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On Hadamard-type inequalities for m-convex
functions via Riemann-Liouville fractional
integrals
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Abstract. In this paper we prove the Hadamard-type inequalities for m-convex
functions via Riemann-Liouville fractional integrals and the Hadamard-type in-
equalities for convex functions via Riemann-Liouville fractional integral are de-
duced. Also we find connections with some well known results related to the
Hadamard inequality.
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1. Introduction

Following L’Hospital’s and Leibniz’s first inquiries, fractional calculus was pri-
marily a study reserved for the best minds in mathematics. Fourier, Euler, Laplace
were among those who were interested in fractional calculus and its mathematical con-
sequences [15]. Euler and Liouville developed their thoughts about the computation
of non-integer order integrals and derivatives. Many initiate, using their own notation
and methodology, definitions that fit the concept of a non-integer order integral or
derivative. The most well-known of these definitions that have been popularized in the
subject of fractional calculus are the Riemann-Liouville and the Grunwald-Letnikov
definition [4, 12]. In [18] Riemann-Liouville fractional integrals are defined as follows:

Definition 1.1. Let f € Lq[a,b]. Then Riemann-Liouville fractional integrals of order
a > 0 with a > 0 are defined as:

o f(z) = ﬁ / (@ =) f(B)dt, @>a (1.1)
and X .
T f(z) = @/ (t—2)* Lf()dt, @ <b. (1.2)
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For further details one may see [15, 16, 17, 9, 8, 13, 19].
Convex functions play a vital role in the mathematical analysis. They have been
considered for defining and finding new dimensions of analysis. In [20] Toader define
the concept of m-convexity, an intermediate between usual convexity and star shape
function.

Definition 1.2. A function f : [0,b] — R, b > 0, is said to be m-convex, where
m € [0,1], if we have

[t +m(l—t)y) <tf(x) +m(l—1)f(y)
for all z,y € [0,b] and ¢ € [0,1].
If we take m = 1, then we recapture the concept of convex functions defined on

[0,0] and if we take m = 0, then we get the concept of starshaped functions on [0, b].
We recall that f : [0,b] — R is called starshaped if

f(tx) <tf(z) for all ¢ € [0,1] and = € [0, b].

Denote by K, (b) the set of the m-convex functions on [0, b] for which f(0) < 0, then
one has

K1(b) € Kpm(b) C Ko(b),
whenever m € (0,1). Note that in the class K (b) are only convex functions f : [0, 5] —
R for which f(0) <0 (see [5]).

Example 1.3. [14] The function f : [0,00) — R, given by

f(x)ZE(
16

is 1> —convex function but it is not convex function.

4z® — 152% + 18z — 5)

For more results and inequalities related to m-convex functions one can consult
for example [7, 5, 11, 2, 16] along with references.
Let f : I — R be a convex function on the interval I of real numbers and a,b € I
with a < b, then the following double inequality:

1(550) = s [ o OO -

is well known in literature as the Hadamard inequality.

For more refinements, generalizations and inequalities related to (1.3), see [1, 2,
3, 16, 6].

In [19], Sarikaya et al. proved the following Hadamard-type inequalities for
Riemann-Liouville fractional integrals.

Theorem 1.4. Let f : [a,b] — R be a positive function with0 < a < b and f € Li[a,b].
If f is a convex function on [a,b], then the following inequalities for fractional integrals

hold:

b (x—ll'\
/ (a; ) <* (b —(Z)—: s Tagey F(0) "‘J(aa%b)_f(a)] <

with o > 0.

GRS O
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Theorem 1.5. Let f : [a,b] — R be a differentiable function on (a,b) with a < b. If
|f|2 is convex on [a,b] for ¢ > 1, then the following inequality for fractional integrals
holds:

2970 (a + 1)

et ey 10+ T, sl 1 (45|

—_ ! % T4+ (o '(B)|9) @ (1.5)
< 1o (sg ) @ 7@+ @3N

(@ + 3 @]+ (@ + DI G))1].

Theorem 1.6. Let f : [a,b] — R be a differentiable function on (a,b) with a < b. If
|f|2 is convez on [a,b] for ¢ > 1, then the following inequality for fractional integral
holds:

204711'\( )

(

2

' l( qz3|f()lq>q+(3f’(a)|":f’(b)q)ﬂ L)

) o)+ 17 O],

Upsgey S0+ Ty = 1 (457

/\

where

In this paper we generalize the fractional Hadamard-type inequalities (1.4), (1.5)
and (1.6) for m-convex function via Riemann-Liouville fractional integrals and show
that these inequalities are the special cases of our results. Also we find some well
known results.

