(Br) is equicontinuous. Let y ∈ Br. Then for any δ, η ∈
(0, 1] with 0 < δ < η ≤ 1, we have∣∣η1−γ∆y(η)− δ1−γ∆y(δ)

∣∣
=

∣∣∣∣∣η1−γ

Γ(α)

∫ η

0

(η − s)α−1f(s, y(s))ds− δ1−γ

Γ(α)

∫ δ

0

(δ − s)α−1f(s, y(s))ds

∣∣∣∣∣
≤ η1−γ − δ1−γ

Γ(α)

∫ δ

0

∣∣(η − s)α−1 − (δ − s)α−1
∣∣ |f(s, y(s))| ds

+
η1−γ

Γ(α)

∫ η

δ

(η − s)α−1 |f(s, y(s))| ds

≤
[
η1−γ − δ1−γ] ξ

Γ(α)

∫ δ

0

(
(δ − s)α−1 − (η − s)α−1

)
ds

+
η1−γξ

Γ(α)

∫ η

δ

(η − s)α−1ds

≤
[
η1−γ − δ1−γ] ξ

Γ(α+ 1)
[(δα − ηα) + (η − δ)α] +

η1−γξ

Γ(α+ 1)
(η − δ)α. (3.9)

By the classical Mean value Theorem, we have

δα − ηα = α (δ − η)T,

≤ α (δ − η) . (3.10)
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The last inequality with(3.9) implies∣∣η1−γ∆y(η)− δ1−γ∆y(δ)
∣∣

≤
[
η1−γ − δ1−γ] ξ

Γ(α+ 1)
[α (δ − η) + (η − δ)α] +

η1−γξ

Γ(α+ 1)
(η − δ)α

≤
[
η1−γ − δ1−γ] ξ

Γ(α+ 1)
(η − δ)α +

η1−γξ

Γ(α+ 1)
(η − δ)α

≤ 2η1−γξ

Γ(α+ 1)
(η − δ)α − δ1−γξ

Γ(α+ 1)
(η − δ)α.

As δ −→ η the right-hand side of the preceding inequality is independent of y and
tends to zero. So, ∣∣η1−γ∆y(η)− δ1−γ∆y(δ)

∣∣ −→ 0,∀ |η − δ| −→ 0.

Hence, ∆(Br) is an equicontinuous set. By the Arzela-Ascoli theorem we get that
∆(Br) is relatively compact set, which prove that ∆ : Ω −→ Ω is a compact operator.

�

Definition 3.4. For any y ∈ [a, b] ⊂ R+, we define the upper-control function by

G(t, x) = sup
a≤y≤x

f(t, y),

and the lower-control function by

g(t, x) = inf
x≤y≤b

f(t, y).

It is obvious that these functions are nondecreasing on [a, b] , i.e.

g(t, x) ≤ f(t, y) ≤ G(t, x).

Definition 3.5. Let y, y ∈ Ω such that 0 < y ≤ y ≤ 1 satisfy the following Hilfer
problem

Dα,β
0+ y(t) ≥ G(t, x), 0 < t ≤ 1

I1−γ
0+ y(0) ≥ λ

∫ 1

0

y(s)ds+ d,

or

y(t) ≥ Λtγ−1 +
λtγ−1

Γ(γ)µ

∫ 1

0

Q(τ)

Γ(α)
G(τ, y(τ))dτ +

1

Γ(α)

∫ t

0

(t− s)α−1G(s, y(s))ds,

and

Dα,β
0+ y(t) ≤ g(t, x), 0 < t ≤ 1

I1−γ
0+ y(0) ≤ λ

∫ 1

0

y(s)ds+ d,

or

y(t) ≤ Λtγ−1 +
λtγ−1

Γ(γ)µ

∫ 1

0

Q(τ)

Γ(α)
g(τ, y(τ))dτ +

1

Γ(α)

∫ t

0

(t− s)α−1g(s, y(s))ds.
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Then the functions y(t) and y(t) are called the upper and lower solutions of the Hilfer
problem (1.1)-(1.2).

