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Existence and multiplicity of positive radial
solutions to the Dirichlet problem for nonlinear
elliptic equations on annular domains

Noureddine Bouteraa and Slimane Benaicha

Abstract. In this paper, we study the existence and nonexistence of monotone
positive radial solutions of elliptic boundary value problems on bounded annular
domains subject to local boundary condition. By using Krasnoselskii’s fixed point
theorem of cone expansion-compression type we show that there exists λ∗ ≥ λ∗ >
0 such that the elliptic equation has at least two, one and no radial positive
solutions for 0 < λ ≤ λ∗, λ∗ < λ ≤ λ∗ and λ > λ∗ respectively. We include an
example to illustrate our results.
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1. Introduction

In this paper, we are interested in the existence of radial positive solutions to
the following, boundary value problem BVP{

−4u (x) = λf (|x| , u (x)) , x ∈ Ω,
u (x) = 0, x ∈ ∂Ω,

(1.1)

where Ω =
{
x ∈ RN : a < |x| < b

}
with 1 < a < b is an annulus in RN (N ≥ 3),

f ∈ C ([a, b]× [0,∞) , [0,∞)) and λ is a positive parameter.
The study of such problems is motivated by a lot of physical applications start-

ing from the well-known Poisson-Boltzmann equation (see [2, 20, 30]), also they serve
as models for some phenomena which arise in fluid mechanics, such as the exothermic
chemical reactions or autocatalytic reactions (see [27, Section 5.11.1]). The non-
linearity f in applications always has a special form and here we assume only the
continuity of f and some inequalities at some points for the values of this function.
However, we know that in the integrand should stay a superposition of u with a given
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function (usually the exponent of u in applications) instead of u alone, but we treat
this paper as the first step in this direction. The method we use is typical for local
boundary value problems. We shall formulate an equivalent fixed point problem and
look for its solution in the cone of nonnegative function in an appropriate Banach
space. The most popular fixed point theorem in a cone is the cone-compression and
cone-expansion theorem due to M. Krasnosel’skii [19] which we use in the form taken
from [16]. We also point out the fact that problems of type (1.1) when equation does
not contain parameter λ, are connected with the classical boundary value theory of
Bernstein [1] (see also the studies of Granas, Gunther and Lee [15] for some extensions
to nonlinear problems).

The existence and uniqueness of positive radial solutions for equations of type
(1.1) when equation does not contain paramete λ, were obtained in [5], [21], [32].

Wang [32] proved that if f : (0,∞)→ (0,∞) satisfies lim
z→0

f(z)
z =∞ and lim

z→∞
f(z)
z = 0

then problem (1.1) when equation does not contain paramete λ, has a positive radial
solution in Ω =

{
x ∈ RN , N > 2

}
. That result was extended for the systems of elliptic

equations by Ma [23]. We quote also the research of Ovono and Rougirel [28] where
the diffusion at each point depends on all the values of the solutions in a neighborhood
of this point and Chipot et al. [11], [12]. For example in [11] considered the solvability
of a class of nonlocal problems which admit a formulation in term of quasi-variational
inequalities. There is a wide literature that deals with existence multiplicity results
for various second-order, fourth-order and higher-order boundary value problems by
different approaches, see [5], [8], [6], [7], [10], [17], [25], [22].
In 2011, Bohneure et al. [4] Studied the existence of positive increasing radial solutions
for superlinear Neumann problem in the unit ball B in RN , N ≥ 2,

−∆u+ u = a (|x|) f (u) , in B,

u > 0, in B,

∂tu = 0, on ∂B,

where a ∈ C1 ([0, 1] ,R) , a (0) > 0 is nondecreasing, f ∈ C1 ([0, 1] ,R) , f (0) = 0,

lim
s→0+

f (s)

s
= 0 and lim

s→+∞

f (s)

s
>

1

a (0)
.

In 2011, Hakimi and Zertiti, [17] studied the nonexistence of radial positive solutions
for a nonpositone problem when the nonlinearity is superlinear and has more than
one zero, {

−4u (x) = λf (u (x)) , x ∈ Ω,
u (x) = 0, x ∈ ∂Ω,

where f ∈ C ([0,+∞) ,R).
In 2014, Sfecci [31], obtained the existence result by introduced the lim sup and lim inf
types of nonresonance condition below the first positive eigenvalue for the following
Neumann problems defined on the ball BR =

{
x ∈ RN , |x| < R

}
,{

−4u (x) = f (u (x)) + e (|x|) , in BR,

u (x) = 0, on ∂BR,
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where f ∈ C (R,R) and e ∈ C ([0, R] ,R).

