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Abstract. In this paper we will use the Picard operators technique, in order to
establish the existence and uniqueness, data dependence and Gronwall-type re-
sults for the solutions of a Fredholm-Volterra functional-integral equation. The
paper ends with a result of the Ulam-Hyers stability of this integral equation.

Mathematics Subject Classification (2010): 45G10, 47H10.

Keywords: Picard operators, Fredholm integral equation, Volterra integral equa-
tion, data dependence, integral inequalities, Ulam-Hyers stability.

1. Introduction

The theory of integral equations has many applications in describing of numerous
phenomena and problems from different research fields of the surrounding world, such
as: mathematical physics, engineering, biology, economics and others. In what follows,
we consider the following Fredholm-Volterra functional-integral equation:

x(t) = F (t, g(t, x(t)), IFr(t, s, a, b, x,K1, h1), IV o(t, s, a, x,K2, h2)), (1.1)

where we denote:

IFr(t, s, a, b, x,K1, h1) =

∫ b

a

K1(t, s) · h1(s, x(s), x(a), x(b))ds

IV o(t, s, a, x,K2, h2) =

∫ t

a

K2(t, s) · h2(s, x(s), x(a))ds

and

F : [a, b]× R3 → R, K1,K2 : [a, b]× [a, b]→ R,
h1 : [a, b]× R3 → R, h2 : [a, b]× R2 → R, g : [a, b]× R→ R,

and we will apply the Picard operators technique to prove the existence and unique-
ness, data dependence, comparison and Gronwall-type results for the solution of the
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equation (1.1). Many authors have applied this technique to study the functional-
integral equations of mixed type (see [1], [2], [6], [9], [19], [27], etc.). Also, many
authors studied the functional-integral equations of Fredholm and Volterra type and
we mention some of them (see [1], [3], [7], [8], [10], [11], [12], [13], [14], [16], [17], [18]
[23], [24], [25], [26], [28], etc.).

In this paper we will use the notations from [22], [23] and [25] and we recall some
of them.

Let (X, d) be a metric space and A : X → X an operator. We have:

P (X) := {Y ⊂ X / Y 6= ∅} − the set of all nonempty subsets of X,

I(A) := {Y ∈ P (X) / A(Y ) ⊂ Y } − the family of the nonempty subsets

of X, invariant for A,

FA := {x ∈ X|A(x) = x} − the fixed points set of A.

Also, we denote by A0 := 1X , A
1 := A, An+1 := A ◦ An, n ∈ N – the iterate

operators of A.
Below, we present the definitions of Picard operator, c-Picard operator and

weakly Picard operator.

Definition 1.1. Let (X, d) be a metric space. An operator A : X → X is called Picard
operator (briefly PO) if there exists x∗ ∈ X such that:

(a) FA = {x∗};
(b) the sequence (An(x0))n∈N converges to x∗, for all x0 ∈ X.

Definition 1.2. Let (X, d) be a metric space and c > 0. An operator A : X → X is
called c-Picard operator (briefly c-PO) if A is PO and

d(x, x∗) ≤ c · d(x,A(x)) for all x ∈ X.

Definition 1.3. Let (X, d) be a metric space. An operator A : X → X is called weakly
Picard operator (briefly WPO) if the sequence (An(x0))n∈N converges for all x0 ∈ X
and the limit (which may depend on x0) is a fixed point of A.

If A is a WPO, then it can be considered the operator A∞ : X → X, defined by

A∞(x) := lim
n→∞

An(x)

and we observe that A∞(X) = FA.
In addition, if A is a PO and we denote by x∗ its unique fixed point, then

A∞(x) = x∗ , for all x ∈ X.
In the second section we study the existence and uniqueness of the solution of

the integral equation (1.1).
In order to obtain the presented results of this section, we applied the Picard

operators technique and the Contraction Principle.

Theorem 1.4 (Contraction Principle). Let (X, d) be a complete metric space and A :
X → X an α-contraction (α < 1). Under these conditions we have:

(i) FA = {x∗};
(ii) x∗ = lim

n→∞
An(x0), for all x0 ∈ X;
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(iii) d(x∗, An(x0)) ≤ αn

1−αd(x0, A(x0)).

