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Coplexes in abelian categories

Flaviu Pop

Abstract. Starting with a pair F : A � B : G of additive contravariant functors
which are adjoint on the right, between abelian categories, and with a class U ,
we define the notion of (F,U)-coplex. Considering a reflexive object U of A with
F(U) = V projective object in B, we construct a natural duality between the
category of all (F, add(U))-coplexes in A and the subcategory of B consisting in
all objects in B which admit a projective resolution with all terms in the class
add(V ).
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1. Introduction

The study of dualities between subcategories of the module categories, induced
by Hom contravariant functors associated to a given bimodule, is very important in
the Module Theory in order to compare some special classes of modules. Also, is very
useful to generalize such dualities, between module categories, to dualities induced
by a pair of adjoint functors between abelian (or, Grothendieck) categories, because
they could be applied to different pairs of adjoint functors. In [7], Castaño-Iglesias
generalized the notion of costar module, introduced by Colby and Fuller in [8], to
the notion of costar object in Grothedieck categories. In [5], the authors extends the
notion of f -cotilting module (see, for example, [16]) to the notion of f -cotilting pair
of contravariant functors. In [14], it is constructed a natural duality, induced by a
pair of adjoint contravariant functors between abelian categories and, applying this
result to some special classes of objects, the author generalizes some of the results
related to the notion of finitistic n-self cotilting module, introduced by Breaz in [4].
A particular case of finitistic n-self cotilting module is also generalized in [6]. Starting
with a pair of adjoint covariant functors F : A� B : G, between abelian categories, in
[15] it is studied, inspired by some of the results obtained by Fuller in [12] on module
categories, some closure properties of some full subcategories C and D such that the
restrictions F : C � D : G induce an equivalence. In [1] and [2], it is generalized
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the concepts of r-costar module and Co-?n-module to the concepts of r-costar pair
and Co-?n-tuple of contravariant functors between abelian categories. Moreover, in
[3], the author generalizes ?s-modules and ?n-modules to ?s-tuples and ?n-tuples of
covariant functors between abelian categories.

In this paper, we extend the notion of G-coplex, introduced by Faticoni in [10]
(see also [11, Chapter 9]) in module categories, to the notion of (F,U)-coplex in
arbitrary abelian categories. More exactly, starting with a pair F : A � B : G of
additive contravariant functors, between two arbitrary abelian categories, which are
adjoint on the right and with a class U of objects in A, we define the notion of (F,U)-
coplex, associated to this pair of functors and to the considered class. Then, setting
the class U to be the class add(U), i.e. the class of all direct summands of finite direct
sums of copies of U , for some reflexive object U of A with F(U) = V being projective
object in B, we construct a natural duality between the category of all (F, add(U))-
coplexes in A and the subcategory of B consisting in all objects in B which admit a
projective resolution with all terms in the class add(V ).

2. Preliminaries

Throughout this paper, we consider a pair F : A� B : G of additive contravari-
ant functors, between two abelian categories, which are adjoint on the right with the
natural transformations of right adjunction δ : 1A → GF and ζ : 1B → FG. We note
that the natural transformations of right adjunction, δ and ζ, satisfy the identities
F(δX) ◦ ζF(X) = 1F(X) and G(ζY ) ◦ δG(Y ) = 1G(Y ) for all X ∈ A and for all Y ∈ B.
Moreover, we mention that the functors F and G are left exact.

The classical example of such a pair of functors is the following (see, for example,
[9, Chapter 4]).

Example 2.1. Let R and S be two unital associative rings and let U be an (S,R)-
bimodule. If we denote by Mod-R (respectively, by S-Mod) the category of all right R-
(respectively, left S-) modules, then the pair of Hom contravariant functors induced
by U ,

∆ = HomR(−, U) : Mod-R� S-Mod : HomS(−, U) = ∆′,

is a pair of right adjoint contravariant functors via the adjunction

µXY : HomR(X,HomS(Y,U))→ HomS(Y,HomR(X,U))

with

µXY (f)(y) : x 7→ f(x)(y)

whereX ∈ Mod-R, Y ∈ S-Mod, x ∈ X, y ∈ Y, f ∈ HomR(X,HomS(Y, U)). Associated
to this adjunction, the natural transformations δ and ζ are in fact the evaluation maps

δX : X → HomS(HomR(X,U), U); δX(x) : f 7→ f(x)

and

ζY : Y → HomR(HomS(Y, U), U); ζY (y) : g 7→ g(y),

where X ∈ Mod-R, Y ∈ S-Mod, x ∈ X, y ∈ Y, f ∈ HomR(X,U), g ∈ HomS(Y,U). �
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Castaño-Iglesias, in [7], gives an example of a pair of right adjoint contravariant
functors between the categories of all G-graded unital right R-modules and of all
G-graded unital left S-modules, where G is a group and R and S are two G-graded
unital rings (see also [13]). Other examples of such pairs of functors could be found
in [14].

