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Abstract. In this paper, we introduce a new class of degenerate Hermite poly-
Bernoulli polynomials with q-parameter and give some identities of these poly-
nomials related to the Stirling numbers of the second kind. Some implicit sum-
mation formulae and general symmetry identities are derived by using different
analytical means and applying generating functions. These results extend some
known summations and identities of degenerate Hermite poly-Bernoulli numbers
and polynomials.
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1. Introduction

The special polynomials of more than one variable provide new means of analy-
sis for the solution of wide class of partial differential equations often encountered in
physical problems. The importance of multi-variable Hermite polynomials has been
recognized [6] and these polynomials have been exploited to deal with quantum me-
chanical and optical beam transport problems.

It happens very often that the solution of a given problem in physics or applied
mathematics requires the evaluation of infinite sums, involving special functions. Prob-
lems of this type arise, for example, in the computation of the higher-order moments
of a distribution or to evaluate transition matrix elements in quantum mechanics. In
[7], [8], [9], [19], [20], [21], [22], it has been shown that the summation formulae of
special functions, encountered in applications ranging from electromagnetic process
to combinatorics can be written in terms of Hermite polynomials of more than one
variable.
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The 2-variable Kampe de Feriet generalization of the Hermite polynomials [3]
and [8] are defined as

Hn(x, y) = n!

[n2 ]∑
r=0

yrxn−2r

r!(n− 2r)!
. (1.1)

These polynomials are specified by the generating function:

ext+yt
2

=

∞∑
n=0

Hn(x, y)
tn

n!
(1.2)

and reduce to the ordinary Hermite polynomials Hn(x) (see [1]) when y = −1 and x
is replaced by 2x.

In (2016), Khan [13] introduced the degenerate Hermite polynomials of two
variables by means of the following generating function:

(1 + λt)
x
λ (1 + λt2)

y
λ =

∞∑
n=0

Hn(x, y;λ)
tn

n!
, (1.3)

where λ 6= 0. Since (1 + λt)
1
λ −→ et as λ −→ 0, it is evident that (1.3) reduces to

(1.2). That is Hn(x, y) limiting case of Hn(x, y;λ) when λ −→ 0.

The following representation of degenerate Hermite polynomials Hn(x, y;λ) is
given by

Hn(x, y;λ) = n!

[n2 ]∑
r=0

(−xλ )n−2r(− y
λ )r(−λ)n−r

r!(n− 2r)!
. (1.4)

Since lim
λ−→0

Hn(x, y;λ) = Hn(x, y), (1.1) is a limiting case of (1.4).

For λ ∈ C, Carlitz introduced the degenerate Bernoulli polynomials by means of the
following generating function:

t

(1 + λt)
1
λ − 1

(1 + λt)
x
λ =

∞∑
n=0

βn(x;λ)
tn

n!
, (see [4], [18], [17]) (1.5)

so that

βn(x;λ) =

m∑
n=0

(
n
m

)
βm(λ)

(x
λ

)
n−m

. (1.6)

When x = 0, βn(λ) = βn(0;λ) are called the degenerate Bernoulli numbers.

From (1.5), we note that

∞∑
n=0

lim
λ−→0

βn(x;λ)
tn

n!
= lim
λ−→0

t

(1 + λt)
1
λ − 1

(1 + λt)
x
λ

=
t

et − 1
ext =

∞∑
n=0

Bn(x)
tn

n!
, (1.7)

where Bn(x) are called the Bernoulli polynomials (see [1]-[25]).
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The classical polylogarithm function Lik(z) is

Lik(z) =

∞∑
m=1

zm

mk
, (k ∈ Z) (see [13], [14], [16]) (1.8)

so for k ≤ 1,

Lik(z) = − ln(1− z), Li0(z) =
z

1− z
, Li−1(z) =

z

(1− z)2
, ...

The poly-Bernoulli polynomials are given by

Lik(1− e−t)
et − 1

ext =

∞∑
n=0

B(k)
n (x)

tn

n!
, (see [2], [12], [13]). (1.9)

For k = 1 in (1.9), we have

Li1(1− e−t)
et − 1

ext =
t

et − 1
ext =

∞∑
n=0

Bn(x)
tn

n!
. (1.10)

From (1.7) and (1.10), we have

B(1)
n (x) = Bn(x).

