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1. Introduction

It is well-known that any function f ∈ Lp(T1) that is different from a constant
can be approximated by its Abel-Poisson means f(%, ·) with a precision not better than
1 − %. It relates to the so-called saturation property of this approximation method.
From this property, it follows that for any f ∈ Lp(T1), the relation

‖f − f(%, ·)‖p = O(1− %), %→ 1−,

only holds in the trivial case when f is a constant function. Therefore, any additional
restrictions on the smoothness of functions do not give us any order of approximation
better than 1− %. In this connection, a natural question is to find a linear operator,
constructed similarly to the Poisson operator, which takes into account the smoothness
properties of functions and at the same time, for a given functional class, is the best
in a certain sense. In [19], for classes of convolutions whose kernels were generated
by some moment sequences, the authors proposed a general method of construction
of similar operators that take into account properties of such kernels and hence, the
smoothness of functions from corresponding classes. One example of such operators
are the operators A%,r, which are the main subject of study in this paper.
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The operators A%,r were first studied in [15] where, in the terms of these opera-
tors, the author gave the structural characteristic of Hardy-Lipschitz classes Hr

p Lipα
of functions of one variable, holomorphic on the unit disc of the complex plane. In [17],
in terms of approximation estimates of such operators in some spaces Sp of Sobolev
type, the authors give a constructive description of classes of functions of several vari-
ables whose generalized derivatives belong to the classes SpHω. In [13], direct and
inverse approximation theorems of 2π-periodic functions by the operators A%,r were
given in the terms of K–functionals of functions generated by their radial derivatives.

Approximations of functions of one variable by similar operators of polynomial
type were studied in [11], [4], [7], [10], [12], [6] etc. In particular, in [7], the authors
found the degree of convergence of the well-known Euler and Taylor means to the
functions f from some subclasses of the Lipschitz classes Lipα in the uniform norm.
In [12], the analogous results for Taylor means were obtained in the Lp–norm.

In the present paper, we continue the study of approximative properties of the
operators A%,r. In particular, we extend the results of the paper [13] to the multivariate
case and prove direct and inverse approximation theorems of functions of several
variables by the operators A%,r in the integral metrics. We also show that norms of
multipliers in the spaces Lp,Y (Td) are equivalent for all positive integers d.

2. Preliminaries

Let d be an integer, let Rd, Rd+ and Zd be the sets of all vectors k := (k1, . . . , kd)

with real, real non-negative and integer coordinates respectively. Set Td := Rd/2πZd.
Further, let Lp(Td), 1 ≤ p ≤ ∞, be the space of all functions f(x) = f(x1, . . . , xd)
defined on Rd, 2π-periodic in each variable with the finite norm

‖f‖p = ‖f‖
Lp(Td)

:=


(∫

Td

|f(x)|pdσ(x)
) 1

p

, 1 ≤ p <∞,

ess supx∈Td |f(x)|, p =∞,
(2.1)

where σ is the normalized Lebesgue measure on Td.
Let (x,y) := x1y1+. . .+xdyd denote the inner product of the elements x,y ∈ Rd.

Let us set ek := ek(x) = ei(k,x), k ∈ Zd, and for any function f ∈ L1(Td), define its
Fourier coefficients by

f̂k :=

∫
Td

f(x)ek(x)dσ(x), k ∈ Zd,

where z is the complex-conjugate number of z.

Set |k|1 :=
∑d
j=1 |kj |, and for any function f ∈ L1(Td) with the Fourier series

of the form

S[f ](x) =
∑
k∈Zd

f̂kek(x) =

∞∑
ν=0

∑
|k|1=ν

f̂kek(x), (2.2)

denote by f (%,x) its Poisson integral (the Poisson operator), i.e.,

f (%,x) :=

∫
Td

f(x + s)P (%, s)dσ(s), (2.3)
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where % ∈ Rd+, x ∈ Rd, the function P (%,x) :=
∑

k∈Zd %|k|ek(x) is the Poisson kernel,

%|k| := %
|k1|
1 · · · %|kd|d .

In what follows, the expression f(%,x) means the Poisson integral, where % is a vector
with the same coordinates, i.e., %= (%, . . . , %). In such case, we have

P (%,x) :=

∞∑
ν=0

%ν
∑
|k|1=ν

ek(x).

Let f ∈ L1(Td). For % ∈ [0, 1) and r ∈ N, we set

A%,r(f)(x) :=

∞∑
ν=0

λν,r(%)
∑
|k|1=ν

f̂kek(x), (2.4)

where for ν = 0, 1, . . . , r − 1, the numbers λν,r(%) ≡ 1 and for ν = r, r + 1, . . .,

λν,r(%) :=

r−1∑
j=0

(
ν

j

)
(1− %)j%ν−j =

r−1∑
j=0

(1− %)j

j!

dj

d%j
%ν . (2.5)

The transformation A%,r can be considered as a linear operator on L1(Td) into itself.
Indeed, λν,r(0) = 0 and for all ν = r, r + 1, . . . and % ∈ (0, 1),

r−1∑
j=0

(
ν

j

)
(1− %)j%ν−j ≤ rqννr−1, where 0 < q := max{1− %, %} < 1.