In 2014, Butler et. al, [9] studied the positive radial solutions to the boundary value
problem 

−∆u+ u = λa (|x|) f (u) , x ∈ Ω,
∂u
∂η + c (u)u = 0, |x| = r0,

u (x)→ 0, |x| → ∞,

where f ∈ C ([0,∞) ,R) ,Ω =
{
x ∈ RN : N > 2, |x| > r0 with r0 > 0

}
, λ is a positive

parameter, a ∈ C ([r0,∞) ,R+) such that lim
r→∞

a (r) = 0, ∂
∂u is the outward normal

derivative and c ∈ C ([0,∞) , (0,∞)).

Instead of working directly with (1.1), we note that the change of variable

u(x) = u(|x|), t = |x|

transforms (1.1) into the following boundary value problem (for details, see [14]:{
−u′′ (t)− N−1

t u (t) = λf (t, u (t)) , t ∈ (a, b) ,

u (a) = u (b) = 0,

where λ ≥ 0 is a positive parameter and f ∈ C ([a, b]× [0,∞) , [0,∞)).

Inspired and motivated by the works mentioned above, we deal with existence
and nonexistence of radial positive solutions to the BVP (1.1) i.e., an equivalant
problem (2.1) by using of the fixed point theorem together with the properties of
Green’s function and we impose certain conditions on f . The paper is organized
as follows. In Section 2, we present that a nontrivial and nonnegative solution of
BVP (2.1) is monotone positive solution. In Section 3, we obtain some results of the
existence, multiplicity and nonexistence positive solutions for BVP (2.1) depends on
the parameter λ and we give an example to illustrate our results.

2. Preliminaries

We shall consider the Banach space E = C [a, b] equipped with sup norm

‖u‖ = max
a≤t≤b

|u (t)| ,

and C+ [a, b] is the cone of nonnegative functions in C [a, b], where 1 < a < b.

Definition 2.1. A nonempty closed and convex set P ⊂ E is called a cone of E if it
satisfies

(i) u ∈ P, r > 0 implies ru ∈ P,
(ii) u ∈ P, −u ∈ P implies u = θ, where θ denote the zero element of E.

Definition 2.2. A cone P is said to be normal if there exists a positive number N
called the normal constant of P , such that θ ≤ u ≤ v implies ‖u‖ ≤ N ‖v‖.
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We are interested in finding radial solutions for problem (1.1). We proceed as
in introduction, setting u (x) = u (|x|), t = |x|, we have the following equivalent
boundary value problem{

−u′′ (t)− N−1
t u (t) = λf (t, u (t)) , t ∈ (a, b) ,

u (a) = u (b) = 0.
(2.1)

We observe that the existence and nonexistence of radial positive solutions of
(1.1) is equivalent to the existence and nonexistence of positive solutions of the prob-
lem (2.1).

In arriving our results, we need the following six preliminary lemmas. The first
one is well known.

Lemma 2.3. (see [13]) Let y (·) ∈ C [a, b]. If u ∈ C4 [a, b], then the BVP{
−u′′ (t)− N−1

t u (t) = y (t) , t ∈ (a, b) ,

u (a) = u (b) = 0,

has a unique solution

u (t) =

b∫
a

sN−1G (t, s) y (s) ds, N > 2,

where

G (t, s) =


(
1−( a

s )
N−2

)(
( b

t )
N−2−1

)
(N−2)(bN−2−aN−2)

, a ≤ t ≤ s ≤ b,(
1−( a

t )
N−2

)(
( b

s )
N−2−1

)
(N−2)(bN−2−aN−2)

, a ≤ s ≤ t ≤ b.
(2.2)

Lemma 2.4. For any (t, s) ∈ [a, b]× [a, b], we have(
1−

(
a
t

)N−2)
(N − 2) (bN−2 − aN−2)

≤ G (t, s) ≤

((
b
t

)N−2 − 1
)

(N − 2) (bN−2 − aN−2)
, (2.3)

and

0 ≤ ∂G

∂t
(t, s) ≤

((
b
s

)N−2 − 1
)(

(N−2)b
aN−1

)
(N − 2) (bN−2 − aN−2)

, (t, s) ∈ [a, b]× [a, b] . (2.4)

Proof. The proof is evident, we omit it. �

Lemma 2.5. (see [10]) For y (·) ∈ C+ [a, b]. Then the unique solution u (t) of BVP{
−u′′ (t)− N−1

t u (t) = y (t) , t ∈ (a, b) ,

u (a) = u (b) = 0.