Very recently, Khan [13] introduced the degenerate Hermite poly-Bernoulli polyno-

mials of two variables Hβ
(k)
n,q(x, y;λ) by means of the following generating function:(

Lik(1− e−t)
(1 + λt)

1
λ − 1

)α
(1 + λt)

x
λ (1 + λt2)

y
λ =

∞∑
n=0

Hβ
(k)
n (x, y;λ)

tn

n!
, (1.11)

so that

HB
(k)
n (x, y;λ) =

n∑
m=0

(
n
m

)
β
(k)
n−m(λ)Hm(x, y;λ). (1.12)

The Stirling number of the first kind is given by

(x)n = x(x− 1) · · · (x− n+ 1) =

n∑
l=0

S1(n, l)xl, (n ≥ 0), (1.13)

and the Stirling number of the second kind is defined by generating function:

(et − 1)n = n!

∞∑
l=n

S2(l, n)
tl

l!
. (1.14)

A generalized falling factorial sum σk(n;λ) can be defined by the generating function
[25]

∞∑
k=0

σk(n;λ)
tk

k!
=

(1 + λt)
(n+1)
λ − 1

(1 + λt)
1
λ − 1

. (1.15)

Note that

lim
λ−→0

σk(n;λ) = Sk(n).
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The object of this paper as follows, we first give definition of the degenerate Hermite

poly-Bernoulli polynomials Hβ
(k)
n (x, y;λ) with q-parameter and then extend and il-

lustrate how, a connection between Hermite and Bernoulli polynomials can yield new
expansions and representations. Some implicit summation formulae and general sym-
metry identities are derived. These results establish a link between these families
of polynomials (namely degenerate Hermite and degenerate q-poly-Bernoulli polyno-
mials).

2. q-analogue of degenerate Hermite poly-Bernoulli polynomials

In this section, we introduce q-analogue of degenerate of Hermite-poly-Bernoulli
numbers and polynomials and its properties.

Definition 2.1. For λ ∈ C, k ∈ Z and n ≥ 0, 0 ≤ q < 1, we introduce q-analogue of
degenerate Hermite poly-Bernoulli polynomials by means of the following generating
function:

Lik,q(1− e−t)
(1 + λt)

1
λ − 1

(1 + λt)
x
λ (1 + λt2)

y
λ =

∞∑
n=0

Hβ
(k)
n,q(x, y;λ)

tn

n!
, (2.1)

where Lik,q(t) =

∞∑
n=0

tn

[n]kq !
is the k-th q-polylogarithm function (see [6], [10], [23]).

When x = y = 0 in (2.1), β
(k)
n (λ) = Hβ

(k)
n (0, 0;λ) are called the q-analogue of

degenerate poly-Bernoulli numbers.
Note that

Hβ
(1)
n,q(x, y;λ) = Hβn,q(x, y;λ)

and
lim
λ−→0

Hβ
(k)
n,q(x, y;λ) = HB

(k)
n,q(x, y).

Remark 2.2. For y = 0 in (2.1), the result reduces to the q-analogue of degenerate
poly-Bernoulli polynomials of Jung and Ryoo [10, p. 32, Eq. (2.1)] defined as

Lik,q(1− e−t)
(1 + λt)

1
λ − 1

(1 + λt)
x
λ =

∞∑
n=0

β(k)
n,q(x;λ)

tn

n!
, (k ∈ Z). (2.2)

Theorem 2.3. For λ ∈ C, k ∈ Z and n ≥ 0, 0 ≤ q < 1, we have

Hβ
(k)
n,q(x, y;λ) =

n∑
l=0

(
n
l

)
β
(k)
l,q (λ)Hn−l(x, y;λ). (2.3)

Proof. By using definition (2.1), we have
∞∑
n=0

Hβ
(k)
n,q(x, y;λ)

tn

n!
=

Lik,q(1− e−t)
(1 + λt)

1
λ − 1

(1 + λt)
x
λ (1 + λt2)

y
λ

=

∞∑
l=0

β
(k)
l,q (λ)

tl

l!

∞∑
n=0

Hn(x, y;λ)
tn

n!
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∞∑
n=0

Hβ
(k)
n,q(x, y;λ)

tn

n!
=

∞∑
n=0

(
n∑
l=0

(
n
l

)
β
(k)
l,q (λ)Hn(x, y;λ)

)
tn

n!
.

