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Some properties of a linear operator involving
generalized Mittag-Leffler function
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Abstract. This paper introduces a new class T γα,β,k(η) of analytic functions which
is defined by means of a linear operator involving generalized Mittag-Leffler func-
tion Hγ

α,β,k(f). The results investigated in this paper include, an inclusion rela-

tion for functions in the class T γα,β,k(η) and also some subordination results of

the linear operator Hγ
α,β,k(f). Several consequences of our results are also pointed

out.
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1. Introduction

Let A denote the class of the normalized functions of the form

f(z) = z +

∞∑
n=2

anz
n,

which are analytic in the open unit disk U = {z ∈ C : |z| < 1}. Further, let f and g
be analytic functions in U, then we say that f is subordinate to g, written f ≺ g or
f(z) ≺ g(z), if there exists an analytic function w on U such that w(0) = 0, |w(z)| < 1
and f(z) = g(w(z)) for all z ∈ U. In particular, if g is univalent in U, then we have

f(z) ≺ g(z)⇔ f(0) = g(0) and f(U) ⊂ g(U).

Let Eα(z) be the Mittag-Leffler function [11] defined by

Eα(z) =

∞∑
n=0

zn

Γ(αn+ 1)
, (z, α ∈ C; Re(α) > 0 ). (1.1)
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A more general function Eα,β generalizing Eα(z) was introduced by Wiman [14] and
defined by

Eα,β(z) =

∞∑
n=0

zn

Γ(αn+ β)
, (z, α, β ∈ C; Re(α) > 0 ). (1.2)

Moreover, Srivastava and Tomovski [13] introduced the function Eγ,kα,β(z) as

Eγ,kα,β(z) =

∞∑
n=0

(γ)nkz
n

Γ(αn+ β)n!
, (α, β, γ ∈ C; Re(α) > max{0,Re(k)−1}; Re(k) > 0),

where (γ)n is Pochhammer symbol (or the shifted factorial, since (1)n = n!) is given
in term of the Gamma functions can be written as

(γ)n =
Γ(γ + n)

Γ(γ)
=

{
1, if n = 0;

γ(γ + 1)...(γ + n− 1), if n ∈ N.
(1.3)

The Mittag-Leffler function arises naturally in the solution of fractional order differ-
ential and integral equations, and especially in the investigations of fractional gen-
eralization of kinetic equation, random walks, Lévy flights, super-diffusive transport
and in the study of complex systems. Several properties of Mittag-Leffler function and
generalized Mittag-Leffler function can be found e.g. in [2, 3, 4, 6, 7, 8, 9, 11, 12, 13].

In [1], Attiya defined the operator Hγα,β,k(f) : A → A by

Hγα,β,k(f)(z) = Qγα,β,k(z) ∗ f(z), (z ∈ U),

where

Qγα,β,k(z) =
Γ(α+ β)

(γ)k

(
Eγ,kα,β(z)− 1

Γ(β)

)
, (z ∈ U),

(α, β, γ ∈ C; Re(α) > max{0,Re(k)− 1}; Re(k) > 0;

Re(α) = 0 when Re(k) = 1 with β 6= 0),

and the symbol (∗) denotes the Hadamard product (or convolution).

We note that,

Hγα,β,k(f)(z) = z +

∞∑
n=2

Γ(γ + nk)Γ(α+ β)

Γ(γ + k)Γ(β + αn)n!
anz

n. (1.4)

It can be easily verified from (1.4) that

z
(
Hγα,β,k(f)(z)

)′
=

(
γ + k

k

)
(Hγ+1

α,β,k(f)(z))− γ

k
(Hγα,β,k(f)(z)). (1.5)

Also we have

H1
0,β,1(f)(z) = f(z),H2

0,β,1(f)(z) =
1

2
(f(z) + zf ′(z)) and H0

0,β,1(f)(z) =

z∫
0

1

t
f(t)dt.
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Definition 1.1. We say that the function f ∈ A is in the class T γα,β,k(η), η ∈ [0, 1), if
f satisfies the condition

Re
[
Hγα,β,k(f)(z)

]′
> η, (z ∈ U). (1.6)

The object of this paper is to investigate an inclusion relation for functions in
the class T γα,β,k(η) and obtain some subordination results for functions defined by the

linear operator Hγα,β,k(f). Several consequences of our results are also discussed.

The following results will be required in our investigation.