In order to obtain several Gronwall-type and comparison results for the solution
of the integral equation (1.1), in the third section we will use the Abstract Compar-
ison Lemma, the Abstract Gronwall Lemma and the Abstract Gronwall-Comparison
Lemma, which we present below.

Lemma 1.5. (see [25]) Let (X, d,≤) be an ordered metric space and A : X → X an
operator. If:

(i) A is an increasing operator;
(ii) the operator A is a WPO,

then the operator A∞ is increasing.

Lemma 1.6 (Abstract Comparison Lemma). (see [22], [23], [25]) Let A,B,C : X → X
be three operators defined on the ordered metric space (X, d,≤). If:

(i) A ≤ B ≤ C;
(ii) A, B, C are WPOs;

(iii) the operator B is increasing,

then

x ≤ y ≤ z ⇒ A∞(x) ≤ B∞(y) ≤ C∞(z).

Remark 1.7. Let A,B,C be the operators defined in the Abstract Comparison
Lemma. In addition, we suppose that B is PO, i.e. FB = {x∗B}. Then we have

A∞(x) ≤ x∗B ≤ C∞(x), for all x ∈ X.

But A∞(X) = FA and C∞(X) = FC and therefore FA ≤ x∗B ≤ FC .

Lemma 1.8 (Abstract Gronwall Lemma). (see [22], [23], [25]) Let A : X → X be an
operator defined on the ordered metric space (X, d,≤). If:

(i) the operator A is PO and denote by x∗A the unique fixed point of A;
(ii) A is an increasing operator,

then

(a) x ≤ A(x)⇒ x ≤ x∗A;
(b) x ≥ A(x)⇒ x ≥ x∗A.

Lemma 1.9 (Abstract Gronwall-Comparison Lemma). (see [22], [23], [25]) Let A1, A2 :
X → X be two operators defined on the ordered metric space (X, d,≤). We assume
that:

(i) A1 is increasing;
(ii) A1 and A2 are POs;

(iii) A1 ≤ A2.

If we denote by x∗2 the unique fixed point of A2, then

x ≤ A1(x)⇒ x ≤ x∗2.

In the section 4 we prove a result of the continuous data dependence of the
solution of the integral equation (1.1) using the General Data Dependence Theorem.
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Theorem 1.10 (General Data Dependence Theorem). Let (X, d) be a complete metric
space, A,B : X → X two operators and suppose:

(i) A is c-PO with respect to the metric d and FA = {x∗A};
(ii) there exists x∗B ∈ FB;

(iii) there exists η > 0 such that d(A(x), B(x)) ≤ η, for all x ∈ X.

Under these conditions we have:

d(x∗A, x
∗
B) ≤ c · η.

The last section of this paper contains a result concerning the Ulam-Hyers stability
of the integral equation (1.1).

Definition 1.11. (I.A. Rus [21]) Let (X, d) be a metric space and A : X → X an
operator. The equation of fixed point

x = A(x). (1.2)

is Ulam-Hyers stable if there exists a real number cA > 0 such that for each ε > 0
and each solution y∗ of the inequation

d(y,A(y)) ≤ ε,

there exists a solution x∗ of equation (1.2) such that

d(y∗, x∗) ≤ cA · ε.

Also, in this section we will use the Remark 2.1 from I.A. Rus [21], that you can find
below.

Remark 1.12. (I.A. Rus [21], Remark 2.1) If A is a c-weakly Picard operator, then
the fixed point equation (1.2) is Ulam-Hyers stable.

Indeed, let ε > 0 and y∗ a solution of d(y,A(y)) ≤ ε. Since A is c-weakly Picard
operator, we have that

d(x,A∞(x)) ≤ c · d(x,A(x)), for all x ∈ X.

If we take x := y∗ and x∗ := A∞(y), then we have that d(y∗, x∗) ≤ cA · ε (see [20],
[21]).

2. Existence and uniqueness

In this section we present several results of existence and uniqueness for the
solution of the integral equation (1.1). These results were obtained by applying the
known standard techniques as in [1], [2], [5], [6] for particular integral equations.

We suppose that the following conditions are fulfilled:

(a1) K1,K2 ∈ C([a, b]×[a, b]), h1 ∈ C([a, b]×R3), h2 ∈ C([a, b]×R2), g ∈ C([a, b]×R);
(a2) F ∈ C([a, b]× R3).