is nonnegative and satisfies
min

a1≤t≤b1
u (t) ≥ c ‖u‖ ,

where c =
min

{(
b
b1

)N−2
−1,1−

(
a
a1

)N−2
}

max
{
( b

a )
N−2−1,1−( a

b )
N−2

} and a1, b1 ∈ (a, b) with a1 < b1.
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If we let

P =

{
u ∈ C+ [a, b] : min

a1≤t≤b1
u (t) ≥ c ‖u‖

}
, (2.5)

then it is easy to see that P is a cone in C [a, b]. It is evident that BVP (2.1) has an
integral formulation given by

u (t) = λ

b∫
a

sN−1G (t, s) f (s, u (s)) ds,

where G defined in (2.2).
Now, we define an integral operator Tλ : P → C [a, b] by

(Tλu) (t) = λ

b∫
a

sN−1G (t, s) f (s, u (s)) ds.

Lemma 2.6. Let y ∈ C+ [a, b]. If u ∈ C2 [a, b] satisfies{
−u′′ (t)− N−1

t u(t) = y (t) , t ∈ (a, b),

u (a) = 0, u (b) = 0,

then
(i) u (t) ≥ 0 for t ∈ [a, b],
(ii) u′ (t) ≥ 0 for t ∈ [a, b].

Proof. From Lemma 2.4, we obtain u (t) ≥ 0 and u′ (t) ≥ 0 for t ∈ [a, b]. �

Lemma 2.7. Tλ (P ) ⊂ P .

Proof. For any u ∈ P , we have

min
a1≤t≤b1

Tλu (t) =
λ

(N − 2) (bN−2 − aN−2)
min

a1≤t≤b1


t∫
a

(
1−

(a
s

)N−2)
sN−1f (s, u (s))

×

((
b

t

)N−2
− 1

)
ds+

b∫
t

(
1−

(a
t

)N−2)(( b
s

)N−2
− 1

)
sN−1f (s, u (s)) ds


≥ λ

(N − 2) (bN−2 − aN−2)
min

a1≤t≤b1


t∫
a

(
1−

(a
s

)N−2)(( b

b1

)N−2
− 1

)

×sN−1f (s, u (s)) ds+

b∫
t

(
1−

(
a

a1

)N−2)((
b

s

)N−2
− 1

)
sN−1f (s, u (s)) ds


≥
λmin

{(
b
b1

)N−2
− 1, 1−

(
a
a1

)N−2}
(N − 2) (bN−2 − aN−2)

min
a1≤t≤b1


t∫
a

sN−1f (s, u (s))
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×
(

1−
(a
s

)N−2)
ds+

b∫
t

((
b

s

)N−2
− 1

)
sN−1f (s, u (s)) ds


=

λmin

{(
b
b1

)N−2
− 1, 1−

(
a
a1

)N−2}
(N − 2) (bN−2 − aN−2)

min
a1≤t≤b1


t∫
a

(
b
s

)N−2 − 1(
b
s

)N−2 − 1
sN−1f (s, u (s))

×
(

1−
(a
s

)N−2)
ds+

b∫
t

1−
(
a
s

)N−2
1−

(
a
s

)N−2
((

b

s

)N−2
− 1

)
sN−1f (s, u (s)) ds


≥
λmin

{(
b
b1

)N−2
− 1, 1−

(
a
a1

)N−2}
(N − 2) (bN−2 − aN−2)

min
a1≤t≤b1


t∫
a

(
b
s

)N−2 − 1(
b
a

)N−2 − 1
sN−1f (s, u (s))

×
(

1−
(a
s

)N−2)
ds+

b∫
t

1−
(
a
s

)N−2
1−

(
a
b

)N−2
((

b

s

)N−2
− 1

)
sN−1f (s, u (s)) ds


≥ cλ

(N − 2) (bN−2 − aN−2)
min

a1≤t≤b1


t∫
a

((
b

s

)N−2
− 1

)(
1−

(a
s

)N−2)

sN−1f (s, u (s)) ds+

b∫
t

(
1−

(a
s

)N−2)(( b
s

)N−2
− 1

)
sN−1f (s, u (s)) ds


=

cλ

(N − 2) (bN−2 − aN−2)

b∫
a

((
b

s

)N−2
− 1

)(
1−

(a
s

)N−2)
sN−1f (s, u (s) ds)

≥ cλ

(N − 2) (bN−2 − aN−2)
max
a≤t≤b


t∫
a

((
b

s

)N−2
− 1

)(
1−

(a
s

)N−2)

×sN−1f (s, u (s)) ds+

b∫
t

(
1−

(a
s

)N−2)(( b
s

)N−2
− 1

)
sN−1f (s, u (s)) ds


≥ cλ

(N − 2) (bN−2 − aN−2)
max
a≤t≤b


t∫
a

((
b

t

)N−2
− 1

)(
1−

(a
s

)N−2)

×sN−1f (s, u (s)) ds+

b∫
t

(
1−

(a
t

)N−2)(( b
s

)N−2
− 1

)
sN−1f (s, u (s)) ds


= c max

a≤t≤b
Tλu (t) = c ‖Tλu‖ .
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In other words, we find,

max
a1≤t≤b1

Tλu (t) = ‖Tλu‖ , ∀u ∈ P.

