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Korovkin type approximation on an infinite
interval via generalized matrix summability
method using ideal
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Abstract. Following the notion of AI-summability method for real sequences [24]
we establish a Korovkin type approximation theorem for positive linear operators
on UC∗[0,∞), the Banach space of all real valued uniform continuous functions on
[0,∞) with the property that lim

x→∞
f(x) exists finitely for any f ∈ UC∗[0,∞). In

the last section, we extend the Korovkin type approximation theorem for positive
linear operators on UC∗ ([0,∞)× [0,∞)). We then construct an example which
shows that our new result is stronger than its classical version.
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1. Introduction and background

Throughout the paper N will denote the set of all positive integers. For a sequence
{Ln}n∈N of positive linear operators on C(X), the space of real valued continuous
functions on a compact subset X of real numbers, Korovkin [17] first established the
necessary and sufficient conditions for the uniform convergence of {Ln(f)}n∈N to a
function f by using the test functions e1 = 1, e2 = x, e3 = x2 [1]. The study of
the Korovkin type approximation theory has a long history and is a well-established
area of research. In recent years, using the concept of uniform statistical convergence
various statistical approximation results have been proved ([9]). Erkuş and Duman
[13] studied a Korovkin type approximation theorem via A-statistical convergence in
the space Hw(I2) where I2 = [0,∞)× [0,∞) which was extended for double sequences
of positive linear operators of two variables in A-statistical sense by Demirci and Dirik
in [6, 8]. Further it was extended for double sequences of positive linear operators of
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two variables in AI2 -statistical sense and in the sense of AI2 -summability method, by
Dutta et. al. [11, 10].

Our primary interest, in this paper, is to obtain general Korovkin type ap-
proximation theorem for positive linear operators on the space UC∗(D), the Ba-
nach space of all real valued uniform continuous functions on D := [0,∞) with the
property that limx→∞ f(x) exists and finite, endowed with the supremum norm

‖f‖∗ = supx∈D | f(x) | for f ∈ UC∗(D), using the concept of A
I
-summability

method for real sequences and test functions 1, e−x, e−y. In the last section, we ex-
tend the Korovkin-type approximation theorem for double sequence of positive linear
operators on UC∗ ([0,∞)× [0,∞)). We also construct an example which shows that
our new result is stronger than its classical version.

The concept of convergence of a sequence of real numbers was extended to sta-
tistical convergence by Fast [14]. Further investigations started in this area after the
pioneering works of Šalát [22] and Fridy [15]. The notion of I-convergence of real
sequences was introduced by Kostyrko et. al. [18] as a generalization of statistical
convergence using the notion of ideals. On the other hand statistical convergence was
generalized to A-statistical convergence by Kolk ([16]). Later a lot of works have been
done on matrix summability and A-statistical convergence (see [2, 3, 5, 12, 16, 19, 23]).
In particular, in [25, 24] the very general notion of AI-statistical convergence and AI-
summability was introduced and studied.

Recall that a real double sequence {xmn}m,n∈N is said to be convergent to L in
Pringsheim’s sense if for every ε > 0 there exists N(ε) ∈ N such that |xmn−L| < ε for
all m,n > N(ε) and denoted by lim

m,n
xmn = L. A double sequence is called bounded

if there exists a positive number M such that |xmn| ≤ M for all (m,n) ∈ N × N. A
real double sequence {xmn}m,n∈N is statistically convergent to L if for every ε > 0,

lim
j,k

|{m ≤ j, n ≤ k : |xmn − L| ≥ ε}|
jk

= 0 [20].

