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Ulam stability of Volterra integral equation
on a generalized metric space
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Abstract. The aim of this paper is to give some Ulam-Hyers stability results for
Volterra integral equations on a generalized metric space. In this case we consider
the Volterra integral equation in the Krasnoselski-Krein and Naguno-Perron-Van
Kampen conditions. Here we present only Ulam-Hyers stability for the Volterra
integral equation.
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1. Introduction

The Ulam stability is an important concept in the theory of Volterra integral
equations. This problem has been studied by L.P. Castro and A. Ramos [1], N. Cadariu
and V. Radu [2], S.M. Jung [3], I.A. Rus [9], [10], I.A. Rus and N. Lungu [11]. But, on
a generalized metric spaces this problem has been studied in the papers [1] and [10]. In
what follows we shall present Ulam-Hyers stability of a Volterra integral equation on a
generalized metric space, N. Lungu [5]. Here, we consider a Volterra integral equation
in the Krasnoselski-Krein and Naguno-Perron-Van Kampen conditions. In the present
work we consider a generalized metric space (X,d), where d(z,y) € Ry U {400} is
a generalized metric on X. For these we need some notions and results from the
generalized metric spaces theory.

Let (X, d) be a generalized metric space. On X we have the following equivalence
relation:

x~y<ed(zy) <oco, Vr,yeX.

Let X = U X, be the canonical decomposition of X after this equivalence
AEA
relation. We denote

dx(w,y) = d(z,y) P
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and we have that (X, dy) is a metric space ([7]).
In this paper we need the following two theorems (see W.A.J. Luxemburg [6],
LA. Rus [7], [8]):

Theorem 1.1. Let (X,d) be a generalized complete metric space and A : X — X an
operator with the property:

3 a €10,1] such that d(x,y) < oo = d(A(z), A(y)) < ad(z,y)

forallz,y € X.

If there exists xg € X such that d(xg, A(xg)) < +00, then the operator A has at
least one fized point.
Theorem 1.2. (Luxemburg-Jung). Let (X,d) be a generalized complete metric space
and his canonical decomposition X = UXA. If A: X — X ia a contraction, then the
operator A have in every Xy, for which exists uy such that

d(uy, A(uy)) < +oo,

a unique fixed point.

2. Ulam-Hyers stability in the generalized Krasnoselski-Krein
conditions

In what follows we shall consider the following integral equation

) =)+ [ [ fostuts,0pdsar (2.1)

f:[0,a) x[0,b) x R = R, h:[0,a) x [0,b) = R,
fe€C(0,a) x [0,b) x R,R),
h e C([0,a) x [0,b),R), uw e C([0,a) x [0,b),R),
(z,y) € [0,a) x [0,b), D =[0,a) x [0,b).
Let X be the set:
X =0C(D) (2.2)
and the generalized metrics:

d: X xX —-RiU{+o0}

lui (2, y) — uz(z,y)|
(wy)PVF

d(uy,usg) :=sup (2.3)

for all uy,us € X, p>1, k>0.
It is known that the space (X, d) is a generalized complete metric space.
Let a,b € (0,00] and € > 0. In what follows we denote by A the operator

A X =X
A(u)(z,y) := the second part of (2.1).
Then the equation (2.1) becomes

u(z,y) = A(u)(z,y). (2.4)
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For the fixed point equation (2.4) we have:

Definition 2.1. ([10]) The equation (2.4) is Ulam-Hyers stable if there exists the pos-
itive real number Cy > 0 such that, for each ¢ € R} and each solution v of the
inequation
d(v, Av) <¢ (2.5)
there exists a solution u € X of (2.4) such that
d(u,v) < Cf -e.
In this case we have

Theorem 2.2. We suppose that:
(i) f: E = R is continuous and bounded on E, E =D x R;
(i1) a < 00, b < 00;
(#ii) f wverifies the generalized Krasnoselski-Krein conditions ([4]):

k
|f(x7y7u1)_f(‘r7yvu2)|S@‘ul_uﬂv k>0 (26)

[f(@,y,m) — f,y,u2)| < @\ul —usl®, >0 (2.7)

€ (031)7 ﬂ<C¥, k(]-*a)z < (176)27 5<p\/Ea xy;éO,
P*k(1 = a)® < (1= B)%, for all (z,y,u) € E.
Then the equation (2.4) is Ulam-Hyers stable.