Lemma 1.2. ([5]) If p(z) = 1 + p1z + p2z
2 + · · · is analytic in U and h(z) is convex

function in U with h(0) = 1 and µ is a complex constant such that Reµ > 0, then

p(z) +
zp′(z)

µ
≺ h(z), (1.7)

implies

p(z) ≺ q(z) ≺ h(z),

where

q(z) =
µ

zµ

z∫
0

h(t)tµ−1dt,

and q(z) is the best dominant.

Lemma 1.3. ([10]) Let q be a convex function in U and let

h(z) = q(z) + αzq′(z),

where α > 0. If

p(z) = q(0) + p1z + · · ·
and

p(z) + αzp′(z) ≺ h(z),

then

p(z) ≺ q(z),
and this result is sharp.

2. Inclusion relation

We begin by showing the following inclusion relation.

Theorem 2.1. If η ∈ [0, 1), then

T γ+1
α,β,k(η) ⊂ T γα,β,k(δ), (2.1)

where

δ = δ(η, γ, k) = 2η − 1 +
2(1− η)(γ + k)

k
B

(
γ + k

k

)
, (2.2)
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B being the Beta function defined by

B(x) =

1∫
0

tx−1

t+ 1
dt. (2.3)

Proof. Let f ∈ T γ+1
α,β,k(η) and define the function p(z) by

p(z) =
(
Hγα,β,k(f)(z)

)′
. (2.4)

Making use the identity (1.5), we get(
Hγ+1
α,β,k(f)(z)

)′
= p(z) +

k

γ + k
zp′(z), (z ∈ U). (2.5)

Since f ∈ T γ+1
α,β,k(η), from Definition 1.1 we have

Re
(
Hγ+1
α,β,k(f)(z)

)′
> η, (z ∈ U).

Using (2.5) we get

Re

(
p(z) +

k

γ + k
zp′(z)

)
> η,

which is equivalent to

p(z) +
k

γ + k
zp′(z) ≺ 1 + (2η − 1)z

1 + z
≡ h(z).

By using Lemma 1.2, with µ = γ+k
k we have

p(z) ≺ q(z) ≺ h(z),

where

q(z) =
γ + k

kz
γ+k
k

z∫
0

1 + (2η − 1)t

1 + t
t
γ+k
k −1dt

=
γ + k

kz
γ+k
k

z∫
0

[2η − 1 + 2(1− η)]
1

1 + t
t
γ+k
k −1dt

=
γ + k

kz
γ+k
k

z∫
0

(2η − 1)t
γ+k
k −1dt+

2(1− η) (γ + k)

kz
γ+k
k

z∫
0

t
γ+k
k −1

1 + t
dt

= 2η − 1 +
2(1− η) (γ + k)

kz
γ+k
k

z∫
0

t
γ+k
k −1

1 + t
dt.

The function q is convex and is the best dominant.
Since p(z) ≺ q(z), we get

Re
[
Hγα,β,k(f)(z)

]′
> q(1) = δ, (2.6)
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where

δ = δ(η, γ, k) = 2η − 1 +
2(1− η)(γ + k)

k
B

(
γ + k

k

)
.

From (2.6) we deduce that T γ+1
α,β,k(η) ⊂ T γα,β,k(δ). �

3. Subordination results

With the help of Lemma 1.3, we obtain the following result.

Theorem 3.1. Let q(z) be convex univalent in U with q(0) = 1 and let h be a function
such that

h(z) = q(z) +
k

γ + k
zq′(z). (3.1)

If f ∈ A and verifies the differential subordination(
Hγ+1
α,β,k(f)(z)

)′
≺ h(z), (3.2)

then (
Hγα,β,k(f)(z)

)′
≺ q(z), (3.3)

and the result is sharp.

Proof. From (2.5) and (3.2) we obtain

p(z) +
k

γ + k
zp′(z) ≺ q(z) +

k

γ + k
zq′(z) ≡ h(z),

then, by using Lemma 1.3 we get

p(z) ≺ q(z),
that is, (

Hγα,β,k(f)(z)
)′
≺ q(z), (z ∈ U),

and this result is sharp. �

Theorem 3.2. Let h ∈ A with h(0) = 1 and h′(0) 6= 0, which verifies the inequality

Re

[
1 +

zh′′(z)

h′(z)

]
> −1

2
, (z ∈ U). (3.4)

If f ∈ A and verifies the differential subordination(
Hγ+1
α,β,k(f)(z)

)′
≺ h(z), (3.5)

then (
Hγα,β,k(f)(z)

)′
≺ q(z), (3.6)

where

q(z) =
γ + k

kz
γ+k
k

z∫
0

h(t)t
γ+k
k −1dt.