Recall that a family I ⊂ 2Y of subsets of a nonempty set Y is said to be an
ideal in Y if (i)A,B ∈ I implies A∪B ∈ I; (ii)A ∈ I, B ⊂ A implies B ∈ I, while an
admissible ideal I of Y further satisfies {x} ∈ I for each x ∈ Y . If I is a non-trivial
proper ideal in Y (i.e. Y /∈ I, I 6= {∅}) then the family of sets F (I) = {M ⊂ Y : there
exists A ∈ I : M = Y \A} is a filter in Y . It is called the filter associated with the ideal
I. A non-trivial ideal I of N× N is called strongly admissible if {i} × N and N× {i}
belong to I for each i ∈ N. It is evident that a strongly admissible ideal is admissible
also. Let I0 = {A ⊂ N×N : there is m(A) ∈ N such that i, j ≥ m(A) =⇒ (i, j) /∈ A}.
Then I0 is a non-trivial strongly admissible ideal [4].

2. A Korovkin type approximation for a sequence of positive linear
operators of single variable

Throughout this section I denotes the non-trivial admissible ideal on N. If
{xk}k∈N is a sequence of real numbers and A = (ank)∞n,k=1 is an infinite matrix,
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then Ax is the sequence whose n-th term is given by

An(x) =

∞∑
k=1

ankxk.

A matrix A is called regular if A ∈ (c, c) and

lim
k→∞

Ak (x) = lim
k→∞

xk for all x = {xk}k∈N ∈ c

when c, as usual, stands for the set of all convergent sequences. It is well-known that
the necessary and sufficient conditions for A to be regular are

R1) ||A|| = sup
n

∑
k

|ank| <∞;

R2) lim
n
ank = 0, for each k;

R3) lim
n

∑
k

ank = 1.

We first recall the following definition

Definition 2.1. [25] Let A = (ank) be a non-negative regular summability matrix.
Then a real sequence x = {xk}k∈N is said to be AI-summable to a number L if for

every ε > 0, {n ∈ N : |An(x)− L| ≥ ε} ∈ I where An(x) =

∞∑
k=1

ankxk.

Thus x = {xk}k∈N is AI-summable to a number L if and only if {An(x)}n∈N is

I-convergent to L. In this case, we write I − lim
n

∑
k∈N

ankxk = L.

It should be noted that for I = Id, the set of all subsets of N with natural
density zero, AI-summability reduces to statistical A-summability [12].

We now establish a Korovkin type approximation theorem for positive linear
operators on UC∗[0,∞), the Banach space of all real valued uniform continuous func-
tions on [0,∞) with the property that lim

x→∞
f(x) exists finitely for any f ∈ UC∗[0,∞).

If L be a positive linear operator then L(f) ≥ 0 for any positive function f. Also we
denote the value of L(f) at a point x ∈ [0,∞) by L(f ;x).

Theorem 2.2. Let {Ln} be a sequence of positive linear operators from UC∗[0,∞)
into itself and let, A = (ajn) be a non-negative regular summability matrix then for
all f ∈ UC∗[0,∞)

I − lim
n

∥∥∥∥∥
∞∑
k=1

ankLk(f)− f

∥∥∥∥∥
∗

= 0

if and only if the following statements hold

I − lim
n

∥∥∥∥∥
∞∑
k=1

ankLk(e−pt)− e−px
∥∥∥∥∥
∗

= 0, p = 0, 1, 2.
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Proof. Since the necessity is clear, then it is enough to proof sufficiency. Our objective
is to show that for given ε > 0 there exist constants C0 , C1 , C2 (depending on ε > 0)
such that ∥∥∥∥∥

∞∑
k=1

ankLk(f)− f

∥∥∥∥∥
∗

≤ ε+ C2

∥∥∥∥∥
∞∑
k=1

ankLk(e−2t)− e−2x
∥∥∥∥∥
∗

+ C1

∥∥∥∥∥
∞∑
k=1

ankLk(e−t)− e−x
∥∥∥∥∥
∗

+ C0

∥∥∥∥∥
∞∑
k=1

ankLk(1)− 1

∥∥∥∥∥
∗

.

If this is done then our hypothesis implies that for any ε > 0,{
n ∈ N :

∥∥∥∥∥
∞∑
k=1

ankLk(f)− f

∥∥∥∥∥ ≥ ε
}
∈ I.