An object X in A (respectively, in B) is called δ-faithful (respectively, ζ-faithful)
if δX (respectively, ζX) is a monomorphism and we will denote by Faithδ (respectively,
by Faithζ) the class of all δ-faithful (respectively, ζ-faithful) objects. An object X in
A (respectively, in B) is called δ-reflexive (respectively, ζ-reflexive) if δX (respectively,
ζX) is an isomorphism and we will denote by Reflδ (respectively, by Reflζ) the class
of all δ-reflexive (respectively, ζ-reflexive) objects.

We have the following basic results related to the closure properties of the classes
of all faithful objects (see [5] for the proof).

Lemma 2.2. The following statements hold:

(a) F(A) ⊆ Faithζ and G(B) ⊆ Faithδ;
(b) The classes Faithδ and Faithζ are closed with respect to subobjects.

Recall that, for a given object X, add(X) denotes the class of all direct sum-
mands of finite direct sums of copies of X. The following basic results are often used
in this paper.

Lemma 2.3. Let U be a δ-reflexive object with F(U) = V . Then:

(a) V is ζ-reflexive;
(b) add(U) ⊆ Reflδ and add(V ) ⊆ Reflζ ;
(c) F(add(U)) = add(V ) and G(add(V )) = add(U).

We recall that, a complex (C, d) in A is a sequence of objects and morphisms in A

C : . . .
dn−1−→ Cn−1

dn−→ Cn
dn+1−→ Cn+1

dn+2−→ . . .

such that dn+1dn = 0, for all n ∈ Z. The morphisms dn are called differenti-
ations. We will shorten the notation (C, d) to C. We mention that the equation
dn+1dn = 0 is equivalent to Im(dn) ⊆ Ker(dn+1). Moreover, the complex C is said to
be bounded below (respectively, bounded above), if Cn = 0, for all n < 0 (respec-
tively, for all n > 0). If C and C′ are two complexes in A, a sequence of morphisms
f = (. . . , fn−1, fn, fn+1, . . . ), where fn ∈ HomA(Cn, C

′
n), is called chain map between

complexes C and C′ if the following diagram is commutative

C : . . .
dn−1 // Cn−1

dn //

fn−1

��

Cn
dn+1 //

fn

��

Cn+1

dn+2 //

fn+1

��

. . .

C′ : . . .
d′n−1 // C ′n−1

d′n // C ′n
d′n+1 // C ′n+1

d′n+2 // . . .

i.e. fndn = d′nfn−1
, for all integers n ∈ Z. By CompA will be denoted the category of

all complexes in A, defined as follows: the class of objects consist in the class of all
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complexes in A and the set of morphisms between two complexes C and C′ consist in
the set of all chain maps between C and C′.

If f = (. . . , fn−1, fn, fn+1, . . . ) : C → C′ is a chain map between complexes C and
C′, then we say that f is null homotopic (or, f is homotopic to zero) if there are, for all
integers n ∈ Z, the morphisms sn : Cn → C ′n−1 in A such that fn = sn+1dn+1 +d′nsn,
for all integers n ∈ Z. The sequence s = (. . . , sn−1, sn, sn+1, . . . ) is called a homotopy
of f (or, a homotopy between f and 0). The morphisms are illustrated in the following
diagram

C : . . .
dn−1 // Cn−1

dn //

fn−1

��

sn−1

{

Cn
dn+1 //

fn

��

sn

}

Cn+1

dn+2 //

fn+1

��

sn+1

}

. . .

sn+2

}
C′ : . . .

d′n−1 // C ′n−1
d′n // C ′n

d′n+1 // C ′n+1

d′n+2 // . . .