2. Hadamard-type inequalities for m-convex functions via fractional
integrals

Start with the following result.

Theorem 2.1. Let f : [a,b] = R be a positive function with 0 < a < b and f € Ly[a,b].
If f is a m-convex function on [a,b], then the following inequalities for fractional
integrals hold:

f <a+mb) < 209710 (a0 + 1)

2 (mb—a)® {J(OL%M)JFf(mb) +m Oé—~_1r]((z-¢—rrzz)) f( )} (2.1)

STarn O () + 3 o ems (5]

with o > 0.

Proof. From m-convexity of f we have,

() < St
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Put z = fa + m(zgt)b,y = %a + £b for t € [0,1]. Then z,y € [a,b] and above
inequality gives,

2f<a+mb> <f<;a+m22_tb>+ f< ta+ b) (2.3)

multiplying both sides of above inequality with t*~1 and integrating over [0,1] we
have,
a+mb
(%)

t 2t ! 2t t
< tafl = Z_p)dt et ~b |dt

A ot 2d
:/ (mb—a(mb_u)) f(u)a—z:nb
g a1 oy
tm / < 511}5@)) f(v)mbi)a
2°T () o o
- m{ Cusgny  f )+ f (1))

from which one has

() = E e g S e g, (5)] 20

On the other hand m-convexity of f gives
2—1t t
b
om 5 )

t 2—t
f (2a+mb) +mf (
<3 1@ —m2r (Z5)] +m 50 + s ()]

z m mf ([ —

— 2 m2 )
multiplying both sides of above inequality with t*~!, and integrating over [0,1] we

have,
2 ! 2t t
/t“ 1f( a+mb)dt+m/ t“1f< a+b)dt

< L@ —ms ()] [ easm 50 +ms ()] [ eta

A a1 2du
h—
/mb <mb — a(m u)) fu) a —mb
a+mb a—1
2m 2 a 2dv
2 —_ —
m o <b;2(v m)) f(v)mbfa
1
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from which one has

20711 1
o [ ) £ g £ ()] 29
a
s AR ) [f<b>+mf(m>] -
Combining inequality (2.4) and inequality (2.5) we get inequality (2.1) . O

Remark 2.2. If we take m = 1, Theorem 2.1 gives inequality (1.4) of Theorem 1.4
and putting @ = 1 along with m = 1 in Theorem 2.1 we get the classical Hadamard
inequality.

For next results we need the following lemma.

Lemma 2.3. Let f : [a,b] — R be a differentiable mapping on (a,b) with a < b. If
f e Lla,b], then the following equality for fractional integrals holds:

W{ (a%”be(mb)*maHJ agmby f( )}

D) 52

mb—a [ (' . [t 2t o2t
= [/0 t*f (2a+m2b>dt—/0 t*f 2ma+§b dt| .

Proof. One can note that

mb—a 1 t 2—1t
tf = ~—b)dt
e[ e (o misie) ]

mb—a 2 a+ mb
T {mb—af< 2 ) 27)

a+mb

mb—a[ 2 f a+mb +QO‘HI‘(Oz—ﬁ—l)
4 (mb — a)ott

it f(mb)] . (28)

mb—a

Similarly

e (e )

_ _mb—a { 2m F <a+mb) | 20HmatID(a + 1) o S (a>] . (29)

4 mb—a 2m (mb — a)ot! m

Adding (2.7) and (2.9) one has (2.6). O

Using the above lemma we give the following Hadamard-type inequality.
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Theorem 2.4. Let f : [a,b] — R be a differentiable function on (a,b) with a < b.
If |f'19 is m-convex on [a,b] for ¢ > 1, then the following inequality for fractional
integrals holds:

m[ sy Fmb) + T (=]

(2.10)

Q=

Q=

+(mla+3)1f (S5) 1"+ @+ 1) 1FG)) "]

with o > 0.