Theorem 3.6. Assume that (H1) and (3.1) hold. Then there exists at least one positive
solution y(t) ∈ C1−γ [0, 1] of the Hilfer problem (1.1),(1.2), such that

y(t) ≤ y(t) ≤ y(t), 0 < t ≤ 1.

where y(t) and y(t) are upper and lower solutions of Hilfer problem (1.1),(1.2) respec-
tively.

Proof. In view of Lemma (3.2), the solution of problem (1.1)-(1.2)is given by

y(t) = Λtγ−1 +
λtγ−1

Γ(γ)µ

∫ 1

0

Q(τ)

Γ(α)
f(τ, y(τ))dτ +

1

Γ(α)

∫ t

0

(t− s)α−1f(s, y(s))ds

Define

Υ =
{
x(t) : x(t) ∈ Ω, y(t) ≤ x(t) ≤ y(t), 0 < t ≤ 1

}
endowed with the norm ‖x‖ = max

t∈(0,1]
|x(t)| , then we have ‖x‖ ≤ b. Hence, Υ is a

convex, bounded, and closed subset of the Banach space C1−γ [0, 1]. Now, to apply
the Schauder fixed point theorem, we divide the proof into several steps as follows:
Step 1. We need to prove that ∆ : Ω −→ Ω is compact .

According to Lemma 3.3, the operator ∆ : Ω −→ Ω is compact. Since Υ ⊂ Ω,
the operator ∆ : Υ −→ Υ is compact too.

Step 2. We need to prove that ∆ : Υ −→ Υ. Indeed, by the definitions 3.4, 3.5,
then for any x(t) ∈ Υ, we have

∆x(t) = Λtγ−1 +
λtγ−1

Γ(γ)µ

∫ 1

0

Q(τ)

Γ(α)
f(τ, x(τ))dτ +

1

Γ(α)

∫ t

0

(t− s)α−1f(s, x(s))ds

≤ Λtγ−1 +
λtγ−1

Γ(γ)µ

∫ 1

0

Q(τ)

Γ(α)
G(τ, x(τ))dτ +

1

Γ(α)

∫ t

0

(t− s)α−1G(s, x(s))ds

≤ Λtγ−1 +
λtγ−1

Γ(γ)µ

∫ 1

0

Q(τ)

Γ(α)
G(τ, y(τ))dτ +

1

Γ(α)

∫ t

0

(t− s)α−1G(s, y(s))ds

≤ y(t). (3.11)

Also

∆x(t) = Λtγ−1 +
λtγ−1

Γ(γ)µ

∫ 1

0

Q(τ)

Γ(α)
f(τ, y(τ))dτ +

1

Γ(α)

∫ t

0

(t− s)α−1f(s, y(s))ds

≥ Λtγ−1 +
λtγ−1

Γ(γ)µ

∫ 1

0

Q(τ)

Γ(α)
g(τ, x(τ))dτ +

1

Γ(α)

∫ t

0

(t− s)α−1g(s, x(s))ds

≥ Λtγ−1 +
λtγ−1

Γ(γ)µ

∫ 1

0

Q(τ)

Γ(α)
g(τ, y(τ))dτ +

1

Γ(α)

∫ t

0

(t− s)α−1g(s, y(s))ds

≥ y(t). (3.12)

From (3.11) and (3.12), we conclude that y(t) ≤ ∆x(t) ≤ y(t), and hence ∆x(t) ∈ Υ,
for 0 < t ≤ 1 i. e. ∆ : Υ −→ Υ.
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In view of the above steps and Schauder fixed point theorem, the problem (1.1)-(1.2)
has at least one positive solution y(t) ∈ Υ . �

Corollary 3.7. Assume that f : (0, 1]× [0,∞) −→ [0,∞) is continuous, and there exist
A1, A2 > 0 such that

A1 ≤ f(t, y) ≤ A2, (t, y) ∈ (0, 1]× R+. (3.13)