The condition for s to be a homotopy of f says that each vertical morphism is the sum
of the sides of the parallelogram containing it. If f = (. . . , fn−1, fn, fn+1, . . . ) : C → C′
and g = (. . . , gn−1, gn, gn+1, . . . ) : C → C′ are two chain maps, then we say that f
and g are homotopic (or, f is homotopic to g), written f ' g, if

f − g = (. . . , fn−1 − gn−1, fn − gn, fn+1 − gn+1, . . . ) : C → C′

is a null homotopic chain map. A homotopy between f − g and 0 is also called a
homotopy between f and g. The homotopic relation ” ' ” is an equivalence relation
on the set of chain maps f : C → C′. We denote by [f ] the homotopy (equivalence)
class of f .

For a complex C ∈ CompA and for some integer n ∈ Z, we denote by Hn(C) the
n-th homology of C, i.e. Hn(C) = Ker(dn+1)/Im(dn).

Definition 2.4. Let U be a class of objects in A. A bounded below complex C in
CompA

C : C0
σ1−→ C1

σ2−→ C2
σ3−→ . . .

is called (F,U)-coplex if the following conditions are satisfied:

(1) Ck ∈ U , for all k ≥ 0;
(2) The induced complex

F(C) : . . .
F(σ3)−→ F(C2)

F(σ2)−→ F(C1)
F(σ1)−→ F(C0)

is an exact sequence in B.

Now, for a class U of objects in A, we define the category of all (F,U)-coplexes,
denoted by (F,U)-coplex, as follows:

(A) the class of objects consists in the class of all (F,U)-coplexes C;
(B) the set of morphisms between two (F,U)-coplexes C and C′, consists in the set

of all homotopy classes of chain maps f : C → C′.
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For the rest of the paper, we set a δ-reflexive object U in A such that V = F(U)
is a projective object in B. Moreover, we suppose that all considered subcategories of
A and B are isomorphically closed.

Let Y and B be two objects in B and let n be a positive integer. A projective
resolution · · · → P1 → P0 → Y → 0 of Y is called finitely-B-generated if Pi ∈ add(B)
for all i ≥ 0. We will denote by gen•(B) the class of all objects X ∈ B such that
there exists a finitely-B-generated projective resolution of X. A projective resolution
· · · → Pn+1 → Pn → Pn−1 → · · · → P1 → P0 → Y → 0 of Y is called n-finitely-B-
generated if Pi ∈ add(B) for all i = 0, n. We will denote by n-gen•(B) the class of all
objects X ∈ B for which there exists an n-finitely-B-generated projective resolution
of X.

Lemma 2.5. Let C : C0
σ1−→ C1

σ2−→ C2
σ3−→ . . . be a complex in CompA, with Ck ∈

add(U), for all k ≥ 0. Then C is an (F, add(U))-coplex if and only if F(C) is a
finitely-V -generated projective resolution of H0(F(C)).
Proof. Suppose that C is an (F, add(U))-coplex. Then, by definition, the induced
sequence

F(C) : . . .
F(σ3)−→ F(C2)

F(σ2)−→ F(C1)
F(σ1)−→ F(C0)

ε0−→ Coker(F(σ1))→ 0

is an exact sequence in B. Since all Ck ∈ add(U), we have, by Lemma 2.3, that
all F(Ck) ∈ add(V ). We also have that all F(Ck) are projective in B, because V
is projective in B. Therefore F(C) is a finitely-V -generated projective resolution of
Coker(F(σ1)).

Conversely, if the induced sequence F(C) is a finitely-V -generated projective
resolution of Coker(F(σ1)), then F(C) is an exact sequence in B. From hypothesis,
Ck ∈ add(U), for all k ≥ 0. It follows that C is an (F, add(U))-coplex. �

It is well known that, if f, g : C → C′ are two homotopic chain maps between
complexes C and C′, then H0(F(f)) = H0(F(g)). Therefore, the functor FU from the
following definition is well-defined.

Definition 2.6. The contravariant functor FU : (F, add(U))-coplex → gen•(V ) is de-
fined as follows:

(A) On objects, we set FU (C) = H0(F(C)), for each C ∈ (F, add(U))-coplex.
(B) On morphisms, we take FU ([f ]) = H0(F(f)), for each morphism [f ] : C → C′ of

(F, add(U))-coplexes.