Therefore, for any function f ∈ L1(Td) and for any 0 < % < 1, the series on the

right-hand side of (2.4) is majorized by the convergent series 2r‖f‖
1

∞∑
ν=r

qννr−1.

Leis [11] considered for f ∈ Lp(T1), 1 < p <∞, the transformation

L%,r(f)(x) :=

r−1∑
k=0

dkf(x)

dnk
· (1− %)k

k!
, r ∈ N,

where
df(x)

dn
= −∂f(%, x)

∂%

∣∣∣∣
%=1

is the normal derivative of the function f . He showed that if 1 < p <∞ and

‖f(%, ·)− L%,r(f)(·)‖p = O
(

(1− %)r/r!
)
, %→ 1−,

then drf/dnr ∈ Lp(T1).

Butzer and Sunouchi [4] considered for f ∈ Lp(T1), 1 ≤ p <∞, the transformation

B%,r(f)(x) :=

r−1∑
k=0

(−1)
k+1
2 f{k}(x)

(− ln %)k

k!
,
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where f{k} := f (k) for k ∈ 2Z+ and f{k} := f̃ (k) for k − 1 ∈ 2Z+, where

f̃(x) = lim
ε→0
− 1

π

π∫
ε

(f(x+ u)− f(x− u))
1

2
cot

u

2
du.

They proved the following theorem:

Theorem A. [4]. Assume that f ∈ Lp(T1), 1 ≤ p <∞.

i) If the derivatives f{j}, j = 0, 1, . . . , r−1, are absolutely continuous and f{r} ∈
Lp(T1), then

‖f(%, ·)−B%,r(f)(·)‖p = O
(

(− ln %)r/r!
)
, %→ 1− . (2.6)

ii) If the derivatives f{j}, j = 0, 1, . . . , r − 2, r ≥ 2, are absolutely continuous,

f{r−1} ∈ Lp(T1), 1 < p < ∞, and relation (2.6) holds, then f̃{r−1} is absolutely

continuous and f̃{r} ∈ Lp(T1).

These results summarize the approximation behaviour of the operators L%,r and
B%,r in the space Lp(T1). In particular, Leis’s result and the statement ii) of Theorem
A represent the so-called inverse theorems and the statement i) is the so-called direct
theorem. Direct and inverse theorems are among the main theorems of approximation
theory. They were studied by many authors. Here, we mention only the books [3],
[8], [18] which contain fundamental results in this subject. The result of Leis and
Theorem A are based on the investigations in the papers [5], [2], where the authors
find the direct and inverse approximation theorems for the one-parameter semi-groups
of bounded linear transformations {T (t)} of some Banach space X into itself by the

“Taylor polynomial”
∑r−1
k=0(tk/k!)Akf , where Af is the infinitesimal operator of a

semi–group {T (t)}.
The transformations A%,r considered in this paper are similar to the transforma-

tions L%,r and B%,r as they are also based on the “Taylor polynomials”. The relation
between the operators A%,r and the “Taylor polynomials” is shown in the following
statement.

Lemma 2.1. Assume that f ∈ L1(Td). Then for any numbers r ∈ N, % ∈ [0, 1) and
x ∈ Td,

A%,r(f)(x) =

r−1∑
j=0

∂jf (%,x)

∂%j
· (1− %)j

j!
. (2.7)

Proof. With respect to the variable %, let us differentiate the decomposition of the
Poisson integral into the uniformly convergent series

f (%,x) =

∞∑
ν=0

%ν
∑
|k|1=ν

f̂kek(x), % ∈ [0, 1), x ∈ Td. (2.8)

We see that for any j = 0, 1, . . .

∂jf (%,x)

∂%j
=

∞∑
ν=j

ν!

(ν − j)!
%ν−j

∑
|k|1=ν

f̂kek(x). (2.9)
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Since
ν∑
j=0

(
ν

j

)
(1− %)j%ν−j =

(
(1− %) + %

)ν
= 1, ν = 0, 1, . . . ,

then
r−1∑
j=0

∂jf (%,x)

∂%j
· (1− %)j

j!
=

r−1∑
ν=0

ν∑
j=0

(
ν

j

)
(1− %)j%ν−j

∑
|k|1=ν

f̂kek(x)

+

∞∑
ν=r

r−1∑
j=0

(
ν

j

)
(1− %)j%ν−j

∑
|k|1=ν

f̂kek(x) = A%,r(f)(x). �

3. Direct and inverse approximation theorems

3.1. Radial derivatives and K-functionals

If for a function f ∈ L1(Td) and for a positive integer n there exists the function
g ∈ L1(Td) such that

ĝk =

0, if |k|1 = ν < n,
ν!