Then the Hilfer problem (1.1)-(1.2) has at least one positive solution y(t) ∈ Υ.
Moreover,

d

Γ(γ)
tγ−1 +

A1

Γ(α+ 1)
tα ≤ y(t) ≤ d

Γ(γ)
tγ−1 +

A2

Γ(α+ 1)
tα. (3.14)

Proof. From the Definition 3.4 and equation (3.13), we have

A1 ≤ g(t, y) ≤ G(t, y) ≤ A2. (3.15)

Now, we consider the following Hilfer problem

Dα,β
0+ y(t) = A2, I1−γ

0+ y(0) = d. (3.16)

Then, the Hilfer problem (3.16) has a positive solution

y(t) =
tγ−1

Γ(γ)
I1−γ
0+ y(0) + Iα0+A2

=
d

Γ(γ)
tγ−1 +

A2

Γ(α)

∫ t

0

(t− s)α−1ds

=
d

Γ(γ)
tγ−1 +

A2

Γ(α+ 1)
tα.

By (3.15) we conclude that

y(t) =
d

Γ(γ)
tγ−1 +

A2

Γ(α)

∫ t

0

(t− s)α−1ds ≥ d

Γ(γ)
tγ−1 +

1

Γ(α)

∫ t

0

(t− s)α−1G(s, y)ds.

Thus, the function y(t) is the upper solution of the Hilfer problem (1.1)-(1.2).
In the similar way, if the Hilfer problem of the type

Dα,β
0+ y(t) = A1, I1−γ

0+ y(0) = d. (3.17)

Obviously, the Hilfer problem (3.17) has also a positive solution

y(t) =
tγ−1

Γ(γ)
I1−γ
0+ y(0) + Iα0+A1

=
d

Γ(γ)
tγ−1 +

A1

Γ(α)

∫ t

0

(t− s)α−1ds

=
d

Γ(γ)
tγ−1 +

A1

Γ(α+ 1)
tα.

Similarly, by (3.15) we infer that

y(t) =
d

Γ(γ)
tγ−1 +

A1

Γ(α)

∫ t

0

(t− s)α−1ds ≤ d

Γ(γ)
tγ−1 +

1

Γ(α)

∫ t

0

(t− s)α−1g(s, y)ds.
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Hence, the function y(t) is the lower solution of the Hilfer problem (1.1)-(1.2).
By Theorem (3.6), we deduce that the problem (1.1)-(1.2) has at least one positive
solution y(t) ∈ Ω, which verifies the inequality (3.14). �

4. Uniqueness of positive solution

In this section, we will demonstrate the uniqueness of the positive solution using
the Banach contraction principle.

Theorem 4.1. Assume that f : (0, 1] × [0,∞) −→ [0,∞) is continuous, the condition
(H2) and the inequality (3.1) hold. If(

λe

Γ(γ)µ
+

1

Γ(α+ 1)

)
Lf < 1. (4.1)

Then the problem (1.1)-(1.2) has a unique positive solution in Υ.

Proof. According to Theorem (3.6), the problem (1.1)-(1.2) has at least one positive
solution in Υ as the form

y(t) −→ ∆y(t) = Λtγ−1 +
λtγ−1

Γ(γ)µ

∫ 1

0

Q(τ)

Γ(α)
f(τ, y(τ))dτ

+
1

Γ(α)

∫ t

0

(t− s)α−1f(s, y(s))ds.

Now, we need only to proof that the operator ∆ is contraction mapping on Υ. Indeed,
for any y1, y2 ∈ Υ and t ∈ (0, 1], we have∣∣t1−γ∆y1(t)− t1−γ∆y2(t)

∣∣
≤ λ

Γ(γ)µ

∫ 1

0

Q(τ)

Γ(α)
|f(τ, y1(τ))− f(τ, y2(τ)| dτ

+
t1−γ

Γ(α)

∫ t

0

(t− s)α−1 |f(s, y1(s))− f(s, y2(s))| ds

≤ λe

Γ(γ)µ

∫ 1

0

|f(τ, y1(τ))− f(τ, y2(τ)| dτ

+
t1−γ

Γ(α)