Comparing the coefficients of tn

n! in both sides, we get (2.3). �

Theorem 2.4. For n ≥ 0, we have

Hβ
(2)
n,1(x, y;λ) =

n∑
m=0

(
n
m

)
Bm
m+ 1

Hβn−m(x, y;λ). (2.4)

Proof. Consider equation(2.1), we have
∞∑
n=0

Hβ
(k)
n,1(x, y;λ)

tn

n!
=

Lik,1(1− e−t)
(1 + λt)

1
λ − 1

(1 + λt)
x
λ (1 + λt2)

y
λ

=
(1 + λt)

x
λ (1 + λt2)

y
λ

(1 + λt)
1
λ − 1

∫ t

0

1

ez − 1

∫ t

0

1

ez − 1
· · · 1

ez − 1

∫ t

0

z

ez − 1︸ ︷︷ ︸
(k−1)−times

dz · · · dz (2.5)

For k = 2 in (2.5), we have
∞∑
n=0

Hβ
(2)
n,1(x, y;λ)

tn

n!
=

(1 + λt)
x
λ (1 + λt2)

y
λ

(1 + λt)
1
λ − 1

∫ t

0

z

ez − 1
dz

=

( ∞∑
m=0

Bm
m+ 1

tm

m!

)
(1 + λt)

x
λ (1 + λt2)

y
λ

(1 + λt)
1
λ − 1

=

( ∞∑
m=0

Bm
m+ 1

tm

m!

)( ∞∑
n=0

Hβn(x, y;λ)
tn

n!

)
.

Replacing n by n−m in above equation, we have

=

∞∑
n=0

n∑
m=0

(
n
m

)
Bm
m+ 1

Hβn−m(x, y;λ)
tn

n!
.

On equating the coefficients of the like powers of t in the above equation, we get the
result (2.4). �

Theorem 2.5. For n ≥ 0, we have

Hβ
(k)
n,q(x, y;λ) =

n∑
p=0

(
n
p

)(p+1∑
l=1

(−1)l+p+1l!S2(p+ 1, l)

[l]kq (p+ 1)

)
Hβn−p(x, y;λ). (2.6)

Proof. From equation (2.1), we have
∞∑
n=0

Hβ
(k)
n,q(x, y;λ)

tn

n!
=

(
Lik,q(1− e−t)

t

)(
t(1 + λt)

x
λ (1 + λt2)

y
λ

(1 + λt)
1
λ − 1

)
. (2.7)

Now
1

t
Lik,q(1− e−t) =

1

t

∞∑
l=1

(1− e−t)l

[l]kq
=

1

t

∞∑
l=1

(−1)l

lk
(1− e−t)l
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=
1

t

∞∑
l=1

(−1)l

[l]kq
l!

∞∑
p=l

(−1)pS2(p, l)
tp

p!

=
1

t

∞∑
p=1

p∑
l=1

(−1)l+p

[l]kq
l!S2(p, l)

tp

p!

=

∞∑
p=0

(
p+1∑
l=1

(−1)l+p+1

[l]kq
l!
S2(p+ 1, l)

p+ 1

)
tp

p!
. (2.8)

From equations (2.7) and (2.8), we have

∞∑
n=0

Hβ
(k)
n,q(x, y;λ)

tn

n!

=

∞∑
p=0

(
p+1∑
l=1

(−1)l+p+1

[l]kq
l!
S2(p+ 1, l)

p+ 1

)
tp

p!

( ∞∑
n=0

Hβn(x, y;λ)
tn

n!

)
.

Replacing n by n− p in the r.h.s of above equation and comparing the coefficients of
tn, we get the result (2.6). �

Theorem 2.6. For n ≥ 1, we have

Hβ
(k)
n,q(x+ 1, y;λ)− Hβ

(k)
n (x, y;λ)

=

n∑
p=1

(
n
p

)(p−1∑
l=0

(−1)l+p+1

[l + 1]kq
(l + 1)!S2(p, l + 1)

)
Hn−p(x, y;λ). (2.9)

Proof. Using the Definition (2.1), we have

∞∑
n=0

Hβ
(k)
n,q(x+ 1, y;λ)

tn

n!
−
∞∑
n=0

Hβ
(k)
n,q(x, y;λ)

tn

n!