Proof. We consider X = C(D) and X = U X. Let v be a solution of the inequation

A€EA
(2.5) and there exists A € A such that v € X . By Luxemburg-Jung theorem (Theorem
1

.2), the equation (2.4) has a unique solution u in Xj.
From (2.1), (2.5), (2.6) and (2.7), we have:

vt~ i) = [ [ flotots,opdsat

/ / |f(s,t,0(s,t)) — f(s,t,u(s,t))|dsdt. (2.8)
Hence, from (2.4), (2.6) and (2.7), we have

ole.9) = uo)] < loles) = A + [ [ Slolst) - uts,lasa,

lv(z,y) = ulz, y)| <

or
oy
o(z, ) — ulz, 9)] < (@) — AW) ()| + / / kd(u, v)(st)?VF L dsdt,
0 0

and
(zy)VF
o) = e 9)| < oo ) = Al) )| + b o)
from where we have

1
d(u,v) < e+ —d(u,v)
p
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and
P2
d(u,v) < o 1€ (2.9)

then

d(u,v) <Cy-e
where

P2
Cr = piQ —

So, from Definition 2.1, the equation (2.4) is Ulam-Hyers stable.

Example 2.3. Let us consider the equation (2.1) in the Krasnoselski-Krein conditions
(2.6)+(2.7) and

Fla,y,u) = u(z, y)aye ™Y, h(z,y) = 2%y?,

1 1
thena=_,8=_,k=1p=2.
en « 27ﬂ 37 7p )

4
In this case we have ¢y = and forp =2, ¢y = 3 hence the equation (2.1)

p
p*—1
is Ulam-Hyers stable.

3. Ulam-Hyers stability in the generalized
Naguno-Perron-Van Kampen conditions

In this case we consider the integral equation (2.1) in the same conditions. Let
X = C(D) and the generalized metrics

dXXX—>R+U{+OO}

Jui (2, y) — ua(z,y)|
(wy)P*t

d(uy,u2) = sup (3.1)
D

for all uy,us € X, p > —1.

It is known that the space (X,d) is a generalized complete metric space. Here,
we consider the stability of the equation (2.4) in the generalized Naguno-Perron-Van
Kampen conditions.

Theorem 3.1. If we have
(i) f : E — R is continuous and bounded on E;
(i1) a < 400, b < +o00;
(#ii) f wverifies the generalized Naguno-Perron-Van Kampen conditions ([12]):

|f(z,y,u)| < alzy)?, p> -1, a>0. (32)
C
‘f(xayvul) - f(x,y,u2)| < wh‘l - u2|q7 q > ]-v c> 07 (33)
c(2a)91

pgt+q—r=p, xy#0, p= <1, forall (z,y,u) € E.

(p+1)%
Then the equation (2.4) is Ulam-Hyers stable.
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Proof. Evidently, in the conditions Naguno-Perron-Van Kampen, by Luxemburg-Jung
theorem (Theorem 1.2), the equation (2.4) has a unique solution u in Xj.
First we observe that

(zy)P Tt (3.4)

|U(.’L‘,y) - u(xvy)‘ < (er 1)2

From (2.1), (2.5), (3.2), (3.3) we have

v(z,y) — h(x,y) — /01 /Oy f(s,t,0(s,t))dsdt

+/0 /0 If(s,t,v(s,t)) — f(s,t,u(s,t))|dsdt.

|’U(x7y) - u(x,y)\ <

From (3.3) we have

|waw—uuwﬂswmwwnﬂwmwn+ﬁféﬂ;ywmw—uwwwww

—u(s v(s,t) —u(s, t)|71
<lv(z,y) - ,y|+// Tk s,t) —uls, O] Juls,) (’f)' dsdt

st)?"|r1 (st)—p~

pq+q—r
< |v(z,y) — A(v)(x,y)| + cd(u,v) / / p+1 = 1)(8t) dsdt.

Then we have

d(u,v) < d(v, Av)) + pd(u, v) (3.5)

and

d(u,v) < <

) —_ 1_p7

then

d(u,v) < Cj-¢
where

_ 1

From Definition 2.1, the equation (2.4) is Ulam-Hyers stable.

Remark 3.2. For every A € A there exists at least a solution v of (2.5) in X and for
each v exists a unique solution u of (2.4) which is Ulam-Hyers stable.

Remark 3.3. It is possible that the inequation (2.5) do not have a solution, but in
this case the equation (2.4) is Ulam-Hyers stable.

Example 3.4. Let us consider the equation (2.1) in the Naguno-Perron-Van Kampen
conditions (3.2)+(3.3),p> -1, r=1,¢g> 1.
201~
1 here p = 2N
1—p (p+1)%
Hyers stable. If p = 1 then the equation (2.1) is Ulam-Hyers instable.

In this case ¢y = and the equation (2.1) is Ulam-
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