(ν − n)!
f̂k, if |k|1 = ν ≥ n, k ∈ Zd, ν = 0, 1, . . . ,

then we say that for the function f , there exists the radial derivative g of order n for
which we use the notation f [n].

Let us note that if the function f [r] ∈ L1(Td), then its Poisson integral can be
presented as

f [r](%,x) = (f(%, ·))[r](x) = %r
∂rf (%,x)

∂%r
% ∈ [0, 1), ∀ x ∈ Td. (3.1)

In the space Lp(Td), the K–functional of a function f (see, for example, [8, Chap. 6])
generated by the radial derivative of order n is the following quantity:

Kn(δ, f)p := inf
{
‖f − h‖p + δn‖h[n]‖p : h[n] ∈ Lp(Td)

}
, δ > 0.

3.2. Main results

Let Zd− denote the set of all vectors k := (k1, . . . , kd) with negative integer

coordinates, Zd+ := Zd ∩ Rd+ and Y := Zd+ ∪ Zd−. Let also Lp,Y (Td) be the set of all

functions f from Lp(Td) such that the Fourier coefficients f̂k = 0 for all k ∈ Zd \ Y .
Further, we consider the functions ω(t), t ∈ [0, 1], satisfying the following conditions
1)– 4): 1) ω(t) is continuous on [0, 1]; 2) ω(t) is monotonically increasing; 3) ω(t)6= 0
for all t ∈ (0, 1]; 4) ω(t) → 0 as t → 0; and the well-known Zygmund–Bari–Stechkin
conditions (see, for example, [1]):

(Z) :

∫ δ

0

ω(t)

t
dt = O(ω(δ)), (Zn) :

∫ 1

δ

ω(t)

tn+1
dt = O

(ω(δ)

δn

)
, n ∈ N, δ → 0 + .

The main results of this paper are contained in the following two statements:
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Theorem 3.1. Assume that f ∈ Lp,Y (Td), 1 ≤ p ≤ ∞, n, r ∈ N, n ≤ r and the
function ω(t), t ∈ [0, 1], satisfies conditions 1)–4) and (Z). If

f [r−n] ∈ Lp(Td) and Kn

(
δ, f [r−n]

)
p

= O(ω(δ)), δ → 0+, (3.2)

then

‖f −A%,r(f)‖p = O
(
(1− %)r−nω(1− %)

)
, %→ 1− . (3.3)

Theorem 3.2. Assume that f ∈ Lp,Y (Td), 1 ≤ p ≤ ∞, n, r ∈ N, n ≤ r and the
function ω(t), t ∈ [0, 1], satisfies conditions 1)–4), (Z) and (Zn). If relation (3.3)
holds, then relations (3.2) hold as well.

Remark 3.3. For a given n ∈ N, from condition (Zn) it follows that

lim inf
δ→0+

(δ−nω(δ)) > 0

or, equivalently, that

(1− %)r−nω(1− %)� (1− %)r as %→ 1− .
Therefore, if condition (Zn) is satisfied, then the quantity on the right-hand side of
(3.3) decreases to zero as %→1− not faster than the function (1− %)r. Also note that
the relation ‖f − A%,r(f)‖p =O((1− %)r)) , % → 1−, only holds in the trivial case
when

f(x) =

n−1∑
ν=0

∑
|k|1=ν

f̂kek(x),

and in such case, the theorems are easily true. This fact is related to the so-called
saturation property of the approximation method generated by the operator A%,r. In
particular, in [15], it was shown that the operator A%,r generates the linear approxi-
mation method of holomorphic functions which is saturated in the space Hp with the
saturation order (1− %)r and the saturation class Hr−1

p Lip 1.

3.3. Norms of multipliers in the spaces Lp,Y (Td)
Before proving Theorems 3.1 and 3.2, let us give some auxiliary results. In partic-

ular, the following Lemma 3.4 shows that norms of multipliers in the spaces Lp,Y (Td)
are equivalent for all d. In our opinion, such a result is interesting in itself.

Let M = {µν}∞ν=0 be a sequence of arbitrary complex numbers. If, for any
function f ∈ L1,Y (Td) with Fourier series of the form (2.2), there exists a function
g ∈ L1,Y (Td) with Fourier series of the form

S[g](x) =

∞∑
ν=0

µν
∑

k∈Y: |k|1=ν

f̂kek(x),

then we say that in the space L1,Y (Td) the multiplier M is defined. In this case we
use the notation g = M(f).

Let Bp,Y , 1 ≤ p ≤ ∞, be a unit ball of the space Lp,Y (Td), that is, the set of all
functions f ∈ Lp,Y (Td) such that ‖f‖p ≤ 1.
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If M : Lp,Y (Td)→ Lp,Y (Td), then the norm of the operator M is the number

‖M‖
Lp,Y (Td)→Lp,Y (Td)

= sup
f∈Bp,Y

‖M(f)‖p = sup
f∈Lp,Y (Td),

f 6=0

‖M(f)‖p
‖f‖p

.