Definition 2.7. The contravariant functor GU : gen•(V ) → (F, add(U))-coplex is de-
fined as follows:

(A) On objects. Let Y ∈ gen•(V ). Then Y has a finitely-V -generated projective
resolution

P(Y ) : . . .
∂3−→ P2

∂2−→ P1
∂1−→ P0

∂0−→ Y → 0.

We mention that the chosen projective resolution P(Y ) is unique up to a homotopy.
Applying the functor G to the projective resolution P(Y ), we obtain the following
complex in A

G(P(Y )) : G(P0)
G(∂1)−→ G(P1)

G(∂2)−→ G(P2)
G(∂3)−→ . . .
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Since P(Y ) is finitely-V -generated, we have Pk ∈ add(V ), for all k ≥ 0, and, since
ζ : 1add(V ) → FG is a natural isomorphism, the following diagram is commutative
with the vertical maps isomorphisms

. . .
∂3 // P2

∂2 //

ζP2

��

P1
∂1 //

ζP1

��

P0

ζP0

��
. . .

FG(∂3) // FG(P2)
FG(∂2) // FG(P1)

FG(∂1) // FG(P0)

Since the top row is an exact sequence, it follows that the bottom row is an exact
sequence. By Lemma 2.3, G(Pk) ∈ add(U), for all k ≥ 0. Thus G(P(Y )) is a complex
in A with all G(Pk) ∈ add(U) and the induced sequence FG(P(Y )) is an exact
sequence. Therefore G(P(Y )) is an (F, add(U))-coplex. We set

GU (Y ) = G(P(Y )).

(B) On morphisms. Let φ ∈ Homgen•(V )(Y, Y
′). Then φ lifts to a chain map

f = (. . . , f2, f1, f0) : P(Y )→ P(Y ′)

where P(Y ) and P(Y ′) are finitely-V -generated projective resolutions associated to
Y and Y ′, respectively.

. . .
∂3 // P2

∂2 //

f2

�

P1
∂1 //

f1

�

P0
∂0 //

f0

�

Y //

φ

��

0

. . .
∂′3 // P ′2

∂′2 // P ′1
∂′1 // P ′0

∂′0 // Y ′ // 0

Applying the functor G, we get a chain map in A,

G(f) = (G(f0),G(f1),G(f2), . . . ) : G(P(Y ′))→ G(P(Y ))

illustrated in the following diagram

G(P ′0)
G(∂′1) //

G(f0)

��

G(P ′1)
G(∂′2) //

G(f1)

��

G(P ′2)
G(∂′3) //

G(f2)

��

. . .

G(P0)
G(∂1) // G(P1)

G(∂2) // G(P2)
G(∂3) // . . .

Since G(P(Y )) and G(P(Y ′)) are (F, add(U))-coplexes, it follows that the homotopy
class [G(f)] is a morphism in the category (F, add(U))-coplex. We set

GU (φ) = [G(f)].
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3. Main result

The main result of the paper is the following theorem.

Theorem 3.1. The functors FU and GU induce the following duality

FU : (F, add(U))-coplex � gen•(V ) : GU

Proof. First, we show that the composition FU ◦ GU is natural isomorphic to the
identity functor 1gen•(V ).

Let Y ∈ gen•(V ). Then Y has a finitely-V -generated projective resolution

P(Y ) : . . .
∂3−→ P2

∂2−→ P1
∂1−→ P0

∂0−→ Y → 0.

Applying the functor G, we obtain the following (F, add(U))-coplex

G(P(Y )) : G(P0)
G(∂1)−→ G(P1)

G(∂2)−→ G(P2)
G(∂3)−→ . . .

and then GU (Y ) = G(P(Y )). Applying the functor F, we have the exact sequence

FG(P(Y )) : . . .
FG(∂3)−→ FG(P2)

FG(∂2)−→ FG(P1)
FG(∂1)−→ FG(P0)

ε0−→ Coker(FG(∂1))→ 0

and then FU (G(P(Y ))) = Coker(FG(∂1)). Thus (FU ◦GU )(Y ) = Coker(FG(∂1)).

Since all Pk ∈ add(V ) and since ζ : 1add(V ) → FG is a natural isomorphism, the
following diagram is commutative with the vertical maps isomorphisms.