Theorem 2.1. We assume that the conditions (a1) and (a2) are satisfied. In addition
we assume that:
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(i) there exist α, β, γ > 0, such that:

|F (t, u1, v1, w1)− F (t, u2, v2, w2)| ≤ α|u1 − u2|+ β|v1 − v2|+ γ|w1 − w2|,
for all t ∈ [a, b], ui, vi, wi ∈ R, i = 1, 2;

(ii) there exist L1, L2, L3 > 0 such that:

|h1(s, u1, u2, u3)− h1(s, v1, v2, v3)| ≤ L1(|u1 − v1|+ |u2 − v2|+ |u3 − v3|),
for all s ∈ [a, b], ui, vi ∈ R, i = 1, 2, 3;

|h2(s, u1, u2)− h2(s, v1, v2)| ≤ L2(|u1 − v1|+ |u2 − v2|),
for all s ∈ [a, b], ui, vi ∈ R, i = 1, 2;

|g(t, u)− g(t, v)| ≤ L3|u− v|),
for all t ∈ [a, b], u, v ∈ R;

(iii) αL3 + (3βM1L1 + 2γM2L2)(b− a) < 1,
where we denoted by M1 and M2 respectively, two positive constants, such that
|K1(t, s)| ≤M1 and |K2(t, s)| ≤M2, for all t, s ∈ [a, b].

Under these conditions the integral equation (1.1) has a unique solution x∗ ∈ C[a, b],
that can be obtained by the successive approximations method starting at any element
x0 ∈ C[a, b].
In addition, if xn is the n-th successive approximation, then we have:

‖x∗ − xn‖C ≤
[αL3 + (3βM1L1 + 2γM2L2)(b− a)]n

1− αL3 − (3βM1L1 + 2γM2L2)(b− a)
· ‖x0 − x1‖C . (2.1)

Proof. Let X = (C[a, b], ‖ · ‖C) be a Banach space, where ‖ · ‖C is the Chebyshev’s
norm

‖x‖C = max
t∈[a,b]

|x(t)|, for all x ∈ C[a, b].

Also, we consider the operator A : X → X, defined by the relation:

A(x)(t) = F (t, g(t, x(t)), IFr(t, s, a, b, x,K1, h1), IV o(t, s, a, x,K2, h2)) (2.2)

for all t ∈ [a, b].
The set of the solutions of the integral equation (1.1) coincides with the set of

fixed points of the operator A. From Contraction Principle it results that the operator
A must be a contraction. We have:

|A(x)(t)−A(y)(t)| = |F (t, g(t, x(t)), IFr(t, s, a, b, x,K1, h1), IV o(t, s, a, x,K2, h2))

− F (t, g(t, y(t)), IFr(t, s, a, b, y,K1, h1), IV o(t, s, a, y,K2, h2))|.
From (i) and (ii) and using the Chebyshev’s norm it results

‖A(x)−A(y)‖C[a,b] ≤ [αL3 + (3βM1L1 + 2γM2L2)(b− a)]‖x− y‖C[a,b] (2.3)

Consequently, from (iii) it results that the operator A is an LA-contraction with the
coefficient

LA = αL3 + (3βM1L1 + 2γM2L2)(b− a).

Now, from Contraction Principle it results that the operator A has a unique fixed
point FA = {x∗} and consequently, the integral equation (1.1) has a unique solution
x∗ ∈ C[a, b]; this solution can be obtained by the successive approximations method
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starting at any element x0 ∈ C[a, b] and, if xn is the n-th successive approximation,
then the estimation (2.1) is true. The proof is complete. �

Remark 2.2. In order to obtain the Theorem 2.1, of existence and uniqueness of the
solution of the integral equation (1.1) in the space C[a, b], we reduced the problem
of determination of the solutions of this integral equation to a fixed point problem.
Under the conditions of the Theorem 2.1, the operator A, defined by (2.2), is PO.