We also denote by ‖M‖
Lp(T1)→Lp(T1)

the norm of the operator M : Lp(T1)→ Lp(T1).

Let us note that if M is a continues operator from Lp,Y (Td) to Lp,Y (Td), then
M is called the multiplier of series of the form (2.2) of (p, p)-type (see, for example,
[9, Ch. 16]).

In [16], the authors proved that the norms of the multipliers M, which are defined
in a similar way, for the Hardy spaces Hp(Dd) and Hp(D1) are equivalent for all d ∈ N.
Without going into the details, we note that the space Hp(Dd) can be considered as the

space of all complex-valued functions f : Td → C such that |f | ∈ Lp(Td) and f̂(k) = 0
for all k ∈ Zd \ Zd+ (see, for example, Theorem 2.1.4 [14]). Here, we complement the

result of [16] and show that the norms of the multipliers M : Lp,Y (Td) → Lp,Y (Td)
are equal as well.

Lemma 3.4. Assume that 1 ≤ p ≤ ∞, d ∈ N and M is a multiplier generated by a
sequence of complex numbers {µν}∞ν=0. Then

‖M‖
Lp,Y (Td)→Lp,Y (Td)

= ‖M‖
Lp(T1)→Lp(T1)

. (3.4)

Proof. Let f ∈ Lp,Y (Td). Note that for almost all x ∈ Td, the multiplier M can be
defined by the following rule:

M(f)(x) = lim
%→1−

M(f)(%,x), (3.5)

where for 0 < % < 1 and x ∈ Td,

M(f)(%,x) =

∞∑
ν=0

λν%
ν

∑
k∈Y : |k|1=ν

f̂kek(x).

If f ∈ Lp(T), then this rule has the form

M(f)(%, t) = lim
%→1−

∑
n∈Z

µ|n|%
|n|f̂neint.

For any f ∈ Lp,Y (Td), we set M(f)(z) = M(f)(%,x), where for 0 < %j < 1 and
x ∈ Td, the point z := (%1eix1 , . . . , %de

ixd) belongs to the unit polydisc

Dd := {z ∈ Cd : max
1≤j≤d

|zj | < 1}.

Therefore, the function M(f)(z) is a d–harmonic function in Dd and according to the
assertion (c) of Theorem 2.1.3 [14], we have ‖M(f)(%·)‖p ≤ ‖M(f)‖p . On the other
hand, by virtue of Fatou’s lemma,

‖M(f)‖p ≤ lim inf
%→1−

‖M(f)(%·)‖p ,
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hence, for 1 ≤ p <∞,

‖M(f)‖p = lim
%→1−

‖M(f)(%, ·)‖p . (3.6)

If p =∞, then instead of the last relation we have∫
Td

M(f)(w)g(w)dσ(w) = lim
%→1−

∫
Td

M(f)(%,w)g(w)dσ(w)

for any function g ∈ L1(Td), i.e., we have convergence in the weak L1–topology of
space L∞(Td).

Let f ∈ Lp,Y (Td), f 6≡ 0, z be a fixed point in Dd and 0 ≤ % < 1. In the disc D1,
consider the function u%z(ω) := f(%, zω). Applying Lemma 3.3.2 [14], we consistently
have the following equality and estimate for the integral of |M(f)(% ·)|p for 0 ≤ % < 1
and 1 ≤ p <∞: ∫

Td

|M(f)(%,w)|pdσ(w) =

∫
Td

dσ(w)

∫
T1

|M(u%w)(ω)|pdω

=

∫
Td

‖M(u%w)‖ppdσ(w) =

∫
Td

‖u%w‖pp
‖M(u%w)‖pp
‖u%w‖pp

dσ(w)

≤ max
w∈Td

‖M(u%w)‖pp
‖u%w‖pp

∫
Td

‖u%w‖ppdσ(w)

≤ ‖M‖p
Lp(T1)→Lp(T1)

∫
Td

‖u%w‖ppdσ(w)

= ‖M‖p
Lp(T1)→Lp(T1)

∫
Td

|f(%,w)|pdσ(w). (3.7)

In the case p =∞, we similarly obtain the estimate

|M(f)(%, ωw)| = |M(u%w)(ω)|
= lim

ρ→1−
|M(u%w)(ρω)| ≤ max

ω∈T1
|M(u%w)(ω)|

≤ ‖M‖
L∞,Y (Td)→L∞,Y (Td)

max
ω∈T1

|f(%, ωw)|. (3.8)

From (3.7) and (3.8) in view of (3.5) it follows that for 1 ≤ p ≤ ∞,

‖M‖
Lp,Y (Td)→Lp,Y (Td)

= lim
%→1−

sup
f∈Lp,Y (Td)

‖M(f)(%, ·)‖p
‖f(%, ·)‖p

≤ ‖M‖
Lp(T1)→Lp(T1)

. (3.9)

To prove the reverse inequality let us consider the continuation operator Q, given on
Lp(T1), 1 ≤ p ≤ ∞, by the formula

Q(g)(w1,w
1) = g(w1),

where w1 ∈ T1, w1 = (w2, . . . , wd) ∈ Td−1.
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It is easy to show that the continuation operator Q is a linear isometry of the space
Lp(T1) in Lp(Td). Therefore, taking into account the relation Q

(
M(f)

)
= M

(
Q(f)

)
,

which is satisfied for any function f ∈ Lp(T1), we obtain

‖M(f)‖p = ‖Q
(
M(f)

)
‖p = ‖M

(
Q(f)

)
‖p

≤ ‖M‖
Lp,Y (Td)→Lp,Y (Td)

‖Q(f)‖p

= ‖M‖
Lp,Y (Td)→Lp,Y (Td)

‖f‖p .