. . .
∂3 // P2

∂2 //

ζP2

��

P1
∂1 //

ζP1

��

P0

ζP0

��

∂0 // Y //

βY

��

0

. . .
FG(∂3)// FG(P2)

FG(∂2) // FG(P1)
FG(∂1) // FG(P0)

ε0 // Coker(FG(∂1)) //

γY

UU

0

Since (ε0 ◦ ζP0
) ◦ ∂1 = 0 and Y is the cokernel of ∂1, there is a unique morphism

βY : Y → Coker(FG(∂1)) such that ε0◦ζP0
= βY ◦∂0. Also, since (∂0◦ζ−1P0

)◦FG(∂1) =

0, there is a unique morphism γY : Coker(FG(∂1))→ Y such that ∂0 ◦ ζ−1P0
= γY ◦ ε0.

It it easy to see that βY ◦ γY = 1Coker(FG(∂1)) and γY ◦ βY = 1Y . Thus βY : Y →
(FU ◦GU )(Y ) is an isomorphism.

Let φ ∈ Homgen•(V )(Y, Y
′). Then φ lifts to a chain map f : P(Y ) → P(Y ′),

where P(Y ) and P(Y ′) are the finitely-V -generated projective resolutions of Y and
Y ′, respectively, as we see in the following diagram:

P(Y ) : . . .
∂3 // P2

∂2 //

f2

�

P1
∂1 //

f1

�

P0
∂0 //

f0

�

Y //

φ

��

0

P(Y ′) : . . .
∂′3 // P ′2

∂′2 // P ′1
∂′1 // P ′0

∂′0 // Y ′ // 0

By definition, we have GU (φ) = [G(f)] : GU (Y ′)→ GU (Y ).
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G(P ′0)
G(∂′1) //

G(f0)

��

G(P ′1)
G(∂′2) //

G(f1)

��

G(P ′2)
G(∂′3) //

G(f2)

��

. . .

G(P0)
G(∂1) // G(P1)

G(∂2) // G(P2)
G(∂3) // . . .

Since ε′0◦FG(f0)◦FG(∂1) = 0, there is a unique morphism α : Coker(FG(∂1))→
Coker(FG(∂′1)) such that ε′0 ◦ FG(f0) = α ◦ ε0. Then FU ([G(f)]) = α, and thus
(FU ◦GU )(φ) = α.

. . .
∂3 // P2

∂2 //

ζP2

��

P1
∂1 //

ζP1

��

P0
∂0 //

ζP0

��

f0

��

Y //

βY

��

φ

��

0

. . .
FG(∂3) // FG(P2)

FG(∂2) //

FG(f2)

��

ζ−1
P2

OO

FG(P1)
FG(∂1) //

FG(f1)

��

ζ−1
P1

OO

FG(P0)
ε0 //

FG(f0)

��

ζ−1
P0

OO

Coker(FG(∂1)) //

α

��

γY

OO

0

. . .
FG(∂′3) // FG(P ′

2)
FG(∂′2) //

ζ−1

P ′2

��

FG(P ′
1)

FG(∂′1) //

ζ−1

P ′1

��

FG(P ′
0)

ε′0 //

ζ−1

P ′0

��

Coker(FG(∂′
1))

//

γY ′

��

0

. . .
∂′3 // P ′

2

∂′2 //

ζP ′2

OO

P ′
1

∂′1 //

ζP ′1

OO

P ′
0

∂′0 //

ζP ′0

OO

Y ′ //

βY ′

OO

0

From the fact that ζ : 1B → FG is a natural transformation, we have FG(f0) ◦
ζP0

= ζP ′0 ◦ f0. It follows that we have the following equalities

α ◦ βY ◦ ∂0 = α ◦ ε0 ◦ ζP0
=

ε′0 ◦ FG(f0) ◦ ζP0 = ε′0 ◦ ζP ′0 ◦ f0 =

βY ′ ◦ ∂′0 ◦ f0 = βY ′ ◦ φ ◦ ∂0.
Hence α ◦ βY = βY ′ ◦ φ, because ∂0 is an epimorphism. Therefore we have the

equality (FU ◦GU )(φ) ◦ βY = βY ′ ◦ φ, i.e. the following diagram is commutative

Y
φ //

βY

��

Y ′

βY ′

��
(FU ◦GU )(Y )

(FU◦GU )(φ)// (FU ◦GU )(Y ′)