Thus, we get that Tλ : P → P is well defined. Moreover, it is easy to show that Tλ is
completely continuous. �

If we let

K = {u ∈ P/u (t) is nondecreasing} ,
then, it is easy to show that K ⊂ P is also a cone in E.

Lemma 2.8. Tλ (P ) ⊂ K.

Proof. It follows from Lemma 2.6 (ii) and Lemma 2.7. �

Lemma 2.9. Tλ : K → K is completely continuous.

Proof. Let D ⊂ K is a bounded subset. Then there exists a positive constanty M1

such that

‖u‖ ≤M1, ∀u ∈ D
Now, we shall prove that Tλ (D) is relatively compact in K.
Suppose that (yk)k∈N? ⊂ Tλ (D). Then there exist (xk)k∈N? ⊂ D, such that

yk = Axk

Let M2 = sup
a≤t≤b

|f (t, u (t))| for all (t, u) ∈ [a, b]× [0,M1]. For any k ∈ N∗, by Lemma

2.2, we have

|yk (t)| = |(Tnxk) (t)| = λ

∣∣∣∣∣∣
b∫
a

sN−1G (t, s) f (s, xk (s)) ds

∣∣∣∣∣∣
≤ λM2

b∫
a

sN−1G (t, s) ds

≤ 1

(N − 2) (bN−2 − aN−2)
λM2

((
b

t

)N−2
− 1

) b∫
a

sN−1ds

≤ bN − aN

N (N − 2) (bN−2 − aN−2)
λM2

((
b

a

)N−2
− 1

)
,

which implies that (yk (t))k∈N? is uniformly bounded.
Now, we show that Tλ is equicontinuous. For any u ∈ K, n ≥ 2, and t1, t2 ∈ [a, b]

with |t1 − t2| < δ, we have

|yk (t1)− yk (t2)| = |Tλu (t1)− Tλu (t2)|

≤

∣∣∣∣∣∣λ
b∫
a

sN−1 (G (t1, s)−G (t2, s)) f (s, xk (s)) ds

∣∣∣∣∣∣
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≤ λM2

b∫
a

sN−1 |G (t1, s)−G (t2, s)| ds.

It follows from the uniform continuity of Green’s function G on [a, b]× [a, b], that for
any ε > 0, we have

|G (t1, s)−G (t2, s)| ≤
εN

λ (bN − aN )M2
, for t1, t2, s ∈ [a, b] , |t1 − t2| < δ.

Then
|yk (t1)− yk (t2)| = |Tλu (t1)− Tλu (t2)|

≤ λM2

b∫
a

sN−1 |G (t1, s)−G (t2, s)| ds

≤ ε.
Therefore, Tλ is equicontinuous. By the Ascoli-Arzela Theorem, we know that Tλ is
completely continuous. �

By Lemmas 2.8 and 2.9, we know that if u ∈ P \ θ is solution for BVP (2.1),
then u is positive solution for BVP (2.1) and it is obvious from Lemma 2.8 that if
u ∈ P \ {θ} is a solution for BVP (2.1) then u ∈ K \ {θ}.

3. Existence and nonexistence results

In this section we will apply theorem due Krasnoselskii to study the existence,
multiplicity and nonexistence of solutions for BVP (2.1) in K \ {θ}.

Theorem 3.1. (see [19]) Let E be a Banach space and K ⊂ E be a cone in E. Assume
Ω1 and Ω2 are open subset of E with 0 ∈ Ω1 and Ω1 ⊂ Ω2, T : K ∩

(
Ω̄2 \ Ω1

)
→ K

be a completely continuous operator such that
(A) ‖Tu‖ ≤ ‖u‖, ∀u ∈ K ∩ ∂Ω1 and ‖Tu‖ ≥ ‖u‖, ∀u ∈ K ∩ ∂Ω2; or
(B) ‖Tu‖ ≥ ‖u‖, ∀u ∈ K ∩ ∂Ω1 and ‖Tu‖ ≤ ‖u‖, ∀u ∈ K ∩ ∂Ω2

Then T has a fixed point in K ∩
(
Ω̄2 \ Ω1

)
.