=
Lik,q(1− e−t)
(1 + λt)

1
λ − 1

(1 + λt)
x+1
λ (1 + λt2)

y
λ − Lik,q(1− e−t)

(1 + λt)
1
λ − 1

(1 + λt)
x
λ (1 + λt2)

y
λ

= Lik,q(1− e−t)(1 + λt)
x
λ (1 + λt2)

y
λ

=

∞∑
l=0

(1− e−t)l+1

[l + 1]kq
(1 + λt)

x
λ (1 + λt2)

y
λ

=

∞∑
p=1

(
p−1∑
l=0

(−1)l+p+1

[l + 1]kq
(l + 1)!S2(p, l + 1)

)
tp

p!
(1 + λt)

x
λ (1 + λt2)

y
λ

=

( ∞∑
p=1

(
p−1∑
l=0

(−1)l+p+1

[l + 1]kq
(l + 1)!S2(p, l + 1)

)
tp

p!

)( ∞∑
n=0

Hn(x, y;λ)
tn

n!

)
.

Replacing n by n− p in the above equation and comparing the coefficients of tn, we
get the result (2.9). �
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Theorem 2.7. For n ≥ 0, d ∈ N and k ∈ Z, we have

Hβ
(k)
n,q(x, y;λ)

=

d−1∑
a=0

n∑
l=0

l+1∑
p=1

(
n
l

)
dn−l−1

(−1)l+p+1p!S2(l + 1, p)

pk[l + 1]kq
Hβn−l

(
l + x

d
, y;

λ

d

)
. (2.10)

Proof. From equation (2.1), we can be written as

∞∑
n=0

Hβ
(k)
n,q(x, y;λ)

tn

n!
=

Lik,q(1− e−t)
(1 + λt)

1
λ − 1

(1 + λt)
x
λ (1 + λt2)

y
λ

=
Lik,q(1− e−t)
(1 + λt)

d
λ − 1

d−1∑
a=0

(1 + λt)
l+x
λ (1 + λt2)

y
λ

=

(
Lik,q(1− e−t)

t

)
1

d

d−1∑
a=0

dt

(1 + λt)
d
λ − 1

(1 + λt)
l+x
λ (1 + λt2)

y
λ

=

( ∞∑
l=0

(
l+1∑
p=1

(−1)l+p+1

pk
p!
S2(l + 1, p)

[l + 1]kq

)
tl

l!

)( ∞∑
n=0

dn−1
d−1∑
a=0

Hβn

(
l + x

d
, y;

λ

d

)
tn

n!

)
.

Replacing n by n − l in above equation and comparing the coefficient of tn, we get
the result (2.10). �

3. Summation formulae for degenerate Hermite poly-Bernoulli
polynomials with q-parameter

For the derivation of implicit formulae involving degenerate q-poly-

Bernoulli polynomials β
(k)
n,q(x;λ) and degenerate Hermite poly-Bernoulli polynomials

Hβ
(k)
n,q(x, y;λ) the same considerations as developed for the ordinary Hermite and re-

lated polynomials in Khan [14] and Hermite-Bernoulli polynomials in Pathan and
Khan [19], [20], [21], [22] holds as well. First we prove the following results involving

degenerate Hermite poly-Bernoulli polynomials with q-parameter Hβ
(k)
n,q(x, y;λ).

Theorem 3.1. The following implicit summation formulae involving degenerate Her-

mite polynomials Hβ
(k)
n,q(λ, µ;x, y) holds true:

Hβ
(k)
m+n,q(x, y;λ)

=

m,n∑
r,s=0

(
m
r

)(
n
s

)
(x− v)r+s

[
1

λ
log(1 + λ)

]r+s
Hβ

(k)
m+n−r−s,q(v, y;λ). (3.1)

Proof. Replacing t by t+ u in (2.1) and rewrite the generating function (2.1) as

Lik,q(1− e−(t+u))
(1 + λ(t+ u))

1
λ − 1

e
y(t+u)2

λ (log(1+λ))
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= e−
x(t+u)
λ (log(1+λ)

∞∑
m,n=0

Hβ
(k)
m+n,q(x, y;λ)

tm

m!

tn

n!
. (3.2)

Upon replacing x by v in the above equation, it is not difficult to observe that
∞∑

m,n=0

Hβ
(k)
m+n,q(λ;x, y)

tm

m!

tn

n!
= e

x(t+u)(x−v)
λ log(1+λ)

∞∑
m,n=0

Hβ
(k)
m+n,q(λ; v, y)

tm

m!

tn

n!