Let f ∈ UC∗[0,∞) then ∃ a constant M such that | f(x) |≤ M for each x ∈ [0,∞).
Let ε be an arbitrary positive number. By hypothesis we may find δ := δ(ε) > 0 such
that for every t, x ∈ [0,∞), | e−t − e−x |< δ implies | f(t)− f(x) |< ε. We can write
| f(t)− f(x) |< 2M ∀ t, x ∈ [0,∞). Also if | e−t − e−x |≥ δ then

| f(t)− f(x) |< 2M

δ2
(e−t − e−x)2.

Then for all t, x ∈ [0,∞),

| f(t)− f(x) |< ε+
2M

δ2
(e−t − e−x)2.

Then for n ∈ N, using the linearity and the positivity of the operators Ln,∣∣∣∣∣
∞∑
k=1

ankLk(f(t);x)− f(x)

∣∣∣∣∣ ≤
∞∑
k=1

ankLk(| f(t)− f(x) |;x)

+ | f(x) |

∣∣∣∣∣
∞∑
k=1

ankLk(1;x)− 1

∣∣∣∣∣
≤
∞∑
k=1

ankLk(ε+
2M

δ2
(e−t − e−x)2;x)+ | f(x) |

∣∣∣∣∣
∞∑
k=1

ankLk(1;x)− 1

∣∣∣∣∣
≤ ε+ (ε+M)

∣∣∣∣∣
∞∑
k=1

ankLk(1;x)− 1

∣∣∣∣∣+
2M

δ2

∞∑
k=1

ankLk((e−t − e−x)2;x)

≤ ε+ (ε+M)

∣∣∣∣∣
∞∑
k=1

ankLk(1;x)− 1

∣∣∣∣∣+
2M

δ2
| e−2x |

∣∣∣∣∣
∞∑
k=1

ankLk(1;x)− 1

∣∣∣∣∣
+

2M

δ2

∣∣∣∣∣
∞∑
k=1

ankLk(e−2t;x)− e−2x
∣∣∣∣∣+

4M

δ2
| e−x |

∣∣∣∣∣
∞∑
k=1

ankLk(e−t;x)− e−x
∣∣∣∣∣
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where | e−kt |≤ 1 ∀ t ∈ [0,∞) and k ∈ N.
Then taking supremum over x ∈ [0,∞) we have∥∥∥∥∥
∞∑
k=1

ankLk(f)− f

∥∥∥∥∥
∗

≤ ε+K

{∥∥∥∥∥
∞∑
k=1

ankLk(1)− 1

∥∥∥∥∥
∗

+

∥∥∥∥∥
∞∑
k=1

ankLk(e−t)− e−x
∥∥∥∥∥
∗

+

∥∥∥∥∥
∞∑
k=1

ankLk(e−2t)− e−2x
∥∥∥∥∥
∗

}
where

K = max

{
ε+M +

2M

δ2
,

2M

δ2
,

4M

δ2

}
.

For a given r > 0 choose ε > 0 such that ε < r let us define the following sets

D =

{
n ∈ N :

∥∥∥∥∥
∞∑
k=1

ankLk(f)− f

∥∥∥∥∥
∗

≥ r

}

D1 =

{
n ∈ N :

∥∥∥∥∥
∞∑
k=1

ankLk(1)− 1

∥∥∥∥∥
∗

≥ r − ε
3K

}

D2 =

{
n ∈ N :

∥∥∥∥∥
∞∑
k=1

ankLk(e−t)− e−x
∥∥∥∥∥
∗

≥ r − ε
3K

}

D3 =

{
n ∈ N :

∥∥∥∥∥
∞∑
k=1

ankLk(e−2t)− e−2x
∥∥∥∥∥
∗

≥ r − ε
3K

}
.