We adopt the following assumptions:
(H1) f (t, u (t)) ∈ C ((a, b) , [0,∞)) is nondecreasing in u ∈ [0,∞) for fixed t ∈ [a, b].

(H2) Fa =

b∫
a

sN−1f (s, 0) ds > 0,

(H3) f∞ = lim
u→∞

min
t∈[ a

a+b ,b]

f(t,u)
u = +∞.

Set
Λ = {λ > 0/there exists uλ ∈ K \ {θ} such that Tλuλ = uλ} ,

and
λ∗ = supΛ.

Lemma 3.2. Suppose that (H1)− (H3) hold. If λ
′ ∈ Λ, then (0, λ′] ⊂ Λ.
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Proof. λ
′ ∈ Λ means that there exists uλ′ ∈ K\{θ} such that Tλ′uλ′ = uλ′ . Therefore,

for any λ ∈ (0, λ′] we have

Tλuλ′ ≤ Tλ′uλ′ = uλ′ ,

Set

w0 = uλ′ , wn = Tλwn−1, n = 1, 2, ...

From (H1), we obtain

w0 (t) ≥ w1 (t) ≥ ... ≥ wn (t) ≥ ... ≥ Faλ

(N − 2) (bN−2 − aN−2)

(
1−

(a
t

)N−2)
,

by Lemma 2.9 and (H2), {wn} converges to fixed point of Tλ in K \ {θ}. Thus
(0, λ′] ⊂ Λ. The proof is complete. �

Let

λ∗ <

(
bN−2 − aN−2

)
Fb

, Fb =

b∫
a

sN−1f

(
s,

(
b

a

)N−2
− 1

)
ds,

u0 (t) =
λFa

(N − 2) (bN−2 − aN−2)

(
1−

(a
t

)N−2)
, v0 (t) =

((
b

t

)N−2
− 1

)
,

and

F∞ = lim
u→∞

sup max
a≤t≤b

f (t, u)

u
.

Theorem 3.3. Suppose that (H1) − (H3) hold. Then Tλ has minimal and maximal
fixed point in [u0, v0] for λ ∈ (0, λ∗]. Moreover, there exists λ∗ ≥ λ∗ > 0 such that
Tλ has at least one and has no fixed points in K \ {θ} for 0 < λ < λ∗ and λ > λ∗,
respectively.

Proof. From (H1)− (H3) and (2.3), we have λ∗ > 0. For any λ ∈ (0, λ∗], we obtain

(Tλu0) (t) = λ

b∫
a

sN−1G (t, s) f (s, u0 (s)) ds

≥ λ
b∫
a

sN−1G (t, s) f (s, u0 (a)) ds

≥ λ

(N − 2) (bN−2 − aN−2)

(
1−

(a
t

)N−2) b∫
a

sN−1f (s, 0) ds

≥ λFa
(N − 2) (bN−2 − aN−2)

(
1−

(a
t

)N−2)
= u0 (t) ,

and

(Tλv0) (t) = λ

b∫
a

sN−1G (t, s) f (s, v0 (s)) ds
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≤ λ*

b∫
a

sN−1G (t, s) f (s, v0 (b)) ds

≤ λ∗
(N − 2) (bN−2 − aN−2)

((
b

t

)N−2
− 1

) b∫
a

sN−1f (s, v0 (b)) ds

≤ λ∗Fb
(N − 2) (bN−2 − aN−2)

((
b

t

)N−2
− 1

)
≤ v0 (t) ,

Set

un = Tλun−1, vn = Tλvn−1, n = 1, 2, ...,

then from (H1), we have

u0 (t) ≤ u1 (t) ≤ ... ≤ un (t) ≤ ... ≤ v1 (t) ≤ v0 (t) . (3.1)

Lemma 2.9 implies that {un} and {vn} converge to fixed points uλ and vλ of Tλ,
respectively.
From (3.1) it is evident that uλ, vλ ∈ K \{θ} are the minimal fixed point and maximal
fixed point of Tλ in [u0, v0], respectively.

By the definition of λ∗, there exists a nondecreasing sequence {λn}+∞1 such that

lim
n→+∞

λn = λ∗. Let {uλn}
+∞
1 is bounded subset in K. Then there exists a constant

M > 0 such that

‖uλn
‖ ≤M, for n ∈ N∗,

which implies that {uλn
}+∞1 is uniformly bounded.