This implies the estimate

‖M‖
Lp(T1)→Lp(T1)

≤ ‖M‖
Lp,Y (Td)→Lp,Y (Td)

,

which in combination with (3.9) gives the relation (3.4).

3.4. Auxiliary statements

Let

P(%,x) :=

d∏
j=1

1

1− %eixj
+

d∏
j=1

1

1− %e−ixj
− 1. (3.10)

Lemma 3.5. Assume that f ∈ L1,Y (Td), 0 ≤ % < 1 and x ∈ Td. Then

f (%,x) =

∫
Td

f(x + s)P(%, s)dσ(s). (3.11)

Proof. By virtue of the definition of the set L1,Y (Td), we have

f(%,x) =

∞∑
ν=0

%ν
∑

k∈Y : |k|1=ν

f̂kek(x). (3.12)

On the other hand

P(%,x) =

∞∑
k1=0

. . .

∞∑
kd=0

%k1+...+kd
(

ei(k1x1+...+kdxd) + e−i(k1x1+...+kdxd)
)
− 1

= 1 +

∞∑
ν=1

%ν
∑

k∈Y : |k|1=ν

ek(x). (3.13)

Therefore, the right-hand side of (3.11) is equivalent to the right-hand side of (3.12). �

Lemma 3.6. Assume that f ∈ Lp,Y (Td), 1 ≤ p ≤ ∞, r = 0, 1, . . . and % ∈ [0, 1). Then
the following relations are true:∥∥∥∂rf (%, ·)

∂%r

∥∥∥
p
≤ C1(r)

‖f‖p
(1− %)r

(3.14)

and

‖A[r]
%,r(f)‖p ≤ C2(r)

‖f‖p
(1− %)r

, (3.15)

where the constants C1(r) and C2(r) depend only on r.
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Proof. It is easy to see that the function ∂rf (%,x) /∂%r can be considered as the image
M1(f)(x) of the multiplier generated by the sequence {µ1,ν}∞ν=0, where µ1,ν = 0 for
ν = 0, 1, . . . , r − 1 and µ1,ν = ν · (ν − 1) · . . . · (ν − r + 1)%ν−r for ν ≥ r. Similarly,

the function A
[r]
%,r(f)(x) can be considered as the image M2(f)(x) of the multiplier

generated by the sequence {µ2,ν}∞ν=0 such that µ2,ν = 0 for ν = 0, 1, . . . , r − 1 and
µ2,ν = ν! · λν,r(%)/(ν − r)! for ν ≥ r. Therefore, to prove estimates (3.14) and (3.15)
it is sufficient to apply Lemma 3.4 and the estimates (23) and (22) for the norms of
the corresponding multipliers in the space Lp(T1) from [13]. �

For any f ∈ Lp(Td), 1 ≤ p ≤ ∞, 0 ≤ % < 1 and r = 0, 1, 2, . . ., we set

Mp(%, f, r) := %r
∥∥∥∂rf (%, ·)

∂%r

∥∥∥
p

=
∥∥∥(f(%, ·))[r]

∥∥∥
p
. (3.16)

Lemma 3.7. Assume that f ∈ Lp,Y (Td), 1 ≤ p ≤ ∞. Then for any numbers n ∈ N
and % ∈ [0, 1),

C3(n)(1− %)nMp (%, f, n) ≤ Kn (1− %, f)p

≤ C4(n)
(
‖f −A%,n(f)‖p + (1− %)nMp (%, f, n)

)
, (3.17)

where the constants C3(n) and C4(n) depend only on n.

Proof. First, let us note that the statement of Lemma 3.7 is trivial in the case, when
f is a polynomial of the form

f(x) =

n−1∑
ν=0

∑
|k|1=ν

f̂kek(x),

as well as in the case, when % = 0. Therefore, further in the proof, we exclude these
two cases.

Let g be a function such that g[n] ∈ Lp(Td). Using Lemma 3.6, we get∥∥∥∂nf (%, ·)
∂%n

∥∥∥
p

=
∥∥∥∂n(f − g) (%, ·)

∂%n
+
∂ng (%, ·)
∂%n

∥∥∥
p

≤ C1(n)
‖f − g‖p
(1− %)n

+
∥∥∥∂ng (%, ·)

∂%n

∥∥∥
p
.

