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Ascent, descent and additive preserving problems
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Abstract. Given an integer n ≥ 1, we provide a complete description of all ad-
ditive surjective maps, on the algebra of all bounded linear operators acting on
a complex separable infinite-dimensional Hilbert space, preserving in both di-
rections the set of all bounded linear operators with ascent (resp. descent) non-
greater than n. In the context of Banach spaces, we consider the additive pre-
serving problem for semi-Fredholm operators with ascent or descent non-greater
than n.
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1. Introduction

Let X be an infinite-dimensional Banach space over the real or complex field K,
and let B(X) be the algebra of all bounded linear operators on X.

For a subset Λ ⊂ B(X), we say that a map Φ on B(X) preserves Λ in both
directions (or, equivalently, that Φ is a preserver of Λ in both directions) if for every
T ∈ B(X),

T ∈ Λ if and only if Φ(T ) ∈ Λ.

For an operator T ∈ B(X), write ker(T ) for its kernel, ran(T ) for its range and
T ∗ for its adjoint on the topological dual space X∗. The ascent a(T ) and descent d(T )
of T ∈ B(X) are defined by

a(T ) = inf{k ≥ 0 : ker(T k) = ker(T k+1)}
and

d(T ) = inf{k ≥ 0 : ran(T k) = ran(T k+1)},
where the infimum over the empty set is taken to be infinite (see [15, 19]). Clearly, a
bounded linear operator is injective (resp. surjective) if and only if its ascent (resp.
descent) is zero.

Over the last years, there has been a considerable interest in the so-called linear
preserver problems that concern the question of determining the form of all linear, or
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additive, maps on B(X) that leave invariant certain subsets. The most linear preserver
problems were solved in the finite-dimensional context, and extended later to the
infinite-dimensional one. For excellent expositions on linear preserver problems, the
reader is referred to [7, 11, 12, 13, 16] and the references therein.

One of the most famous problems in this direction is Kaplansky’s problem [8],
asking whether bijective unital linear maps Φ, between semi-simple Banach algebras,
preserving in both directions invertibility, are Jordan isomorphisms (i.e. Φ(a2) =
Φ(a)2 for all a). This problem was first solved in the finite-dimensional case [10], and
it was later extended to von Neumann algebras [1]. In the case of the algebra B(X),
A. A. Jafarian and A. R. Sourour established in [7] that every unital surjective linear
map Φ on B(X), preserving in both directions invertibility, has one of the following
two forms

T 7→ ATA−1 or T 7→ AT ∗A−1, (1.1)

where A is a bounded linear operator between suitable spaces. Later, it was shown in
[6] that every unital surjective additive preserver of injective operators or of surjective
operators in both directions takes one of the two forms (1.1).

Since injective and surjective operators are precisely those operators with zero
ascent and descent respectively, the following question arises: What can we say about
surjective linear maps on B(X) preserving in both directions operators of finite ascent
and descent, respectively?

Let H be a separable complex infinite-dimensional Hilbert space, and denote by
A(H) (resp. D(H)) the set of all operators in B(H) of finite ascent (resp. descent). In
[11], the authors showed that a surjective additive continuous map Φ : B(H)→ B(H)
preserves A(H) or D(H) in both directions if and only if

Φ(T ) = cATA−1 for all T ∈ B(H), (1.2)

where c is a non-zero scalar and A : H → H is an invertible bounded linear, or
conjugate linear, operator. An analog result was proved for A(H) ∪ D(H) by the
same authors, see [12]. It should be noted that the question of removing the continuity
condition or extending these results to the context of Banach spaces is still open.

The above results motivated us to continue the study of additive preservers
involving the ascent and descent. This study may be considered as a key step towards
a deeper understanding of operators with finite ascent or descent and their topological
properties. In this paper, we will show that if we limit the variation of the ascent
and the descent, then we obtain the same conclusion as in [11] without considering
continuous preservers.

For each integer n ≥ 1 let us introduce the following subsets of B(H):

1. An(H) the set of all operators T ∈ B(H) with a(T ) ≤ n;
2. Dn(H) the set of all operators T ∈ B(H) with d(T ) ≤ n.

Now, we summarize the first main result in the following theorem:

Theorem 1.1. Let Φ : B(H)→ B(H) be an additive surjective map. Then the following
assertions are equivalent:

1. Φ preserves An(H) in both directions;
2. Φ preserves Dn(H) in both directions;
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3. Φ preserves An(H) ∪ Dn(H) in both directions;
4. there exist a non-zero scalar c and a bounded invertible linear, or conjugate

linear, operator A : H → H such that

Φ(T ) = cATA−1 for all T ∈ B(H).