It follows that D ⊂ D1 ∪D2 ∪D3. Since from hypotheses D1, D2, D3 are belong to
I so D ∈ I i.e. {

n ∈ N :

∥∥∥∥∥
∞∑
k=1

ankLk(f)− f

∥∥∥∥∥ ≥ ε
}
∈ I

and this completes the proof. �

3. A Korovkin type approximation for a sequence of positive linear
operators of two variables

Throughout this section I denotes the non-trivial strongly admissible ideal on
N×N. Let A = (ajkmn) be a four dimensional summability matrix. For a given double
sequence {xmn}m,n∈N, the A-transform of x, denoted by Ax := ((Ax)jk), is given by

(Ax)jk =
∑

(m,n)∈N2

ajkmnxmn

provided the double series converges in Pringsheim sense for every (j, k) ∈ N2. In
1926, Robison [21] presented a four dimensional analog of the regularity by consider-
ing an additional assumption of boundedness. This assumption was made because a
convergent double sequence is not necessarily bounded.
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Recall that a four dimensional matrix A = (ajkmn) is said to be RH-regular if it
maps every bounded convergent double sequence into a convergent double sequence
with the same limit. The Robison-Hamilton conditions state that a four dimensional
matrix A = (ajkmn) is RH-regular if and only if

(i) lim
j,k

ajkmn = 0 for each (m,n) ∈ N2,

(ii) lim
j,k

∑
(m,n)∈N2

ajkmn = 1,

(iii) lim
j,k

∑
m∈N
|ajkmn| = 0 for each n ∈ N,

(iv) lim
j,k

∑
n∈N
|ajkmn| = 0 for each m ∈ N,

(v)
∑

(m,n)∈N2

|ajkmn| is convergent for each (j, k) ∈ N2,

(vi) there exist finite positive integers M0 and N0 such that
∑

m,n>N0

|ajkmn| < M0

holds for every (j, k) ∈ N2.
Let A = (ajkmn) be a nonnegative RH-regular summability matrix and let K ⊂ N2.
Then the A-density of K is given by

δ
(2)
A {K} = lim

j,k

∑
(m,n)∈K

ajkmn.

Recall the following definition

Definition 3.1. [10] Let A = (ajkmn) be a nonnegative RH-regular summability ma-
trix. Then a real double sequence x = {xmn}m,n∈N is said to be AI2 -summable to a
number L if for every ε > 0,

{
(j, k) ∈ N2 : |(Ax)j,k − L| ≥ ε

}
∈ I.

Thus x = {xmn}m,n∈N is AI2 -summable to a number L if and only if (Ax)j,k is

I-convergent to L. In this case, we write I2 − lim
j,k

∑
(m,n)∈N2

ajkmnxmn = L.

It should be noted that, if we take I = Id, the set of all subsets of N × N
with natural density zero, then AI2 -summability reduces to the notion of statistical
A-summability for double sequence [2].

We now establish the Korovkin type approximation theorem for a double se-
quence of positive linear operators on UC∗ ([0,∞)× [0,∞)), the Banach space of all
real valued uniform continuous functions defined on [0,∞)× [0,∞) with the property
that lim

(x,y)→(∞,∞)
f(x, y) exists finitely for any f ∈ UC∗ ([0,∞)× [0,∞)) endowed with

the supremum norm ||f ||∗ = sup
x,y∈[0,∞)

|f(x, y)|, in AI2 -summability method. If L be a

positive linear operator then L(f) ≥ 0 for any positive function f. Also we denote the
value of L(f) at a point (x, y) ∈ [0,∞)× [0,∞) by L(f ;x, y).

Theorem 3.2. Assume K := [0,∞) × [0,∞) and let {Lmn}m,n∈N be a sequence of
positive linear operators on UC∗ (K), the Banach space of all real valued uniform
continuous functions defined on K with the property that lim

(x,y)→(∞,∞)
f(x, y) exists
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finitely for any f ∈ UC∗ (K) and let A = (ajkmn) be a non-negative RH-regular
summability matrix. Then for any f ∈ UC∗ (K),

I2 − lim
j,k

∥∥∥∥∥∥
∑

(m,n)∈N2

ajkmnLmn(f)− f

∥∥∥∥∥∥
∗

= 0

is satisfied if the following hold

I2 − lim
j,k

∥∥∥∥∥∥
∑

(m,n)∈N2

ajkmnLmn(fi)− fi

∥∥∥∥∥∥
∗

= 0, i = 0, 1, 2, 3 (3.1)

where f0 = 1, f1 = e−x, f2 = e−y, f3 = e−2x + e−2y.