Setting C3(n) = min{1, 1/C1(n)} and taking into account relations (3.1), (3.16) and
the inequality ‖g[n](%, ·)‖p ≤ ‖g[n]‖p, we see that

C3(n)(1− %)nMp(%, f, n) ≤ ‖f − g‖p + (1− %)n‖g[n]‖p.

Considering the infimum over all functions g such that g[n] ∈ Lp(Td), we conclude
that

C3(n)(1− %)nMp (%, f, n) ≤ Kn (1− %, f)p .

On the other hand, from the definition of the K–functional, it follows that

Kn (1− %, f)p ≤ ‖f −A%,n(f)‖p + (1− %)n
∥∥∥A[n]

%,n(f)
∥∥∥
p
. (3.18)
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According to (2.7) and (3.1), we have

A[n]
%,n(f)(x) =

( n−1∑
k=0

(f(%, ·))[k](·)
%kk!

(1− %)k
)[n]

(x)

=

n−1∑
k=0

((f(%, ·))[k](·))[n](x)

%kk!
(1− %)k.

Since for any nonnegative integers k and n

((f(%, ·))[n](·))[k](x) = ((f(%, ·))[k](·))[n](x), (3.19)

we obtain

A[n]
%,n(f)(x) =

n−1∑
k=0

((f(%, ·))[n](·))[k](x)

%kk!
(1− %)k.

This yields

‖A[n]
%,n(f)‖p ≤

n−1∑
k=0

‖((f(%, ·))[n](·))[k]‖p
%kk!

(1− %)k, (3.20)

where by virtue of Lemma 3.6 and (3.16)

‖((f(%, ·))[n](·))[k]‖p ≤Mp(%, f, n)
C1(k)%k

(1− %)k
. (3.21)

Therefore,

‖A[n]
%,n(f)‖p ≤Mp(%, f, n)

n−1∑
k=0

C1(k)

k!
. (3.22)

Setting

C4(n) = max{1,
n−1∑
k=0

C1(k)/k!}

and combining relations (3.18) and (3.22), we obtain the right-hand inequality in
(3.17). �

Lemma 3.8. Assume that f ∈ Lp(Td), 1 ≤ p ≤ ∞, 0 ≤ % < 1 and r = 2, 3, . . . such
that ∫ 1

%

∥∥∥∥∂rf(ζ, ·)
∂ζr

∥∥∥∥
p

(1− ζ)r−1dζ <∞. (3.23)

Then for almost all x ∈ Td,

f(x)−A%,r(f)(x) =
1

(r − 1)!

∫ 1

%

∂rf(ζ,x)

∂ζr
(1− ζ)r−1dζ. (3.24)

Proof. For fixed r = 2, 3, . . . and 0 ≤ % < 1, the integral on the right-hand side of
(3.24) defines a certain function F (x). By virtue of (3.23) and the integral Minkowski
inequality, we conclude that the function F belongs to the space Lp(Td). Let us find
the Fourier coefficients of F and compare them with the Fourier coefficients of the
function G := f −A%,r(f).
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Since for any ν = r, r + 1 . . .,

1

(r − 1)! · (ν − r)!

∫ %1

%

ζν−r(1− ζ)r−1dζ =

r−1∑
j=0

%ν−j1 (1− %1)j − %ν−j(1− %)j

j! · (ν − j)!
,

then in view of (2.9) for a fixed %1 ∈ (%, 1), we have

1

(r − 1)!

∫ %1

%

∂rf(ζ,x)

∂ζr
(1− ζ)r−1dζ

=

∞∑
ν=r

∑
|k|1=ν

ν! · f̂k · ek(x)

(r − 1)! · (ν − r)!

∫ %1

%

ζν−r(1− ζ)r−1dζ

=

∞∑
ν=r

∑
|k|1=ν

f̂kek(x)

r−1∑
j=0

(
ν

j

)(
%ν−j1 (1− %1)j − %ν−j(1− %)j

)
. (3.25)

Now if in relation (3.25), the value %1 tends to 1−, then we see that the Fourier

coefficients F̂k of the function F are equivalent to zero when |k|1 = ν < r and for
|k|1 ≥ r,

F̂k = f̂k ·
(

1−
r−1∑
j=0

(
ν

j

)
(1− %)j%ν−j

)
= (1− λν,r(%))f̂k. (3.26)

Therefore, for all k ∈ Zd we have F̂k = (1 − λν,r(%))f̂k = Ĝk. Hence, for almost all
x ∈ Td, relation (3.24) holds. �

3.5. Proof of main results

Proof of Theorem 3.1. Assume that the function f is such that f [r−n] ∈ Lp,Y (Td)
and relation (3.2) is satisfied. Let us apply the first inequality of Lemma 3.7 to the
function f [r−n]. In view of (3.1) and (3.16), we obtain

C3(n)(1− %)nMp (%, f, r) ≤ Kn

(
1− %, f [r−n]

)
p
.