The function q is convex and is the best dominant.
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Proof. If we let

p(z) =
(
Hγα,β,k(f)(z)

)′
,

and using the identity (1.5), we obtain(
Hγ+1
α,β,k(f)(z)

)′
= p(z) +

k

γ + k
zp′(z), (z ∈ U).

Therefore, (3.5) becomes

p(z) +
k

γ + k
zp′(z) ≺ h(z).

By using Lemma 1.2, we get

p(z) ≺ q(z) =
γ + k

kz
γ+k
k

z∫
0

h(t)t
γ+k
k −1dt,

that is, (
Hγα,β,k(f)(z)

)′
≺ q(z), (z ∈ U). �

Theorem 3.3. Let q(z) be convex univalent in U with q(0) = 1. And let h be a function
such that

h(z) = q(z) + zq′(z), (z ∈ U). (3.7)

If f ∈ A and verifies the differential subordination(
Hγα,β,k(f)(z)

)′
≺ h(z), (3.8)

then
Hγα,β,k(f)(z)

z
≺ q(z), (3.9)

and the result is sharp.

Proof. Let the function p(z) be defined by

p(z) =
Hγα,β,k(f)(z)

z
. (3.10)

Then, by differentiating (3.10), we get(
Hγα,β,k(f)(z)

)′
= p(z) + zp′(z), (z ∈ U). (3.11)

Thus (3.8) becomes

p(z) + zp′(z) ≺ q(z) + zq′(z) ≡ h(z),

and from Lemma 1.3 we get (3.9). �

Theorem 3.4. Let h ∈ A with h(0) = 1 and h′(0) 6= 0, which verifies the inequality
(3.4). If f ∈ A and verifies the differential subordination(

Hγα,β,k(f)(z)
)′
≺ h(z), (z ∈ U), (3.12)
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then
Hγα,β,k(f)(z)

z
≺ q(z), (z ∈ U, z 6= 0), (3.13)

where

q(z) =
1

z

z∫
0

h(t)dt.

The function q is convex and is the best dominant.

Proof. Let the function p(z) be defined as in (3.10). Then from (3.11) and (3.12),we
have

p(z) + zp′(z) ≺ h(z).

By using Lemma 1.2, we get

p(z) ≺ q(z) =
1

z

z∫
0

h(t)dt,

and q is convex and is the best dominant. �

If we set γ = 1, α = 0 and k = 1, in Theorems 3.1-3.4, we immediately have the
following special cases.

Corollary 3.5. Let q(z) be convex univalent in U with q(0) = 1 and let h be a function
such that

h(z) = q(z) +
1

2
zq′(z). (3.14)

If f ∈ A and verifies the differential subordination

f ′(z) +
1

2
zf ′′(z) ≺ h(z), (3.15)

then

f ′(z) ≺ q(z), (3.16)

and the result is sharp.

Corollary 3.6. Let h ∈ A with h(0) = 1 and h′(0) 6= 0, which verifies the inequality
(3.4). If f ∈ A and verifies the differential subordination

f ′(z) +
1

2
zf ′′(z) ≺ h(z), (3.17)

then

f ′(z) ≺ q(z), (3.18)

where

q(z) =
2

z2

z∫
0

h(t)tdt.

The function q is convex and is the best dominant.
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Corollary 3.7. Let q(z) be convex univalent in U with q(0) = 1 and let h be a function
such that

h(z) = q(z) + zq′(z), (z ∈ U). (3.19)

If f ∈ A and verifies the differential subordination

f ′(z) ≺ h(z), (3.20)

then
f(z)

z
≺ q(z), (3.21)

and the result is sharp.

Corollary 3.8. Let h ∈ A with h(0) = 1 and h′(0) 6= 0, which verifies the inequality
(3.4). If f ∈ A and verifies the differential subordination

f ′(z) ≺ h(z), (z ∈ U), (3.22)

then
f(z)

z
≺ q(z), (z ∈ U, z 6= 0), (3.23)

where

q(z) =
1

z

z∫
0

h(t)dt.

The function q is convex and is the best dominant.
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