Now, we show that {uλn
}+∞1 is equicontinuous. For any uλn

∈ K, n ∈ N∗ and
t1, t2 ∈ [a, b], with |t1 − t2| < δ, we have

|xλn
(t1)− xλn

(t2)| ≤ λ∗
b∫
a

sN−1 |G (t1, s)−G (t2, s)| f (s,M) ds

≤ λ∗
b∫
a

sN−1 |G (t1, s)−G (t2, s)| f (s,M) ds,

which implies that {xλn
}+∞1 is equicontinuous subset in K. Consequently, by an

application of the Arzela-Ascoli theorem we conclude that {xλn
}+∞1 is a relatively

compact set in K. So, there exists a subsequence
{
xλni

}
⊂ {xλn} converging to

x∗ ∈ K. Note that

(
xλni

)
(t) = λni

b∫
a

sN−1G (t, s) f
(
s, xλni

(s)
)
ds.

By taking the limit we have x∗ (t) = (Tλ∗x
∗) (t). Therefore Tλ has at least one fixed

point for 0 < λ < λ∗. Finaly, for Tλ has no fixed point for λ > λ∗. The proof is
complete. �
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Theorem 3.4. Suppose that (H1) , (H3) and (2.3) hold. If (F+∞ < +∞), then when

F∞ > 0, there exists λ∗ ≥ N(N−2)(bN−2−aN−2)(bN−aN)
F∞

> 0 such that Tλ has at least

one and has no fixed points in K \{θ} for 0 < λ < λ∗ and λ > λ∗, respectively. When
F∞ = 0, Tλ has at least one fixed points in K \ {θ} for λ > 0.

Proof. Since F∞ <∞, for any ε > 0, there exists N0 > 0 such that

f (t, u) ≤ (F∞ + ε)u

for u > N0, t ∈ [a, b].

Let w0 (t) = N0

((
b
t

)N−2 − 1
)

and λ0 =
N(N−2)(bN−2−aN−2)(bN−aN)(

( b
a )

N−2−1
)
(F∞+ε)

, then λ0 > 0

and

(Tλ0
w0) (t) = λ0

b∫
a

sN−1G (t, s) f (s, w0 (s)) ds

≤ λ0
(N − 2) (bN−2 − aN−2)

((
b

t

)N−2
− 1

) b∫
a

sN−1 (F∞ + ε)w0 (t) ds

≤ λ0w0 (t) (F∞ + ε)

(N − 2) (bN−2 − aN−2)

((
b

t

)N−3
− 1

) b∫
a

sN−1ds

≤ λ0w0 (t) (F∞ + ε)

N (N − 2) (bN−2 − aN−2) (bN − aN )

((
b

a

)N−2
− 1

)
≤ w0 (t) ,

Now, set w0 (t) = N0

((
b
t

)N−2 − 1
)

,

wn = Tλn−1
wn−1, n = 1, 2, ....

From (H1), we obtain

w0 (t) ≥ w1 (t) ≥ ... ≥ wn (t) ≥ ... ≥ Faλ

(N − 2) (bN−2 − aN−2)

(
1−

(a
t

)N−2)
. (3.2)

Therefore, the sequence {wn} is bounded in K \{θ}. By Lemma 2.9 and the definition
of λ∗, the operator Tλn

completely continuous. Hence the sequence {wn} is compact
in K \ {θ} , its also monotone. Then it is uniformly convergent to fixed points u∗ of
Tλn in K \ {θ}. When we pass to the limit we get

u∗ = Tλ∗u
∗

For λ > λ∗, there exists {λn}∞1 , with lim
n→∞

λn = λ, we prove that problem has no

positive solution. suppose the contrary that the problem has a positive solution xλn
,

then we get

‖uλn‖ = (Tλnuλn)

((
b

a

)N−2
− 1

)
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≤ λn
(N − 2) (bN−2 − aN−2)

((
b

a

)N−2
− 1

) b∫
a

sN−1f (s, uλn
(s)) ds

≤ λn
(N − 2) (bN−2 − aN−2)

((
b

a

)N−2
− 1

) b∫
a

sN−1 (F∞ + ε)uλn
(b) ds

≤
λn
(
bN − aN

)
N (N − 2) (bN−2 − aN−2)

((
b

a

)N−2
− 1

)
(F∞ + ε)uλn

(b)

≤
λn
(
bN − aN

)
N (N − 2) (bN−2 − aN−2)

((
b

a

)N−2
− 1

)
(F∞ + ε) ‖uλn

‖ < ‖uλ∗‖ .