This yields

Mp (%, f, r) = O(1)(1− %)−nω(1− %), %→ 1− . (3.27)

Using relations (3.16), (3.27), (Z) and the integral Minkowski inequality, we obtain∫ 1

%

∥∥∥∥∂rf(ζ, ·)
∂ζr

∥∥∥∥
p

(1− ζ)r−1dζ ≤
∫ 1

%

Mp (ζ, f, r)
(1− ζ)r−1

ζr
dζ

≤ C1(1− %)r−n
∫ 1

%

ω(1− ζ)

1− ζ
dζ = O

(
(1− %)r−nω(1− %)

)
, %→ 1− . (3.28)

Therefore, for almost all x ∈ Td, relation (3.24) holds. Hence, by virtue of (3.24),
using the integral Minkowski inequality and (3.28), we finally get (3.3):

‖f −A%,r(f)‖p ≤
1

(r − 1)!

∫ 1

%

Mp (ζ, f, r)
(1− ζ)r−1

ζr
dζ

= O
(
(1− %)r−nω(1− %)

)
, %→ 1− . �
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Proof of Theorem 3.2. First, let us note that for any function f ∈ Lp(Td) and all fixed
numbers s, r ∈ N and % ∈ (0, 1), we have

‖A[s]
%,r(f)‖p =

∥∥∥ ∞∑
ν=s

ν!

(ν − s)!
λν,r(%)

∑
|k|1=ν

f̂kek

∥∥∥
p

≤ 2r‖f‖p
(max{s,r}−1∑

ν=s

ν!

(ν − s)!
+

∑
ν≥max{s,r}

qννs+r−1
)
<∞,

where 0 < q = max{1 − %, %} < 1. In the case where s ≥ r, the sum

s−1∑
ν=s

is set equal

to zero. Put %k := 1− 2−k, k ∈ N, and Ak := Ak(f) := A%k,r(f). For any x ∈ Td and
s ∈ N, consider the series

A
[s]
0 (f)(x) +

∞∑
k=1

(A
[s]
k (f)(x)−A[s]

k−1(f)(x)). (3.29)

According to the definition of the operator A%,r, we see that for any %1, %2 ∈ [0, 1)
and r ∈ N,

A%1,r (A%2,r(f)) = A%2,r (A%1,r(f)) .

By virtue of Lemma 3.6 and relation (3.3), for any k ∈ N and s ∈ N, we have∥∥∥A[s]
k −A

[s]
k−1

∥∥∥
p

=
∥∥∥A[s]

k (f −Ak−1(f))−A[s]
k−1(f −Ak(f))

∥∥∥
p

≤
∥∥∥A[s]

k (f −Ak−1(f))
∥∥∥
p

+
∥∥∥A[s]

k−1(f −Ak(f))
∥∥∥
p

≤ C2(s)
‖f −Ak−1(f)‖

p

(1− %k)s
+ C2(s)

‖f −Ak(f)‖
p

(1− %k−1)s

= O
(
ω(1− %k−1)

(1− %k)s−r+n

)
+O

(
ω(1− %k)

(1− %k−1)s−r+n

)
, k →∞. (3.30)

Therefore, for any s ≤ r − n,∥∥∥A[s]
k −A

[s]
k−1

∥∥∥
p

= O (ω(1− %k−1)) = O
(
ω(2−(k−1))

)
, k →∞. (3.31)

Consider the sum

N∑
k=1

ω(21−k), N ∈ N. Taking into account the monotonicity of the

function ω and (Z), we see that for all N ∈ N,

N∑
k=1

ω(21−k) ≤ ω(1) +

∫ N

1

ω(21−t)dt = ω(1) +

∫ 1

21−N

ω(τ) dτ

τ ln 2
<∞.

Combining the last relation and (3.31), we conclude that the series in (3.29) converges
in the norm of the space Lp(Td), 1 ≤ p ≤ ∞. Hence, by virtue of the Banach–Alaoglu
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theorem, for any s = 0, 1, . . . , r − n, there exists the subsequence

S
[s]
Nj

(x) = A
[s]
0 (f)(x) +

Nj∑
k=1

(A
[s]
k (f)(x)−A[s]

k−1(f)(x)), j = 1, 2, . . . (3.32)

of partial sums of this series, converging to a certain function g ∈ Lp(Td) almost
everywhere on Td as j →∞.

Let us show that g = f [s]. For this, let us find the Fourier coefficients of the
function g. For any fixed k ∈ Zd and all j = 1, 2, . . . , we have

ĝk :=

∫
Td

S
[s]
Nj

(x)ek(x)dσ(x) +

∫
Td

(g(x)− S[s]
Nj

(x))ek(x)dσ(x).

Since the sequence {S[s]
Nj
}∞j=1 converges almost everywhere on Td to the function g,

the second integral on the right-hand side of the last equality tends to zero as j →∞.
By virtue of (3.32) and the definition of the radial derivative, for |k|1 = ν < s the
first integral is equal to zero, and for all |k|1 = ν ≥ s,∫

Td

S
[s]
Nj

(x)ek(x)dσ(x) = λν,r(1− 2−Nj )
ν!