Remark 2.3. If we consider the Banach space X = (C[a, b], ‖ · ‖B), where ‖ · ‖B is the
Bielecki’s norm:

‖x‖B = max
t∈[a,b]

|x(t)|e−τ(t−a),

for all x ∈ C[a, b], and τ > 0 a parameter, and the operator A : X → X, defined by
(2.2), then we have another theorem of existence and uniqueness of the solution of
the integral equation (1.1) in the space C[a, b], that we present below.

Theorem 2.4. We assume that the conditions (a1) and (a2) are satisfied and also,
the conditions (i) and (ii) from Theorem 2.1 are fulfilled. Under these conditions the
integral equation (1.1) has a unique solution x∗ ∈ C[a, b].

Proof. We have

|A(x)(t)−A(y)(t)| ≤ αL3e
τ(t−a)‖x− y‖B + 3

βM1L1

τ
eτ(t−a)‖x− y‖B

+ 2
γM2L2

τ
eτ(t−a+b−t)‖x− y‖B

and therefore, using the Bielecki’s norm, we obtain:

‖A(x)−A(y)‖B ≤ [αL3 + 3
βM1L1

τ
+ 2

γM2L2

τ
eτ(b−a)]‖x− y‖B . (2.4)

It is clear that one can find a positive parameter τ , such that

αL3 + 3
βM1L1

τ
+ 2

γM2L2

τ
eτ(b−a) < 1,

and thus A is an LA-contraction with

LA = αL3 + 3
βM1L1

τ
+ 2

γM2L2

τ
eτ(b−a)

and the conclusion of theorem is obtained by applying the Contraction Principle
(Theorem 1.4). �

Example 2.5. The following equation is a particular case of the integral equation (1.1),
when g(t, x(t)) = x(t):

x(t) = F (t, x(t), IFr(t, s, a, b, x,K1, h1), IV o(t, s, a, x,K2, h2)), (2.5)

where we used the same notations for IFr and IV o as at the beginning of the first
section.

Let us consider this integral equation in the following hypotheses:

(i) F ∈ C([a, b]× R3), K1,K2 ∈ C([a, b]× [a, b]), h1 ∈ C([a, b]× R3),
h2 ∈ C([a, b]× R2);
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(ii) there exist α, β, γ > 0, such that:

|F (t, u1, v1, w1)− F (t, u2, v2, w2)| ≤ α|u1 − u2|+ β|v1 − v2|+ γ|w1 − w2|,

for all t ∈ [a, b], ui, vi, wi ∈ R, i = 1, 2;
(iii) there exist L1, L2 > 0, such that:

|h1(s, u1, u2, u3)− h1(s, v1, v2, v3)| ≤ L1(|u1 − v1|+ |u2 − v2|+ |u3 − v3|),

for all s ∈ [a, b], ui, vi ∈ R, i = 1, 2, 3;

|h2(s, u1, u2)− h1(s, v1, v2)| ≤ L2(|u1 − v1|+ |u2 − v2|),

for all s ∈ [a, b], ui, vi ∈ R, i = 1, 2;
(iv) α+ (3βM1L1 + 2γM2L2)(b− a) < 1,

where we denoted by M1 and M2 respectively, two positive constants, such that
|K1(t, s)| ≤M1 and |K2(t, s)| ≤M2, for all t, s ∈ [a, b].

Then the integral equation (1.1) has a unique solution x∗ ∈ C[a, b], that can be
obtained by the successive approximations method starting at any element x0 ∈
C[a, b]. Moreover, if xn is the n-th successive approximation, then we have:

‖x∗ − xn‖C ≤
[α+ (3βM1L1 + 2γM2L2)(b− a)]n

1− α− (3βM1L1 + 2γM2L2)(b− a)
· ‖x0 − x1‖C . (2.6)

In order to prove this result, we applied the Theorem 2.1 in particular case of

g(t, x(t)) = x(t).

Remark 2.6. A similar result can be obtained for the solution of integral equation

x(t) = F (t, x(a), IFr(t, s, a, b, x,K1, h1), IV o(t, s, a, x,K2, h2)), (2.7)

by applying the Theorem 2.1 in particular case of g(t, x(t)) = x(a).