∞∑
m,n=0

Hβ
(k)
m+n,q(λ, µ;x, y)

tp

p!

tq

q!

=

∞∑
N=0

[x(t+u)(x−v)λ log(1 + λ)]N

N !

∞∑
p,q=0

Hβ
(k)
p+q(λ, µ; v, y)

tp

p!

tq

q!
.

Now, by applying the following known series identity [24, p. 52, Eq. 1.6(2)]:
∞∑
N=0

f(N)
(x+ y)N

N !
=

∞∑
p,q=0

f(n+m)
xp

p!

yq

q!

∞∑
m,n=0

Hβ
(k)
m+n,q(λ;x, y)

tm

m!

tn

n!

=

∞∑
r,s=0

(x− v)r+s[
1

λ
log(1 + λ)]r+s

tr

r!

us

s!

∞∑
m,n=0

Hβ
(k)
m+n,q(λ; v, y)

tm

m!

tn

n!
.

On replacing m by m− r and n by n− s in above equation, we get
∞∑

m,n=0

Hβ
(k)
m+n,q(λ;x, y)

tm

m!

tn

n!

=

∞∑
m,n=0

p,q∑
r,s=0

(x− v)r+s
[

1

λ
log(1 + λ)

]r+s
Hβ

(k)
m+n−r−s,q(λ; v, y)

tm

(m− r)!r!
tn

(n− s)!s!
.

Comparing the coefficients of tm

m! and tn

n! , we get the result (3.1). �

Theorem 3.2. For x, y ∈ R and n ≥ 0. Then

Hβ
(k)
n,q(x+ u, y + w;λ) =

n∑
m=0

(
n
m

)
Hβ

(k)
n−m,q(x, y;λ)Hm(u,w;λ). (3.3)

Proof. By the definition of q-degenerate poly-Bernoulli polynomials and the definition
(1.3), we have

Lik,q(1− e−t)
(1 + λt)

1
λ − 1

(1 + λt)
x+u
λ (1 + λt2)

y+w
λ

=

( ∞∑
n=0

Hβ
(k)
n,q(x, y;λ)

tn

n!

)( ∞∑
m=0

Hm(u,w;λ)
tm

m!

)
.

Now replacing n by n − m and comparing the coefficients of tn, we get the result
(3.3). �
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Theorem 3.3. For x, y ∈ R and n ≥ 0. Then

Hβ
(k)
n,q(x, y;λ)=

n−2j∑
m=0

[n2 ]∑
j=0

β(k)
m,q(λ)

(
−x
λ

)
n−m−2j

(−λ)n−m−j
(
− y
λ

)
j

n!

m!j!(n− 2j −m)!
.

(3.4)

Proof. Applying the definition (2.1) to the term
Lik,q(1−e−t)
(1+λt)

1
λ−1

and expanding the func-

tion (1 + λt)
x
λ (1 + λt2)

y
λ at t = 0 yields

Lik,q(1− e−t)
(1 + λt)

1
λ − 1

(1 + λt)
x
λ (1 + λt2)

y
λ

=

( ∞∑
m=0

β(k)
m,q(λ)

tm

m!

)( ∞∑
n=0

(
−x
λ

)
n

(−λt)n

n!

) ∞∑
j=0

(
− y
λ

)
j

(−λt2)j

j!



=

∞∑
n=0

(
n∑

m=0

(
n
m

)
β(k)
m,q(λ)

(
−x
λ

)
n−m

(−λ)n−m

)
tn

n!

 ∞∑
j=0

(
− y
λ

)
j

(−λt2)j

j!

 .

Replacing n by n− 2j, we have

∞∑
n=0

Hβ
(k)
n,q(x, y;λ)

tn

n!

=

∞∑
n=0

n−2j∑
m=0

[n2 ]∑
j=0

(
n− 2j
m

)
β(k)
m,q(λ)

(
−x
λ

)
n−m−2j

(−λ)n−m−j
(
− y
λ

)
j

 tn

(n− 2j)!j!
.