Second, we show that the composition GU ◦ FU is natural isomorphic with the
identity functor 1(F,add(U))-coplex.
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Let C ∈ (F, add(U))-coplex. Then

C : C0
σ1−→ C1

σ2−→ C2
σ3−→ . . .

is a complex in A, with Ck ∈ add(U), for all k ≥ 0, and the induced sequence

F(C) : . . .
F(σ3)−→ F(C2)

F(σ2)−→ F(C1)
F(σ1)−→ F(C0)

ε0−→ Coker(F(σ1))→ 0

is a finitely-V -generated projective resolution of Coker(F(σ1)). By definition FU (C) =
Coker(F(σ1)). Moreover, GU (Coker(F(σ1))) = GF(C), hence (GU ◦ FU )(C) = GF(C).

Since δ : 1A → GF is a natural transformation, we have that

δC = (δC0
, δC1

, δC2
, . . . )

is a chain map between (F, add(U))-coplexes C and GF(C), hence we have [δC ] ∈
Hom(F,add(U))-coplex(C,GF(C)). On the other hand, since Ck ∈ add(U), the morphisms
δCk

: Ck → GF(Ck) are isomorphisms, hence

δ−1C = (δ−1C0
, δ−1C1

, δ−1C2
, . . . )

is a chain map between (F, add(U))-coplexes GF(C) and C and thus we have [δ−1C ] ∈
Hom(F,add(U))-coplex(GF(C), C).

C0
σ1 //

δC0

��

C1
σ2 //

δC1

��

C2
σ3 //

δC2

��

. . .

GF(C0)
GF(σ1) //

δ−1
C0

��

GF(C1)
GF(σ2) //

δ−1
C1

��

GF(C2)
GF(σ3) //

δ−1
C2

��

. . .

C0
σ1 // C1

σ2 // C2
σ3 // . . .

Since δ−1Ck
◦δCk

= 1Ck
and δCk

◦δ−1Ck
= 1GF(Ck) in A, for all k ≥ 0, we have [δ−1C ]◦[δC ] =

[1C ] and [δC ] ◦ [δ−1C ] = [1GF(C)] in (F, add(U))-coplex, hence [δC ] : C → (GU ◦ FU )(C)
is an isomorphism in (F, add(U))-coplex.

Let [f ] ∈ Hom(F,add(U))-coplex(C, C′). Then

f = (f0, f1, f2, . . . ) : C → C′

is a chain map between (F, add(U))-coplexes C and C′, as illustrated below:

C0
σ1 //

f0

��

C1
σ2 //

f1

��

C2
σ3 //

f2

��

...

C ′0
σ′1 // C ′1

σ′2 // C ′2
σ′3 // ...

It follows that

F(f) = (. . . ,F(f2),F(f1),F(f0)) : F(C′)→ F(C)
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is a chain map between exact sequences F(C′) and F(C)

. . .
F(σ′3) // F(C ′2)

F(σ′2) //

F(f2)

��

F(C ′1)
F(σ′1) //

F(f1)

��

F(C ′0)
ε′0 //

F(f0)

��

Coker(F(σ′1))

φ

�

// 0

. . .
F(σ3) // F(C2)

F(σ2) // F(C1)
F(σ1) // F(C0)

ε0 // Coker(F(σ1)) // 0

Since (ε0 ◦ F(f0)) ◦ F(σ′1) = 0, there is a unique morphism φ : Coker(F(σ′1)) →
Coker(F(σ1)) in B such that ε0 ◦ F(f0) = φ ◦ ε′0 and then, by definition, FU ([f ]) = φ.
Moreover, by definition of GU , we have GU (φ) = [GF(f)]. Thus (GU ◦ FU )([f ]) =
[GF(f)].

Since δ : 1A → GF is a natural transformation, we have GF(fk)◦ δCk
= δC′k ◦fk,

for all k ≥ 0, hence [GF(f) ◦ δC ] = [δC′ ◦ f ]. Thus [GF(f)] ◦ [δC ] = [δC′ ] ◦ [f ] and
therefore (GU ◦ FU )([f ]) ◦ [δC ] = [δC′ ] ◦ [f ]. So, the following diagram is commutative

C
[f ] //

[δC ]

��

C′

[δC′ ]

��
(GU ◦ FU )(C)

(GU◦FU )([f ])// (GU ◦ FU )(C′)
�
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