Taking the limit we obtain

‖uλ‖ < ‖uλ‖ ,
which is a contradiction. The proof is complete. �

Lemma 3.5. Assume that (H1) , (H2) and (H3) hold. If Λ is nonempty, then
(i) Λ is bounded from above, that λ∗ < +∞.
(ii) λ∗ ∈ Λ.

Proof. Suppose to the contrary that there exists an increasing sequence {λn}+∞1 ⊂ Λ
such that lim

n→+∞
λn = +∞. Set xλn

∈ K/ {θ} is a fixed point of Tλn
that is ,

Tλn
uλn

= uλn
.

There are two cases to be considered.
Case 1. {uλn

}+∞1 is bounded, that is there exists a constant M > 0 such that

‖uλn
‖ ≤M, for n = 1, 2, . . . .

Hence, from (H1) , (H2) , and (H3) and Lemma 2.3, we have

M ≥ ‖uλn
‖ ≥ (Tλn

uλn
) (t)

≥ λn
(N − 2) (bN−2 − aN−2)

(
1−

(a
b

)N−2) b∫
a

sN−1f (s, 0) ds

=
λn

(N − 2) (bN−2 − aN−2)

(
1−

(a
b

)N−2)
Fa → +∞,

which is a contradiction.
Case 2. {uλn}

+∞
1 is unbounded, that is there exists subsequence of {uλn}

+∞
1 still

denoted by {uλn
}+∞1 such that lim

n→+∞
‖uλn

‖ = +∞.

When (H3), take

L >
N (N − 2)

(
bN−2 − aN−2

)(
1−

(
a
b

)N−2)
λ1
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there exists N1 > 0 such that f (t, u) ≥ Lu, for u ≥ N1, t ∈ [a, b]. Choose n1 such
that

∥∥uλn1

∥∥ > NN1.

Thus, for t ∈ [a, b] , we have

f

(
t,

1

N

∥∥uλn1

∥∥) ≥ 1

N
L
∥∥uλn1

∥∥ .
Moreover, from (H1) and the definition of K, we have∥∥xλn1

∥∥ ≥ (Tλn1
uλn1

)
(t)

≥ λn1

(N − 2) (bN−2 − aN−2)

(
1−

(a
b

)N−2) b∫
a

sN−1f
(
s, uλn1

(s)
)
ds

≥ λn1

(N − 2) (bN−2 − aN−2)

(
1−

(a
b

)N−2) b∫
a

sN−1f

(
s,

1

6

∥∥uλn1
(s)
∥∥) ds

=
λn1

L
(

1−
(
a
b

)N−2)
N (N − 2) (bN−2 − aN−2)

∥∥uλn1

∥∥ > ∥∥uλn1

∥∥ ,
which is a contradiction.
Consequently, we find that Λ is bounded from above.

(ii) From the definition of λ∗, there exists a nondecreasing sequence {λn}+∞1
such that lim

n→+∞
λn = λ∗. Let {uλn

}+∞1 ∈ K \ {θ} be a fixed point of Tλn
. Arguing

similarly as above in Case 2, we can show that {uλn}
+∞
1 is bounded subset in K, that

is there exists a constant M > 0. Hence from (H1) , (H2) , and (H3), we have

‖uλn‖ = (Tλnuλn)

((
b

a

)N−2
− 1

)

≤ λn
(N − 2) (bN−2 − aN−2)

((
b

a

)N−2
− 1

) b∫
a

sN−1f (s, uλn
(s)) ds

≤ λn
(N − 2) (bN−2 − aN−2)

((
b

a

)N−2
− 1

) b∫
a

sN−1f (s, uλn (b)) ds

≤ λn
(N − 2) (bN−2 − aN−2)

((
b

a

)N−2
− 1

) b∫
a

sN−1f (s, vλn
(b)) ds

=
λn

(N − 2) (bN−2 − aN−2)

((
b

a

)N−2
− 1

) b∫
a

sN−1f (s, 0) ds

=
λnFa

(N − 2) (bN−2 − aN−2)

((
b

a

)N−2
− 1

)
→

λ∗Fa

((
b
a

)N−2)
(N − 2) (bN−2 − aN−2)

= M,

as n→∞.
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Therefore

‖uλn
‖ ≤M, n = 1, 2, ...

which shows that {uλn
}+∞1 is uniformly bounded.

From the proof of Theorem 3.3 we know that {uλn
}+∞1 is equicontinuous subset in

K and by an application of the Arzela-Ascoli theorem we conclude that {uλn
}+∞1

is a relatively compact set in K. So, there exists a subsequence
{
uλni

}
⊂ {uλn}

converging to u∗ ∈ K. Note that

(
uλni

)
(t) = λni

1∫
0

sN−1G (t, s) f
(
s, uλni

(s)
)
ds.