(3.5)
Equating their coefficients of tn, we get the result (3.4). �

Theorem 3.4. For x, y ∈ R and n ≥ 0. Then

Hβ
(k)
n,q(x, y;λ) =

n∑
m=0

(
n
m

)(
− z
λ

)
n−m

(−λ)n−mHβ
(k)
m,q(x− z, y;λ). (3.6)

Proof. By exploiting the generating function (2.1), we can write the equation

∞∑
n=0

Hβ
(k)
n,q(x, y;λ)

tn

n!
=

Lik,q(1− e−t)
(1 + λt)

1
λ−1

(1 + λt)
x−z
λ (1 + λt2)

y
λ (1 + λt)

z
λ . (3.7)

=

( ∞∑
m=0

Hβ
(k)
m,q(x− z, y;λ)

tm

m!

)( ∞∑
n=0

(− z
λ

)n
(−λt)n

n!

)
.

Replacing n by n−m in above equation and equating their coefficients of tn leads to
formula (3.6). �
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Theorem 3.5. The following implicit summation formula involving degenerate Hermite

poly-Bernoulli polynomials with q-parameter Hβ
(k)
n,q(x, y;λ) holds true:

Hβ
(k)
n,q(x+ 1, y;λ) =

n∑
r=0

(
n
r

)(
− 1

λ

)
r

(−λ)rHβ
(k)
n−r,q(x, y;λ). (3.8)

Proof. By the definition of degenerate Hermite poly-Bernoulli polynomials with q-
parameter, we have

∞∑
n=0

Hβ
(k)
n,q(x+ 1, y;λ)

tn

n!
+

∞∑
n=0

Hβ
(k)
n,q(x, y;λ)

tn

n!

=
Lik,q(1− e−t)
(1 + λt)

1
λ − 1

(1 + λt)
x
λ (1 + λt2)

y
λ ((1 + λt)

1
λ + 1)

=

( ∞∑
n=0

Hβ
(k)
n,q(x, y;λ)

tn

n!

)( ∞∑
r=0

(
− 1

λ

)
r

(−λt)r

r!

)
+

∞∑
n=0

Hβ
(k)
n,q(x, y;λ)

tn

n!

=

∞∑
n=0

n∑
r=0

Hβ
(k)
n−r,q(x, y;λ)

(
− 1

λ

)
r

(−λ)r
tn

(n− r)!r!
+

∞∑
n=0

Hβ
(k)
n,q(x, y;λ)

tn

n!
.

Finally, equating the coefficients of the like powers of tn, we get (3.8). �

4. General symmetry identities

In this section, we establish symmetry identities for the q-degenerate poly-

Bernoulli polynomials β
(k)
n,q(x;λ) and the degenerate Hermite poly-Bernoulli polyno-

mials with q-parameter Hβ
(k)
n,q(x, y;λ) by applying the generating function(2.1) and

(2.2). The results extend some known identities of Khan [13], [14], [15], [16], Pathan
and Khan [19], [20], [21], [22].

Theorem 4.1. Let a, b > 0 and a 6= b. For x, y ∈ R, n ≥ 0, 0 ≤ q < 1, then the
following identity holds true:

n∑
m=0

(
n
m

)
bman−mHβ

(k)
n−m,q(bx, b

2y;λ)Hβ
(k)
m,q(ax, a

2y;λ)

=

n∑
m=0

(
n
m

)
ambn−mHβ

(k)
n−m,q(ax, a

2y;λ)Hβ
(k)
m,q(bx, b

2y;λ). (4.1)

Proof. Start with

G(t) =

(
Lik,q(1− e−at)Lik,q(1− e−bt)

((1 + λt)
a
λ − 1)((1 + λt)

b
λ − 1)

)
(1 + λt)

abx
λ (1 + λt2)

a2b2y
λ . (4.2)

Then the expression for G(t) is symmetric in a and b and we can expand G(t) into
series in two ways to obtain

G(t) =

∞∑
n=0

Hβ
(k)
n,q(bx, b

2y;λ)
(at)n

n!

∞∑
m=0

Hβ
(k)
m,q(ax, a

2y;λ)
(bt)m

m!