Unfortunately, the approach used here does not allow us to obtain an analogue
result in the context of Banach spaces. More precisely, one of the most important
steps in the proof of the previous theorem consists in determining the topological
interior of An(H), Dn(H), and An(H) ∪ Dn(H) using that of A(H) ∪ D(H), which
is known only in the context of separable Hilbert spaces, see [12].

Recall that an operator T ∈ B(X) is called upper (resp. lower) semi-Fredholm if
ran(T ) is closed and dim ker(T ) (resp. codim ran(T )) is finite. The following properties
will be used tacitly throughout the paper (see [15, Section 16]):

1. If the codimension of the range ran(T ) of an operator T ∈ B(X) is finite, then
ran(T ) is automatically closed;

2. The composition of two upper (resp. lower) semi-Fredholm operators is an upper
(resp. lower) semi-Fredholm operator;

3. If ST is an upper (resp. lower) semi-Fredholm operator, then T (resp. S) is upper
(resp. lower) semi-Fredholm.

In [14], the authors studied all linear maps Φ on B(H) preserving in both direc-
tions semi-Fredholm operators. It has been shown that such maps Φ preserve in both
directions the ideal of compact operators, and that the induced maps on the Calkin
algebra are Jordan automorphisms. The problem of determining the structure of such
maps on the whole space B(H) has remained open, and hence they conjectured that
Φ is of the form T 7→ ATB+Ψ(T ) where A,B ∈ B(H) are Fredholm operators and Ψ
is a linear map on B(H) whose range is contained in the ideal of compact operators.

In this paper, we prove that if we limit the variation of the ascent (resp. descent)
of upper (resp. lower) semi-Fredholm operators, then we obtain the complete descrip-
tion of all additive preservers of such operators in the context of Banach spaces. More
precisely, we consider additive preservers of the following subsets of B(X):

1. F+
n (X) the set of all upper semi-Fredholm operators T ∈ B(X) with a(T ) ≤ n;

2. F−n (X) the set of all lower semi-Fredholm operators T ∈ B(X) with d(T ) ≤ n;
3. F±n (X) = F+

n (X) ∪ F−n (X).

The second main result of the present paper is stated as follows:

Theorem 1.2. Let Φ : B(X) → B(X) be an additive surjective map preserving any
one of the subsets F+

n (X), F−n (X) or F±n (X) in both directions. Then there exist a
non-zero scalar c, and either a bounded invertible linear, or conjugate linear, operator
A : X → X such that

Φ(T ) = cATA−1 for all T ∈ B(X),

or, a bounded invertible linear, or conjugate linear, operator B : X∗ → X such that

Φ(T ) = cBT ∗B−1 for all T ∈ B(X).

As an application of Theorem 1.2, we derive the following corollary:
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Corollary 1.3. Let Φ : B(H)→ B(H) be an additive surjective map. Then the following
assertions are equivalent:

1. Φ preserves F+
n (H) in both directions;

2. Φ preserves F−n (H) in both directions;
3. Φ preserves F±n (H) in both directions;
4. there exist a non-zero scalar c and a bounded invertible linear, or conjugate

linear, operator A : H → H such that

Φ(T ) = cATA−1 for all T ∈ B(H).

The paper is organized as follows. In the second section, we give the topological
interior of each of the subsetsAn(H),Dn(H), andAn(H)∪Dn(H). The third section is
devoted to establish some useful results on rank-one perturbations of these topological
interiors. These results are needed for proving our theorems in the last section.

2. Topological interior of An(H), Dn(H), and An(H) ∪ Dn(H)

Recall that the hyper-kernel and the hyper-range of an operator T ∈ B(X) are

respectively the subspaces N∞(T ) =
⋃
k≥0

ker(T k) and R∞(T ) =
⋂
k≥0

ran(T k).

Let us introduce the following subsets of B(X):

1. B+n (X) = {T ∈ B(X) : ran(T ) is closed and dimN∞(T ) ≤ n};
2. B−n (X) = {T ∈ B(X) : codimR∞(T ) ≤ n};
3. B±n (X) = B+n (X) ∪ B−n (X).

One of the most important steps in the proof of our main theorems is to show
that the maps we are dealing with preserve the subsets B+n (X), B−n (X) and B±n (X) in
both directions. In order to prove this implication, we establish that the topological
interior of An(H), Dn(H) and An(H) ∪ Dn(H) is respectively B+n (H), B−n (H) and
B±n (H). Similar results are given for F+

n (X), F−n (X) and F±n (X).

It should be noted that the ascent and the hyper-kernel of an operator T ∈ B(X)
are related by the following inequality (see [17])

a(T ) ≤ dimN∞(T ). (2.1)

Similarly, the descent is related to the hyper-range by

d(T ) ≤ codimR∞(T ). (2.2)

Remark 2.1. For T ∈ B(X), it follows easily from the definition of the ascent and of
the descent that:

1. dim ker(Tn+1) ≤ n if and only if dimN∞(T ) ≤ n;
2. codim ran(Tn+1) ≤ n if and only if codimR∞(T ) ≤ n.