(ν − s)!
f̂k −→

j→∞

ν!

(ν − s)!
f̂k.

Therefore, the equality g = f [s] is true.
Hence, for the function f and all s = 0, 1, . . . , r − n, there exists the derivative f [s]

and f [s] ∈ Lp(Td).
Now, let us prove the estimate (3.27). By virtue of (3.16), (3.30), for any k ∈ N and
% ∈ (0, 1), we have

Mp (%,Ak −Ak−1, r) ≤
∥∥∥A[r]

k −A
[r]
k−1

∥∥∥
p

= O
(
ω(1− %k−1)

(1− %k)n

)
+O

(
ω(1− %k)

(1− %k−1)n

)
= O

(
2knω(2−k+1) + 2(k−1)nω(2−k)

)
= O

(
2(k−1)nω(2−(k−1))

)
, k →∞. (3.33)

By virtue of (3.16), (3.14) and (3.3), for any r ∈ N and % ∈ (0, 1), we obtain

Mp (%, f −A%,r(f), r) = O(1)
‖f −A%,r(f)‖p

(1− %)r
= O

(
ω(1− %)

(1− %)n

)
, %→ 1− .

Therefore, for N →∞,

Mp

(
%
N
, f −AN (f), r

)
= O

(
ω(1− %

N
)

(1− %
N

)n

)
= O

(
2Nnω(2−N )

)
. (3.34)

Consider the sum

N∑
k=1

2(k−1)nω(2−(k−1)), N ∈ N. Since the function ω satisfies the

condition (Zn), the function ω(t)/tn almost decreases on (0, 1], i.e., there exists the
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number C > 0 such that ω(t1)/tn1 ≥ Cω(t2)/tn2 for any 0 < t1 < t2 ≤ 1 (see, for
example [1]). Therefore,

N∑
k=1

2(k−1)nω(2−(k−1))

≤ C

(
2(N−1)nω(2−(N−1)) +

∫ N

1

2(t−1)nω(2−(t−1))dt

)
≤ C

(
2(N−1)nω(2−(N−1)) +

∫ 1

2−N+1

ω(τ) dτ

τn+1 ln 2

)
= O

(
2(N−1)nω(2−(N−1))

)
= O

(
2Nnω(2−N )

)
, N →∞. (3.35)

Putting % = %
N

and taking into account relations (3.33), (3.34), (3.35) and

A0(x) = Sr−1(f)(x) =
∑

|k|1≤r−1

f̂kek(x),

we get

Mp (%N , f, r) = Mp (%N , f − Sr−1(f), r)

= Mp

(
%N , f −A%

N
+

N∑
k=1

(Ak −Ak−1), r

)
= O

( N∑
k=1

2(k−1)nω(2−(k−1))

)
= O

(
2Nnω(2−N )

)
= O

(
(1− %

N
)−nω(1− %

N
)
)
, N →∞. (3.36)

If the function ω satisfies the condition (Zn), then sup
t∈[0,1]

(
ω(2t)/ω(t)

)
< ∞ (see, for

example [1]). Furthermore, for all % ∈ [%
N−1 , %N ], we have 1−%

N
≤ 1−% ≤ 2(1−%

N
).

Hence, relation (3.36) yields the estimate (3.27).

Now, applying the second inequality in Lemma 3.7 to the function f [r−n], we get

Kn

(
1− %, f [r−n]

)
p
≤ C4(n)

(
‖f [r−n] −A%,n(f [r−n])‖p

+ (1− %)nMp(%, f, r)
)
. (3.37)

By virtue of (3.16) and (3.27), we see that for % ∈ [1/2, 1),∫ 1

%

∥∥∥∥∂nf [r−n](ζ, ·)∂ζn

∥∥∥∥
p

(1− ζ)n−1dζ

=

∫ 1

%

∥∥∥(f(ζ, ·))[r]
∥∥∥
p

(1− ζ)n−1

ζn
dζ

=

∫ 1

%

Mp (ζ, f, r)
(1− ζ)n−1

ζn
dζ

≤ C1

∫ 1

%

ω(1− ζ)

1− ζ
dζ = O (ω(1− %)) , %→ 1− . (3.38)
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Therefore, we can apply Lemma 3.8 to the function f [r−n]. Taking into account (3.16),
we obtain

f [r−n](x)−A%,n(f [r−n])(x) =
1

(n− 1)!

∫ 1

%

(f(ζ, ·))[r](x)
(1− ζ)n−1

ζn
dζ.

Using the integral Minkowski inequality and (3.38), we conclude

‖f [r−n] −A%,n(f [r−n])‖p ≤ 1

(n− 1)!

∫ 1

%

Mp (ζ, f, r)
(1− ζ)n−1

ζn
dζ

= O (ω(1− %)) , %→ 1− . (3.39)

Combining relations (3.37), (3.27) and (3.39), we finally get (3.2).
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