Proof. Assume that (3.1) holds. Let f ∈ UC∗ (K). Our objective is to show that for
given ε > 0 there exist constants C0, C1, C2, C3 (depending on ε > 0) such that∥∥∥∥∥∥

∑
(m,n)∈N2

ajkmnLmn(f)− f

∥∥∥∥∥∥
∗

≤ ε+

3∑
i=0

Ci

∥∥∥∥∥∥
∑

(m,n)∈N2

ajkmnLmn(fi)− fi

∥∥∥∥∥∥
∗

.

If this is done then our hypothesis implies that for any ε > 0 ,

{(j, k) ∈ N2 : ‖
∑

(m,n)∈N2

ajkmnLmn(f)− f‖∗ ≥ ε} ∈ I.

To this end, start by observing that for each (u, v) ∈ K the function 0 ≤ guv ∈ UC∗ (K)
defined by

guv(s, t) = (e−s − e−u)2 + ((e−t − (e−v)2

satisfies

guv = (e−x)2 + (e−y)2 − 2e−ue−x − 2e−ve−y + (e−u)2 + (e−v)2.

Since each Lmn is a positive operator, Lmnguv is a positive function. In particular,
we have for each (u, v) ∈ K,

0 ≤
∑

(m,n)∈N2

ajkmnLmn(guv)(u, v)

=

 ∑
(m,n)∈N2

ajkmnLmn

((
e−x

)2
+
(
e−y
)2−2e−ue−x − 2e−ve−y +

(
e−u

)2
+
(
e−v
)2

;u, v
)

=

 ∑
(m,n)∈N2

ajkmnLmn

((
e−x

)2
+
(
e−y
)2

;u, v
)
−
(
e−u

)2 − (e−v)2


−2e−u

 ∑
(m,n)∈N2

ajkmnLmn

(
e−x;u, v

)
− e−u


−2e−v

 ∑
(m,n)∈N2

ajkmnLmn

(
e−y;u, v

)
− e−v





250 Sudipta Dutta and Rima Ghosh

+
{(
e−u

)2
+
(
e−v
)2} ∑

(m,n)∈N2

ajkmnLmn(f0)− f0


≤

∥∥∥∥∥∥
∑

(m,n)∈N2

ajkmnLmn(f3)− f3

∥∥∥∥∥∥
∗

+ 2e−u

∥∥∥∥∥∥
∑

(m,n)∈N2

ajkmnLmn(f1)− f1

∥∥∥∥∥∥
∗

+2e−v

∥∥∥∥∥∥
∑

(m,n)∈N2

ajkmnLmn(f2)− f2

∥∥∥∥∥∥
∗

+
{(
e−u

)2
+
(
e−v
)2}∥∥∥∥∥∥

∑
(m,n)∈N2

ajkmnLmn(f0)− f0

∥∥∥∥∥∥
∗

.

Let f ∈ UC∗ (K). Then there exists a constant M such that |f(x, y)| ≤ M for each
(x, y) ∈ K. Let ε > 0 be arbitrary. Then by the uniform continuity of f on K there
exists a δ = δ(ε) > 0 such that if | e−x − e−u |< δ and | e−y − e−v |< δ then

| f(x, y)− f(u, v) |< ε+
2M

δ2

[(
e−x − e−u

)2
+
(
e−y − e−v

)2]
for all (x, y), (u, v) ∈ K.
Since each Lmn is positive and linear it follows that

−ε
∑

(m,n)∈N2

ajkmnLmn(f0)− 2M

δ2

∑
(m,n)∈N2

ajkmnLmn(guv)

≤
∑

(m,n)∈N2

ajkmnLmn(f)− f(u, v)Lmn(f0)

≤ ε
∑

(m,n)∈N2

ajkmnLmn(f0) +
2M

δ2

∑
(m,n)∈N2

ajkmnLmn(guv).