∫ t

0

(t− s)α−1 |f(s, y1(s))− f(s, y2(s))| ds

≤ λe

Γ(γ)µ

∫ 1

0

Lf ‖y1 − y2‖C1−γ
dτ +

t1−γ

Γ(α)

∫ t

0

(t− s)α−1Lf ‖y1 − y2‖C1−γ
ds

≤ λeLf
Γ(γ)µ

‖y1 − y2‖C1−γ
+

t1−γ+α

Γ(α+ 1)
Lf ‖y1 − y2‖C1−γ

≤
(

λe

Γ(γ)µ
+

1

Γ(α+ 1)

)
Lf ‖y1 − y2‖C1−γ

The hypothesis (4.1) shows that ∆ is a contraction mapping. The conclusion from the
Banach contraction principle that the Hilfer problem (1.1)-(1.2) has a unique positive
solution u(t) ∈ C1−γ [0, 1] . �
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5. An example

In this part, we present an example to illustrate our result.

Example 5.1. Consider the following nonlinear Hilfer fractional problem

D
1
2 ,

1
3

0+ y(t) =
3

5

(
t
1
2 |sin y(t)|+ 1

)
, t ∈ (0, 1] (5.1)

I
2
3

0+y(0) = 1

where α = 1
2 , β = 1

3 , γ = 2
3 , λ = 0, d = 1 and f(t, y(t)) = 3

5

(
t
1
2 |sin y(t)|+ 1

)
.

It is easy to see that

t
1
3 f(t, y(t)) =

3

5

(
t
5
6 |sin y(t)|+ t

1
3

)
∈ C[0, 1].

Hence f(t, y(t)) ∈ C 1
3
[0, 1], which means that f satisfies (H1). Next, we show that f

satisfies (H2). In fact, for any y1, y2 ∈ C 1
3
[0, 1] and t ∈ (0, 1], we have

|f(t, y1(t))− f(t, y2(t))| ≤
∣∣∣∣35 t 1

2 sin y1(t)− 3

5
t
1
2 sin y2(t)

∣∣∣∣
≤ 3

5
t
1
6

∣∣∣t 1
3 sin y1(t)− t 1

3 sin y2(t)
∣∣∣

≤ 3

5
‖y1 − y2‖C 1

3

= Lf ‖y1 − y2‖C 1
3

.

Since f is continuous and

3

5
≤ f(t, y) ≤ 6

5
, (t, y) ∈ (0, 1]× R+.

Then the Hilfer problem (5.1) has a positive solution which verifies y(t) ≤ y(t) ≤ y(t)
where

y(t) =
1

Γ( 2
3 )
t
−1
3 +

6

5Γ( 3
2 )
t
1
2 ,

and

y(t) =
1

Γ( 2
3 )
t
−1
3 +

3

5Γ( 3
2 )
t
1
2 .

are respectively the upper and lower solutions of Hilfer problem (5.1). Furthermore,
by simple computations, the condition (4.1) also is satisfied, i.e.(

λe

Γ(γ)µ
+

1

Γ(α+ 1)

)
Lf =

1

Γ( 3
2 )

3

5
' 0.7 < 1.

Thus, since all the hypotheses in Theorems 3.6, 4.1 are fulfilled, our results can be
applied to the Hilfer problem.
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6. Conclusion

This paper studies the existence and uniqueness of positive solution of the non-
linear fractional differential equation with integral boundary condition and Hilfer
fractional derivative operator. The proof of the main results relies on the Schauder
fixed point theorem, Banach contraction mapping principle and technique of upper
and lower solution.

The method of constructing a pair of upper and lower control functions with
respect to the nonlinear term without monotone demand provides a new efficient
technique to handle the nonlinear structure. This method is a tremendous tool for
solving nonlinear differential equations in applied mathematics. The obtained results
extend some known results in the literature. An example is introduced to illustrate
the main results of this paper.
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