By taking the limit we have

u∗ (t) = (Tλ∗u
∗) (t) ≥ λ1Fa

(N − 2) (bN−2 − aN−2)

(
1−

(a
t

)N−2)
,

that is λ∗ ∈ Λ. The proof is complete. �

Theorem 3.6. Suppose that (H1)−(H3) holds. Then there exists λ∗ ≥ λ∗ > 0 such that
BVP (2.1) has at least two, one and no positive solutions for 0 < λ ≤ λ∗, λ∗ < λ ≤ λ∗
and λ > λ∗ respectively.

Proof. From (H1) , (H2) and (H3) we have (0, λ∗] ⊂ Λ. So λ∗ ≥ λ∗ > 0.
From Lemma 3.2 and 3.5, we have (0, λ∗] = Λ. Therefore, from the definition of λ∗

we only to prove that Tλ has at least two fixed points in K \ {θ} for λ ∈ (0, λ∗].
Now, given λ ∈ (0, λ∗]. Theorem 3.3 means that Tλ has at least one fixed point

uλ,1 ∈ K \ {θ} which satisfies ‖uλ,1‖ ≤
(
b
a

)N−2 − 1.
Let

K1 =

{
x ∈ K | ‖u‖ <

(
b

a

)N−2
− 1

}
.

For t ∈ [a, b], so for u ∈ K with ‖u‖ =
(
b
a

)N−2 − 1, i.e u ∈ ∂K1, we have

‖u‖ = ‖Tλu‖ = (Tλu)

((
b

a

)N−2
− 1

)

≤ λ

(N − 2) (bN−2 − aN−2)

((
b

a

)N−2
− 1

) b∫
a

sN−1f (s, u (s)) ds

≤ λ∗
(N − 2) (bN−2 − aN−2)

((
b

a

)N−2
− 1

) b∫
a

sN−1f

(
s,

(
b

a

)N−2
− 1

)
ds

<

((
b
a

)N−2 − 1
)

N − 2
< ‖u‖ . (3.3)
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When (H3), take

L >
N (N − 2)

(
bN−2 − aN−2

)(
1−

(
a
b

)N−2)
λ1

there exists N1 > 0 such that f (t, u) ≥ Lu, for u ≥ N1, t ∈ [a, b].

Set K2 = {u : ‖u‖ < NN1}. Then K1 ⊂ K2. If u ∈ ∂K2, we have

‖u‖ = ‖Tλu‖ = (Tλu)

((
b

a

)N−2
− 1

)

≥ λ

(N − 2) (bN−2 − aN−2)

(
1−

(a
b

)N−2) b∫
a

sN−1f (s, u (s)) ds

≥ λ

(N − 2) (bN−2 − aN−2)

(
1−

(a
b

)N−2) b∫
a

sN−1f

(
s,

1

N
‖u‖
)
ds

≥ λ

(N − 2) (bN−2 − aN−2)

(
1−

(a
b

)N−2) b∫
a

sN−1f

(
s,

1

N
‖u (s)‖

)
ds

≥
λL
(

1−
(
a
b

)N−2)
N (N − 2) (bN−2 − aN−2)

‖u‖ > ‖u‖ .

Consequently, Applying Theorem 3.1 that Tλ has a fixed point uλ,2 ∈ K2 \K1.
Equation (3.3) implies that Tλ has no fixed point in ∂K1. In conclusion, for λ ∈ (0, λ∗],
Tλ has at least two fixed points uλ,1 and uλ,2 in K. The proof is complete. �

We present an example to illustrate the applicability of the results shown before.

Example 3.7. Consider in R3 the elliptic boundary value problem{
−4u (x) = λ (|x|+ u+ ln (1 + u)) , x ∈ Ω,
u (x) = 0, x ∈ ∂Ω,

(3.4)

To the system (3.4) we associate the the second order boundary value problem −u′′ (t)−
2

t
u(t) = λ (t+ u+ ln (1 + u)) , t ∈ (a, b) ,

u (a) = u (b) = 0,

By direct computation, we have

F∞ = 2, F0 =
1

4
, F1 =

1

2
+

2

3
(1 + ln (2)) and λ∗ =

48− 9π

6 + 8 (1 + ln (2))
.

So, the assumptions (H1) , (H2) and (H3) are satisfied, it follows from Theorem 3.4
there exists λ∗ = 3 ≥ λ∗ such that boundary value problem (3.4) has at least one
positive solution for 0 < λ ≤ 3 and has no positive solution for λ > λ∗.
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