Therefore ∣∣∣∣∣∣
∑

(m,n)∈N2

ajkmnLmn(f ;u, v)− f(u, v)Lmn(f0;u, v)

∣∣∣∣∣∣
≤ ε+ ε

 ∑
(m,n)∈N2

ajkmnLmn(f0;u, v)− f0(u, v)

+
2M

δ2

∑
(m,n)∈N2

ajkmnLmn(guv)

≤ ε+ ε

∥∥∥∥∥∥
∑

(m,n)∈N2

ajkmnLmn(f0)− f0

∥∥∥∥∥∥+
2M

δ2

∑
(m,n)∈N2

ajkmnLmn(guv).

In particular, note that ∣∣∣∣∣∣
∑

(m,n)∈N2

ajkmnLmn(f ;u, v)− f(u, v)

∣∣∣∣∣∣
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≤

∣∣∣∣∣∣
∑

(m,n)∈N2

ajkmnLmn(f ;u, v)− f(u, v)
∑

(m,n)∈N2

ajkmnLmn(f0;u, v)

∣∣∣∣∣∣
+

∣∣∣∣∣∣
∑

(m,n)∈N2

ajkmnf(u, v)

∣∣∣∣∣∣
∣∣∣∣∣∣
∑

(m,n)∈N2

ajkmnLmn(f0;u, v)− f0(u, v)

∣∣∣∣∣∣
≤ ε+ (M + ε)

∥∥∥∥∥∥
∑

(m,n)∈N2

ajkmnLmn(f0)− f0

∥∥∥∥∥∥
∗

+
2M

δ2

∑
(m,n)∈N2

ajkmnLmn(guv)

which implies∥∥∥∥∥∥
∑

(m,n)∈N2

ajkmnLmn(f)− f

∥∥∥∥∥∥
∗

≤ ε+ C3

∥∥∥∥∥∥
∑

(m,n)∈N2

ajkmnLmn(f3)− f3

∥∥∥∥∥∥
∗

+ C2

∥∥∥∥∥∥
∑

(m,n)∈N2

ajkmnLmn(f2)− f2

∥∥∥∥∥∥
∗

+ C1

∥∥∥∥∥∥
∑

(m,n)∈N2

ajkmnLmn(f1)− f1

∥∥∥∥∥∥
∗

+ C0

∥∥∥∥∥∥
∑

(m,n)∈N2

ajkmnLmn(f0)− f0

∥∥∥∥∥∥
∗

where there exist such A and B such that

C0 =

[
2M

δ2
{(e−A)2 + (e−B)2}+M + ε

]
, C1 =

4M

δ2
e−A,

C2 =
4M

δ2
e−B and C3 =

2M

δ2
.

i.e.∥∥∥∥∥∥
∑

(m,n)∈N2

ajkmnLmn(f)−f

∥∥∥∥∥∥
∗

≤ ε+C

3∑
i=0

∥∥∥∥∥∥
∑

(m,n)∈N2

ajkmnLmn(fi)−fi

∥∥∥∥∥∥
∗

, i = 0, 1, 2, 3

where C = max{C0, C1, C2, C3}.
For a given γ > 0, choose ε > 0 such that ε < γ. Now let

U =

(j, k) ∈ N2 :

∥∥∥∥∥∥
∑

(m,n)∈N2

ajkmnLmn(f)− f

∥∥∥∥∥∥
∗

≥ γ


and

Ui =

(j, k) ∈ N2 :