Degenerate Hermite poly-Bernoulli numbers 13

=

∞∑
n=0

(
n∑

m=0

(
n
m

)
an−mbmHβ

(k)
n−m,q(bx, b

2y;λ)Hβ
(k)
m,q(ax, a

2y;λ)

)
tn

n!
.

On the similar lines we can show that

G(t) =

∞∑
n=0

Hβ
(k)
n,q(ax, a

2y;λ)
(bt)n

n!

∞∑
m=0

Hβ
(k)
m,q(bx, b

2y;λ)
(at)m

m!

=

∞∑
n=0

(
n∑

m=0

(
n
m

)
ambn−mHβ

(k)
n−m,q(ax, a

2y;λ)Hβ
(k)
m,q(bx, b

2y;λ)

)
tn

n!
.

Comparing the coefficients of t
n

n! on the right hand sides of the last two equations, we
arrive at the desired result. �

Remark 4.2. For b = 1, Theorem 4.1 reduces to

n∑
m=0

(
n
m

)
an−mHβ

(k)
n−m,q(x, y;λ)Hβ

(k)
m,q(ax, a

2y;λ)

=

n∑
m=0

(
n
m

)
amHβ

(k)
n−m,q(ax, a

2y;λ)Hβ
(k)
m,q(x, y;λ). (4.3)

Theorem 4.3. For all integers a > 0, b > 0 and n ≥ 0, 0 ≤ q < 1, the following
identity holds true:

n∑
m=0

(
n
m

)
an−mbmHβ

(k)
n−m,q

(
bx, b2z;λ

) m∑
i=0

(
m
i

)
σi(a− 1;λ)β

(k)
m−i,q(ay;λ)

=

n∑
m=0

(
n
m

)
ambn−mHβ

(k)
n−m,q

(
ax, a2z;λ

) m∑
i=0

(
m
i

)
σi(b− 1;λ)β

(k)
m−i,q(by;λ),

(4.4)
where generalized falling factorial sum σk(n;λ) is given by (1.15).

Proof. We now use

H(t) =
Lik,q(1− e−at)Lik,q(1− e−bt)((1 + λt)

ab
λ − 1)(1 + λt)

ab(x+y)
λ (1 + λt2)

a2b2z
λ

((1 + λt)
a
λ − 1)((1 + λt)

b
λ − 1)2

to find that

g(t) =

(
Lik,q(1− e−at)
(1 + λt)

a
λ − 1

)
(1 + λt)

abx
λ (1 + λt2)

a2b2z
λ

(
(1 + λt)

ab
λ − 1

(1 + λt)
b
λ − 1

)

×

(
Lik,q(1− e−bt)
(1 + λt)

b
λ − 1

)
(1 + λt)

aby
λ

=

∞∑
n=0

Hβ
(k)
n,q

(
bx, b2z;λ

) (at)n

n!

∞∑
n=0

σn(a− 1;λ)
(bt)n

n!

∞∑
n=0

β(k)
n,q(ay;λ)

(bt)n

n!
. (4.5)
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Using a similar plan, we get

g(t) =

∞∑
n=0

Hβ
(k)
n,q

(
ax, a2z;λ

) (bt)n

n!

∞∑
n=0

σn(b− 1;λ)
(at)n

n!

∞∑
n=0

β(k)
n,q(by;λ)

(at)n

n!
. (4.6)

By comparing the coefficients of tn on the right hand sides of the last two equations,
we arrive at the desired result. �

5. Conclusion

The degenerate Hermite-poly-Bernoulli polynomials with q-parameter

Hβ
(k)
n,q(x, y;λ) plays a major role in obtaining new expansions, identities and

representations. We can introduce and study a class of related generalized poly-
nomials by defining degenerate Gould-Hopper-poly-Bernoulli polynomials with
q-parameter

Lik,q(1− e−t)
(1 + λt)

1
λ − 1

(1 + λt)
x
λ (1 + λtr)

y
λ =

∞∑
n=0

Hβ
(k,r)
n,q (x, y;λ)

tn

n!
. (5.1)

The equation (2.1) may be derived from (5.1) for r = 2.
This process can easily be extended to establish degenerate multi-variable

Hermite-poly-Bernoulli polynomials with q-parameter and Apostle type Bernoulli
polynomials.
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