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Ulam stability of Volterra integral equation
on a generalized metric space
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Abstract. The aim of this paper is to give some Ulam-Hyers stability results for
Volterra integral equations on a generalized metric space. In this case we consider
the Volterra integral equation in the Krasnoselski-Krein and Naguno-Perron-Van
Kampen conditions. Here we present only Ulam-Hyers stability for the Volterra
integral equation.
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1. Introduction

The Ulam stability is an important concept in the theory of Volterra integral
equations. This problem has been studied by L.P. Castro and A. Ramos [1], N. Cădariu
and V. Radu [2], S.M. Jung [3], I.A. Rus [9], [10], I.A. Rus and N. Lungu [11]. But, on
a generalized metric spaces this problem has been studied in the papers [1] and [10]. In
what follows we shall present Ulam-Hyers stability of a Volterra integral equation on a
generalized metric space, N. Lungu [5]. Here, we consider a Volterra integral equation
in the Krasnoselski-Krein and Naguno-Perron-Van Kampen conditions. In the present
work we consider a generalized metric space (X, d), where d(x, y) ∈ R+ ∪ {+∞} is
a generalized metric on X. For these we need some notions and results from the
generalized metric spaces theory.

Let (X, d) be a generalized metric space. On X we have the following equivalence
relation:

x ∼ y ⇔ d(x, y) <∞, ∀ x, y ∈ X.
Let X =

⋃
λ∈Λ

Xλ be the canonical decomposition of X after this equivalence

relation. We denote

dλ(x, y) = d(x, y)
∣∣∣
Xλ×Xλ
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and we have that (Xλ, dλ) is a metric space ([7]).
In this paper we need the following two theorems (see W.A.J. Luxemburg [6],

I.A. Rus [7], [8]):

Theorem 1.1. Let (X, d) be a generalized complete metric space and A : X → X an
operator with the property:

∃ α ∈ [0, 1] such that d(x, y) <∞⇒ d(A(x), A(y)) ≤ αd(x, y)

for all x, y ∈ X.
If there exists x0 ∈ X such that d(x0, A(x0)) < +∞, then the operator A has at

least one fixed point.

Theorem 1.2. (Luxemburg-Jung). Let (X, d) be a generalized complete metric space

and his canonical decomposition X =
⋃
Xλ. If A : X → X ia a contraction, then the

operator A have in every Xλ, for which exists uλ such that

d(uλ, A(uλ)) < +∞,
a unique fixed point.

2. Ulam-Hyers stability in the generalized Krasnoselski-Krein
conditions

In what follows we shall consider the following integral equation

u(x, y) = h(x, y) +

∫ x

0

∫ y

0

f(s, t, u(s, t))dsdt (2.1)

f : [0, a)× [0, b)× R→ R, h : [0, a)× [0, b)→ R,
f ∈ C([0, a)× [0, b)× R,R),

h ∈ C([0, a)× [0, b),R), u ∈ C([0, a)× [0, b),R),

(x, y) ∈ [0, a)× [0, b), D = [0, a)× [0, b).

Let X be the set:
X = C(D) (2.2)

and the generalized metrics:

d : X ×X → R+ ∪ {+∞}

d(u1, u2) := sup
D

|u1(x, y)− u2(x, y)|
(xy)p

√
k

(2.3)

for all u1, u2 ∈ X, p > 1, k > 0.
It is known that the space (X, d) is a generalized complete metric space.
Let a, b ∈ (0,∞] and ε > 0. In what follows we denote by A the operator

A : X → X

A(u)(x, y) := the second part of (2.1).

Then the equation (2.1) becomes

u(x, y) = A(u)(x, y). (2.4)
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For the fixed point equation (2.4) we have:

Definition 2.1. ([10]) The equation (2.4) is Ulam-Hyers stable if there exists the pos-
itive real number Cf > 0 such that, for each ε ∈ R∗+ and each solution v of the
inequation

d(v,Av) ≤ ε (2.5)

there exists a solution u ∈ X of (2.4) such that

d(u, v) ≤ Cf · ε.

In this case we have

Theorem 2.2. We suppose that:
(i) f : E → R is continuous and bounded on E, E = D × R;
(ii) a <∞, b <∞;
(iii) f verifies the generalized Krasnoselski-Krein conditions ([4]):

|f(x, y, u1)− f(x, y, u2)| ≤ k

xy
|u1 − u2|, k > 0 (2.6)

|f(x, y, u1)− f(x, y, u2)| ≤ c

(xy)β
|u1 − u2|α, c > 0 (2.7)

α ∈ (0, 1), β < α, k(1− α)2 < (1− β)2, β < p
√
k, xy 6= 0,

p2k(1− α)2 < (1− β)2, for all (x, y, u) ∈ E.
Then the equation (2.4) is Ulam-Hyers stable.

Proof. We consider X = C(D) and X =
⋃
λ∈Λ

Xλ. Let v be a solution of the inequation

(2.5) and there exists λ ∈ Λ such that v ∈ Xλ. By Luxemburg-Jung theorem (Theorem
1.2), the equation (2.4) has a unique solution u in Xλ.