∥∥∥∥∥∥
∑

(m,n)∈N2

ajkmnLmn(fi)− fi

∥∥∥∥∥∥
∗

≥ γ − ε
4C

 , i = 0, 1, 2, 3.
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It follows that U ⊂
3⋃

i=0

Ui. By hypotheses each Ui ∈ I, i = 0, 1, 2, 3 and consequently

U ∈ I i.e. (j, k) ∈ N2 :

∥∥∥∥∥∥
∑

(m,n)∈N2

ajkmnLmn(f)− f

∥∥∥∥∥∥
∗

≥ γ

 ∈ I.
This completes the proof of the theorem. �

Remark 3.3. We now show that our theorem is stronger than the statistical A-
summable version [7] (and so the classical version). Let I be a non-trivial strongly
admissible ideal of N × N. Choose an infinite subset C = {(pi, qi) : i ∈ N} (where
pi 6= qi, p1 < p2 < ..., and q1 < q2 < ...) from I \ Id where Id denotes the set of all
subsets of N× N with natural density zero. Let {umn}m,n∈N be given by

umn =

{
1 if m,n are even

0 otherwise.

Let A = (ajkmn) be given by

ajkmn =


1 if j = pi, k = qi,m = 2pi, n = 2qi for some i ∈ N
1 if (j, k) 6= (pi, qi), for any i,m = 2j + 1, n = 2k + 1

0 otherwise.

Now

yj,k =
∑

(m,n)∈N2

ajkmnumn =

{
1 if j = pi, k = qi for some i ∈ N
0 if (j, k) 6= (pi, qi), for any i ∈ N.

Let ε > 0 be given. Then {(j, k) ∈ N2 : |yj,k − 0| ≥ ε} = C ∈ I. Then the sequence
{umn}m,n∈N is AI2 -summable to 0. Evidently this sequence is not statistically A-
summable to 0.

Let K = [0,∞)× [0,∞). We consider the following Baskakov operators

Bmn : UC∗(K)→ UC∗(K)

defined by

Bmn(f ;x, y)=

∞∑
j=0

∞∑
k=0

f

(
j

n
,
k

n

)(
m− 1 + j

j

)(
n− 1 + k

k

)
(1+x)−m−j(1+y)−n−kxjyk.

We now consider the double sequence {Lmn}m,n∈ N of positive linear operators defined
by

Lmn(f ;x, y) = (1 + umn)Bmn(f ;x, y).
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Then observe that

Lmn(f0;x, y) = (1 + umn)f0(x, y),

Lmn(f1;x, y) = (1 + umn)
(

1 + x− xe− 1
m

)−m
,

Lmn(f2;x, y) = (1 + umn)
(

1 + y − ye− 1
n

)−n
,

Lmn(f3;x, y) = (1 + umn)

[(
1 + x− xe− 1

m

)−m
+
(

1 + y − ye− 1
n

)−n]
.

Now as A is a nonnegative RH-regular summability matrix and {umn}m,n∈N is AI2 -
summable to 0 then for any ε > 0,(j, k) ∈ N2 : ||

∑
(m,n)∈N2

ajkmnLmn(fi)− fi||∗ ≥ ε

 ∈ I, i = 0, 1, 2, 3.

Therefore by previous theorem(j, k) ∈ N2 : ||
∑

(m,n)∈N2

ajkmnLmn(f)− f ||∗ ≥ ε

 ∈ I.
But since {umn}m,n∈N is not usual convergent and statistical A-summable so we
can say that the classical version and statistical A-summable version of the previous
theorem do not work for the operator defined above.
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[10] Dutta, S., Akdaǧ, S., Das, P., Korovkin type approximation theorem via AI2 -summability
method, Filomat, 30(2016), no. 10, 2663-2672.

[11] Dutta, S., Das, P., Korovkin type approximation theorem in AI2 -statistical sense, Mat.
Vesnik, 67(2015), no. 4, 288-300.

[12] Edely, O.H.H., Mursaleen, M., On statistical A-summability, Math. Comp. Model.,
49(2009), no. 8, 672-680
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