Remark 2.7. In the paper [9] has been studied the existence and uniqueness of the
solution of nonlinear Fredholm-Volterra functional-integral equation:

x(t) = F (t, x(a),

∫ b

a

K1(t, s, x(g1(s)))ds,

∫ t

a

K2(t, s, x(g2(s)))ds). (2.8)

3. Comparison results and Gronwall lemmas

We present below a comparison result and two Gronwall-type lemmas for the
solution of the integral equation (1.1). These results have been obtained by using
the Picard operators technique and applying the Abstract Comparison Lemma, the
Abstract Gronwall Lemma and the Abstract Gronwall-Comparison Lemma as in [4],
[5], [15] for particular operatorial equations.

In order to obtain a comparison result, we consider the integral equations:

x(t) = Fi(t, g(t, x(t)), IiFr(t, s, a, b, x,K1, h
i
1), IiV o(t, s, a, x,K2, h

i
2)), (3.1)
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where we denoted:

IiFr(t, s, a, b, x,K1, h
i
1) =

∫ b

a

K1(t, s) · hi1(s, x(s), x(a), x(b))ds

IiV o(t, s, a, x,K2, h
i
2) =

∫ t

a

K2(t, s) · hi2(s, x(s), x(a))ds

where

Fi ∈ C([a, b]× R3), g ∈ C([a, b]× R),

K1,K2 ∈ C([a, b]× [a, b],R+), hi1 ∈ C([a, b]× R3),

hi2 ∈ C([a, b]× R2), i = 1, 2, 3.

We have:

Theorem 3.1. Suppose that:

(i) the functions Fi, g,K1,K2, h
i
1, h

i
2, i = 1, 2, 3 satisfy the conditions of Theorem

2.1, and let x∗i be the unique solution of the integral equation (3.1) corresponding
to Fi, h

i
1, h

i
2, i = 1, 2, 3;

(ii) the functions F2(t, ·, ·, ·), h21(t, ·, ·, ·), h22(t, ·, ·) are increasing;
(iii) F1 ≤ F2 ≤ F3, h11 ≤ h21 ≤ h31 and h12 ≤ h22 ≤ h32.

Then

x∗1 ≤ x∗2 ≤ x∗3.

Proof. We consider the Banach space X = (C[a, b], ‖ · ‖C) and the operators Ai :
X → X, defined by the relation (2.2) corresponding to functions Fi, g,K1,K2, h

i
1, h

i
2,

i = 1, 2, 3:

Ai(x)(t) = Fi(t, g(t, x(t)), IiFr(t, s, a, b, x,K1, h
i
1), IiV o(t, s, a, x,K2, h

i
2)).

From condition (i) it results that the operators Ai : X → X, i = 1, 2, 3 are PO’s and
therefore each of these operators has a unique fixed point, FAi

= {x∗i }.
From condition (ii) we deduce that the operator A2 is increasing and from condition
(iii) we obtain that A1 ≤ A2 ≤ A3.
Now, applying the Abstract Comparison Lemma (Lemma 1.6), it results that

x1 ≤ x2 ≤ x3 =⇒ A∞1 (x1) ≤ A∞2 (x2) ≤ A∞3 (x3),

but A1, A2, A3 are PO’s and then by Remark 1.7, the conclusion of this theorem
follows, i.e. x∗1 ≤ x∗2 ≤ x∗3. The proof is complete. �

For the solution of the integral equation (1.1) we present below, the following
two Gronwall-type lemmas.

Theorem 3.2. We suppose that:

(i) F ∈ C([a, b]× R3), K1,K2 ∈ C([a, b]× [a, b],R+), h1 ∈ C([a, b]× R3),
h2 ∈ C([a, b]× R2), g ∈ C([a, b]× R);

(ii) F,K1,K2, h1, h2, g satisfy the conditions (i)-(iii) of Theorem 2.1, and denote by
x∗ ∈ C[a, b] the unique solution of the integral equation (1.1);

(iii) h1(s, ·, ·, ·) : R3 → R, h2(s, ·, ·) : R2 → R are increasing functions for all s ∈ [a, b];
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(iv) F (t, ·, ·, ·) : R3 → R is increasing function for all t ∈ [a, b].

Under these conditions, the following statements are true:

(a) if x is a lower-solution of integral equation (1.1) then x ≤ x∗;
(b) if x is a upper-solution of integral equation (1.1) then x ≥ x∗.