1 a+mb a+mb
Sl (5 )Wf( )|
b
(5 ) (et DIF @I +m @+ 3) 7O
)
Proof. From Lemma 2.3 and m-convexity of |f’|? and for ¢ = 1 we have
20710 (a + 1)
1 a+mb a+mb
S () ()|
1
mb4_ a/o e ( 1 <ta+m22_tb>’dt+ f! (22;;5a+ ;b>’) dt.
b
et (s e ()]
+ [IF @ =mlf (=) 1+17®)] = mlf @]
22"+ 1) [ 4 at1 ja
g [Tty FOn0) £ g 1 ()]
1 1
gmb4_a/o | f! (;a+m22_tb>‘dt+/o e f’<22m a+ b)‘dt.
Using power mean inequality we get
(mb — a) m
1 [ (a+mb> N f(a—i—mb)”
2 2m

- 4 (a+1)
@ a+1
(mb — a)> [ (7a+2mb)+f(mb)+m J‘”mb) f( )}
2
For ¢ > 1 we proceed as follows. Using Lemma 2.3 we have
1 a+ mb a+ mb
() e (5]
22-10(a+1) [, - a
ey |y S+ S ()]
b 1Nz 1 t 2t
mb—a —
< tOt ! - 7b
< (o) U el Geert)

bl

a 73
dt]
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1 q :
a | gl 2—t E ¢
+{/0t f<2ma+2b dt .
m-convexity of |f’|? gives
22-1T(a+1) [, i a
(mb—a)a [Tty Fmb) +m e f ()]
1 a+ mb a+mb
Sl () e (5]
mb—a 1 » ! t 2—t .
< . « - / q 4 Y q
<t () H/ t <2f(a)| s o) dl
1 . ;
e o]

mb—a

T 4(a+1) ( a—|—2) ((a+ DI @)+ m(a+3)[f' (1))
+(mla+3)f (5) 1"+ (@+1) 17 B)7) ]

Hence the proof is complete. O

Q=

Q=

Remark 2.5. If we take m = 1 in Theorem 2.4, we get inequality (1.5) of Theorem
1.5 and if we take o = ¢ = 1 along with m = 1 in Theorem 2.4, then inequality (2.10)
gives the following result.

Corollary 2.6. With the assumptions of Theorem 2.4 we have

b_la/abf(x)dw—f<a;b> (b—a)

< 5 U@+ 17O (2.11)
Theorem 2.7. Let f : [a,b] — R be a differentiable function on (a,b) with a < b.
If |f'19 is m-convex on [a,b] for g > 1, then the following inequality for fractional
integral holds:

20T (a + 1)
(mb —a)®

)
(L [( |"+3m|f()|>3+<3mf’(“)4!q+f())‘11]

gmb4‘“(ap+1)[ Dl +170)] +3m (1 () 1+ 170))]

: 1 1 _

[ Fmb) +m oy f ()]

2m m

IN

(2.12)
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Proof. Using Lemma 2.3 we have

EO D) [ )+ g, 5 ()]

1 a+ mb a+ mb
S () e (5]
mb—a [ [! t 2t ! 2t t
< alf = - U =—a+ = .
S [/Ot f<2a+m 5 b)’dt+/()t f(zma+2b>‘dt}
From the Holder's inequality we get
2a—11"(a+1) o a+1l Ja a
T ay [Py SO0+ ey ()]
1 a+ mb a+ mb
() (550
1 t 2t
ap [N e
[ t dt] [0 f<2a+m . b>
a 77
{ to‘pdt} [ ( LI b> dt} ]
2m

m-convexity of |f’|? gives

27100 + 1) [, -

o —agn |Gty D) 4 Sy ()]

1 a+ mb a+ mb

() e (550)]

2m

cmoa( L 1)’1’ H/ (s1r@r+m® 5 ir o) dtr'
[ (3G o) dtﬂ

_mb-a (1)é [[lf’(a)lq+3m|f’(b)lqr+ l3m|f’( ) 114 101 H .

mb—a

a 73
dt]

4 ap+1 4 4

For the second inequality of (2.12) we use Minkowski’s inequality as

T sy S0 40 e, 1 ()]

a+mb a+mb
() e (5]
mb—a 4

1
3
<5 (ap+1>p[[|f/(a)q+3m|f/(b)|q]}z [smif (2 )Iq+|f<>|}3]
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<t (L 1); (7@l + 17 @)+ 3m (1 () 1+ 1F@)]. O

Remark 2.8. If we take m = 1 in Theorem 2.7, we get inequality (1.6) of Theorem 1.6
and if we take a = 1 along with m = 1 in Theorem 2.7, then inequality (2.12) gives
the following result.

Corollary 2.9. With the assumptions of Theorem 2.7 we have
1 b a+b
= [ - (45

b 1

o (51) [0r@irssirem? + elr@e + 1o

(2.13)

Q=

<
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