From (2.1), (2.5), (2.6) and (2.7), we have:

|v(x, y)− u(x, y)| ≤
∣∣∣∣v(x, y)− h(x, y)−

∫ x

0

∫ y

0

f(s, t, v(s, t))dsdt

∣∣∣∣
+

∫ x

0

∫ y

0

|f(s, t, v(s, t))− f(s, t, u(s, t))|dsdt. (2.8)

Hence, from (2.4), (2.6) and (2.7), we have

|v(x, y)− u(x, y)| ≤ |v(x, y)−A(v)(x, y)|+
∫ x

0

∫ y

0

k

st
|v(s, t)− u(s, t)|dsdt,

or

|v(x, y)− u(x, y)| ≤ |v(x, y)−A(v)(x, y)|+
∫ x

0

∫ y

0

kd(u, v)(st)p
√
k−1dsdt,

and

|v(x, y)− u(x, y)| ≤ |v(x, y)−A(v)(x, y)|+ kd(u, v)
(xy)p

√
k

p2k
,

from where we have

d(u, v) ≤ ε+
1

p2
d(u, v)
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and

d(u, v) ≤ p2

p2 − 1
ε (2.9)

then

d(u, v) ≤ Cf · ε
where

Cf =
p2

p2 − 1
.

So, from Definition 2.1, the equation (2.4) is Ulam-Hyers stable.

Example 2.3. Let us consider the equation (2.1) in the Krasnoselski-Krein conditions
(2.6)+(2.7) and

f(x, y, u) = u(x, y)xye−x
2y2 , h(x, y) = x2y2,

then α =
1

2
, β =

1

3
, k = 1, p = 2.

In this case we have cf =
p2

p2 − 1
and for p = 2, cf =

4

3
, hence the equation (2.1)

is Ulam-Hyers stable.

3. Ulam-Hyers stability in the generalized
Naguno-Perron-Van Kampen conditions

In this case we consider the integral equation (2.1) in the same conditions. Let
X = C(D) and the generalized metrics

d : X ×X → R+ ∪ {+∞}

d(u1, u2) = sup
D

|u1(x, y)− u2(x, y)|
(xy)p+1

(3.1)

for all u1, u2 ∈ X, p > −1.
It is known that the space (X, d) is a generalized complete metric space. Here,

we consider the stability of the equation (2.4) in the generalized Naguno-Perron-Van
Kampen conditions.

Theorem 3.1. If we have
(i) f : E → R is continuous and bounded on E;
(ii) a < +∞, b < +∞;
(iii) f verifies the generalized Naguno-Perron-Van Kampen conditions ([12]):

|f(x, y, u)| ≤ α(xy)p, p > −1, α > 0. (3.2)

|f(x, y, u1)− f(x, y, u2)| ≤ c

(xy)r
|u1 − u2|q, q ≥ 1, c > 0, (3.3)

pq + q − r = p, xy 6= 0, ρ =
c(2α)q−1

(p+ 1)2q
< 1, for all (x, y, u) ∈ E.

Then the equation (2.4) is Ulam-Hyers stable.
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Proof. Evidently, in the conditions Naguno-Perron-Van Kampen, by Luxemburg-Jung
theorem (Theorem 1.2), the equation (2.4) has a unique solution u in Xλ.

First we observe that

|v(x, y)− u(x, y)| ≤ 2α

(p+ 1)2
(xy)p+1. (3.4)

From (2.1), (2.5), (3.2), (3.3) we have

|v(x, y)− u(x, y)| ≤
∣∣∣∣v(x, y)− h(x, y)−

∫ x

0

∫ y

0

f(s, t, v(s, t))dsdt

∣∣∣∣
+

∫ x

0

∫ y

0

|f(s, t, v(s, t))− f(s, t, u(s, t))|dsdt.

From (3.3) we have

|v(x, y)− u(x, y)| ≤ |v(x, y)−A(v)(x, y)|+
∫ x

0

∫ y

0

c

(st)r
|v(s, t)− u(s, t)|qdsdt

≤|v(x, y)−A(v)(x, y)|+
∫ x

0

∫ y

0

c

(st)r
· |v(s, t)− u(s, t)|

(st)p+1
· |v(s, t)− u(s, t)|q−1

(st)−p−1
dsdt

≤ |v(x, y)−A(v)(x, y)|+ cd(u, v)

∫ x

0

∫ y

0

(2α)q−1

(p+ 1)2(q−1)
(st)pq+q−rdsdt.

Then we have

d(u, v) ≤ d(v,A(v)) + ρd(u, v) (3.5)

and

d(u, v) ≤ ε

1− ρ
,

then

d(u, v) ≤ Cf · ε
where

Cf =
1

1− ρ
.

From Definition 2.1, the equation (2.4) is Ulam-Hyers stable.

Remark 3.2. For every λ ∈ Λ there exists at least a solution v of (2.5) in Xλ and for
each v exists a unique solution u of (2.4) which is Ulam-Hyers stable.

Remark 3.3. It is possible that the inequation (2.5) do not have a solution, but in
this case the equation (2.4) is Ulam-Hyers stable.

Example 3.4. Let us consider the equation (2.1) in the Naguno-Perron-Van Kampen
conditions (3.2)+(3.3), p > −1, r = 1, q ≥ 1.

In this case cf =
1

1− ρ
, where ρ =

c(2α)q−1

(p+ 1)2q
and the equation (2.1) is Ulam-

Hyers stable. If ρ = 1 then the equation (2.1) is Ulam-Hyers instable.
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