Proof. We consider the operator A : X → X, defined by (2.2). From conditions (i)
and (ii) it results that this operator is PO and denote by x∗ the unique fixed point of
A. From the assumptions (i), (iii) and (iv) it results that the operator A is increasing.

Now, the conditions of the Abstract Gronwall Lemma (Lemma 1.8), being satis-
fied, it results that the conclusions of this theorem:

– if x is a lower-solution of the integral equation (1.1), i.e. x ≤ A(x), then x ≤ x∗;
– if x is a upper-solution of the integral equation (1.1), i.e. x ≥ A(x), then x ≥ x∗,

are true. The proof is complete. �

To obtain an effective Gronwall-type lemma, it can use the Abstract Gronwall-
Comparison Lemma (Lemma 1.9), and we obtain a result that we present below.

Theorem 3.3. We consider the integral equation (1.1) corresponding to Fi, g, K1, K2,
hi1, hi2, for i = 1, 2. We assume that:

(i) Fi ∈ C([a, b]× R3), K1,K2 ∈ C([a, b]× [a, b],R+), hi1 ∈ C([a, b]× R3),
hi2 ∈ C([a, b]× R2), g ∈ C([a, b]× R), i = 1, 2;

(ii) Fi, g,K1,K2, h
i
1, h

i
2 satisfy the conditions (i)-(iii) of Theorem 2.1, for i = 1, 2;

(iii) h11(s, ·, ·, ·) : R3 → R, h12(s, ·, ·) : R2 → R are increasing functions for all s ∈ [a, b];
(iv) F1(t, ·, ·, ·) : R3 → R, g(t, ·) : R→ R are increasing functions for all t ∈ [a, b].
(v) F1 ≤ F2, h

1
1 ≤ h21 and h12 ≤ h22.

If x is a solution of integral inequality

x(t) ≤ F1(t, g(t, x(t)), I1Fr(t, s, a, b, x,K1, h
1
1), I1V o(t, s, a, x,K2, h

1
2)), (3.2)

where

I1Fr(t, s, a, b, x,K1, h
1
1) =

∫ b

a

K1(t, s) · h11(s, x(s), x(a), x(b))ds

I1V o(t, s, a, x,K2, h
1
2) =

∫ t

a

K2(t, s) · h12(s, x(s), x(a))ds,

then x ≤ x∗2 , where x∗2 is the unique solution of integral equation (1.1) corresponding
to F2, g,K1,K2, h

2
1, h

2
2:

x(t) = F2(t, g(t, x(t)), I2Fr(t, s, a, b, x,K1, h
2
1), I2V o(t, s, a, x,K2, h

2
2)),

where

I2Fr(t, s, a, b, x,K1, h
2
1) =

∫ b

a

K1(t, s) · h21(s, x(s), x(a), x(b))ds

I2V o(t, s, a, x,K2, h
2
2) =

∫ t

a

K2(t, s) · h22(s, x(s), x(a))ds.



560 Maria Dobriţoiu

Proof. We consider the operator A1, A2 defined by (2.2), corresponding to F1, g, K1,
K2, h11, h12 and F2, g, K1, K2, h21, h22.

From Theorem 2.1 we have that A1 and A2 are POs, and we denote by x∗i the
unique fixed point of operator Ai, i = 1, 2.

From condition (ii) it results that A1 is increasing and from condition (iii) we
obtain that A1 ≤ A2.

If x is a solution of (3.2), then x ≤ A1(x).

Now, we apply the Abstract Gronwall-Comparison Lemma (Lemma 1.9), and
we obtain the conclusion of the theorem. The proof is complete. �

4. Data dependence

In order to study the data dependence of the solution of the integral equation
(1.1) we consider the following perturbed integral equation:

x(t) = F (t, g(t, x(t)), IFr(t, s, a, b, x,K1, k1), IV o(t, s, a, x,K2, k2)), (4.1)

where

IFr(t, s, a, b, x,K1, k1) =

∫ b

a

K1(t, s) · k1(s, x(s), x(a), x(b))ds

IV o(t, s, a, x,K2, k2) =

∫ t

a

K2(t, s) · k2(s, x(s), x(a))ds

and

F : [a, b]× R3 → R, K1,K2 : [a, b]× [a, b]→ R,
k1 : [a, b]× R3 → R, k2 : [a, b]× R2 → R, g : [a, b]× R→ R.

We have the following data dependence theorem of the solution of the integral equation
(1.1):

Theorem 4.1. Suppose that:

(i) F,K1,K2, h1, h2, g satisfy the conditions of Theorem 2.1 and we denote by x∗ ∈
C[a, b] the unique solution of integral equation (1.1);

(ii) k1 ∈ C([a, b]× R3), k2 ∈ C([a, b]× R2);
(iii) there exists η1, η2 > 0 such that

|h1(s, u, v, w)− k1(s, u, v, w)| ≤ η1, for all s ∈ [a, b], u, v, w ∈ R, and
|h2(s, u, v)− k2(s, u, v)| ≤ η2, for all s ∈ [a, b], u, v ∈ R.

Under these conditions, if y∗ ∈ C[a, b] is a solution of the integral equation (4.1), then
we have:

‖x∗ − y∗‖C ≤
(M1η1 +M2η2)(b− a)

1− αL3 − (3βM1L1 + 2γM2L2)(b− a)
. (4.2)
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Proof. We consider the operator from the proof of Theorem 2.1, A : C[a, b]→ C[a, b],
attached to integral equation (1.1) and defined by the relation (2.2):

A(x)(t) = F (t, g(t, x(t)), IFr(t, s, a, b, x,K1, h1), IV o(t, s, a, x,K2, h2)),

for all t ∈ [a, b].
From condition (i) it results that the operator A is a LA-contraction with the

coefficient

LA = αL3 + (3βM1L1 + 2γM2L2)(b− a)

(Theorem 2.1) and therefore, A is c-PO with c = 1
1−LA

.

Also, we attach to the integral equation (4.1) the operator B : C[a, b]→ C[a, b],
defined by the relation:

B(x)(t) = F (t, g(t, x(t)), IFr(t, s, a, b, x,K1, k1), IV o(t, s, a, x,K2, k2)) (4.3)

for all t ∈ [a, b].
From conditions (i) and (ii) it results that the operator B is correctly defined.
The set of the solutions of the perturbed integral equation (4.1) in the space C[a, b]
coincides with the fixed points set of the operator B defined by the relation (4.3).
We have:

|A(x)(t)−B(x)(t)| = |F (t, g(t, x(t)), IFr(t, s, a, b, x,K1, h1), IV o(t, s, a, x,K2, h2))

− F (t, g(t, y(t)), IFr(t, s, a, b, y,K1, k1), IV o(t, s, a, y,K2, k2))|

and from condition (iii) it results that

|A(x)(t)−B(x)(t)| ≤ (M1η1 +M2η2)(b− a), for all t ∈ [a, b].

Now, using the Chebyshev’s norm, we obtain:

‖A(x)−B(x)‖C ≤ (M1η1 +M2η2)(b− a) (4.4)

and applying the General Data Dependence Theorem (Theorem 1.10), with

c =
1

1− LA
and η = (M1η1 +M2η2)(b− a),

it results the estimation (4.2). The proof is complete. �

5. Ulam-Hyers stability

Theorem 5.1. Under the conditions of Theorem 2.1, the integral equation (1.1) is
Ulam-Hyers stable, i.e. for ε > 0 and y∗ ∈ C[a, b] a solution of the inequation

|y(t)− F (t, g(t, y(t)), IFr(t, s, a, b, y,K1, h1), IV o(t, s, a, y,K2, h2))| ≤ ε

for all t ∈ [a, b], there exists a solution of the integral equation (1.1), x∗ ∈ C([a, b],
such that

|y∗(t)− x∗(t)| ≤ 1

1− LA
ε, for all t ∈ [a, b],

where

LA = αL3 + (3βM1L1 + 2γM2L2)(b− a).
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Proof. We consider the operator A, defined by the relation (2.2). Under the conditions
of Theorem 2.1, it results that the operator A is a contraction and therefore, A is c-PO
with the constant c = 1

1−LA
,

LA = αL3 + (3βM1L1 + 2γM2L2)(b− a).

Now, the conclusion of this theorem is obtained as an application of the Remark 1.12
(I.A.Rus [21], Remark 2.1) anf the proof is complete. �
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Bucureşti, 2005.
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