Proposition 2.2. B+n (X), B−n (X) and B±n (X) are open subsets of F+
n (X), F−n (X) and

F±n (X), respectively.
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Proof. It follows from (2.1) and (2.2) that B+n (X) and B−n (X) are subsets of F+
n (X)

and F−n (X) respectively, and so B±n (X) is a subset of F±n (X). Let S ∈ B+
n (X). In

particular, we have dim ker(Sn) = dim ker(Sn+1) ≤ n and Sn+1 is an upper semi-
Fredholm operator. Hence, it follows by [15, Theorem 16.11] that there exists η > 0
such that for T ∈ B(X) with ‖ T−Sn+1 ‖< η, we have that T is upper semi-Fredholm
and

dim ker(T ) ≤ dim ker(Sn+1) ≤ n. (2.3)

On the other hand, since the function T 7→ Tn+1 is continuous on B(X), there exists
ε > 0 such that

‖ Tn+1 − Sn+1 ‖< η for all T ∈ B(X) with ‖ T − S ‖< ε. (2.4)

Combining (2.4) and (2.3) we obtain that Tn+1 is upper semi-Fredholm and

dim ker(Tn+1) ≤ dim ker(Sn+1) ≤ n,

and so T ∈ B+
n (X) for all T ∈ B(X) with ‖ T − S ‖< ε. This shows that B+n (X) is

open.
Similarly, we prove that B−n (X) is open, and hence B±n (X) is also open. �

From [5, Lemma 1.1], given a non-negative integer d, we have

a(T ) ≤ d⇔ ker(Tm) ∩ ran(T d) = {0} for some m ≥ 1. (2.5)

Remark 2.3. Let T ∈ B(X). Then the following assertions hold:

1. If T has finite ascent and descent then a(T ) = d(T ) and X = ker(T k)⊕ ran(T k),
where k = a(T ) and the direct sum is topological (see [15, Corollary 20.5]).

2. If T = T1⊕T2 with respect to any decomposition of X, then it follows from [18,
Theorem 6.1] that

a(T ) = max{a(T1), a(T2)} and d(T ) = max{d(T1),d(T2)}.

The following example shows that B+n (X), B−n (X) and B±n (X) are proper subsets
of F+

n (X), F−n (X) and F±n (X), respectively, and that there exist operators with finite
ascent and descent which are not semi-Fredholm.

Example 2.4. Let Y ⊂ X be a closed subspace of dimension n+1, and write X = Y ⊕Z
where Z is a closed subspace of X. With respect to this decomposition, consider
the operator T = 0 ⊕ I. According to the previous remark, one can easily see that
a(T ) = d(T ) = 1. Since N∞(T ) = ker(T ) = Y and R∞(T ) = ran(T ) = Z, then T
belongs to F+

n (X) ∩ F−n (X) and not to B±n (X).
Similarly, for S = I −T , we have a(S) = d(S) = 1, ker(S) = Z and ran(S) = Y .

Thus, S is not a semi-Fredholm operator.

Recall that an operator T ∈ B(X) is called upper (resp. lower) semi-Browder if
it is upper (resp. lower) semi-Fredholm of finite ascent (resp. descent). Clearly, every
operator in F+

n (X) (resp. F−n (X)) is upper (resp. lower) semi-Browder.

Theorem 2.5. Let T ∈ B(X) be non-zero. The following assertions are equivalent:

1. T ∈ B±n (X) (resp. B+n (X), B−n (X));
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2. for every S ∈ B(X) there exists ε0 > 0 such that T+εS ∈ F±n (X) (resp. F+
n (X),

F−n (X)), for all numbers (equivalently, rational numbers) |ε| < ε0.

Proof. (1) ⇒ (2) follows immediately from the previous proposition.

(2) ⇒ (1). Suppose that for every S ∈ B(X) there exists ε0 > 0 such that
T + εS ∈ F±n (X) for all numbers |ε| < ε0. In particular, we have T ∈ F±n (X),
and so T is either upper semi-Browder or lower semi-Browder. It follows from [15,
Theorem 20.10] that there exist two closed T -invariant subspaces X1 and X2 such
that X = X1 ⊕X2, dimX1 < ∞, T1 = T|X1

is nilpotent and T|X2
is either bounded

below or onto, respectively. We claim that dimX1 ≤ n. Let {ei : 0 ≤ i ≤ p} be a
basis of X1 such that Te0 = 0 and Tei = εiei−1 for 1 ≤ i ≤ p where εi ∈ {0, 1}.
With respect to the decomposition of X, consider the operator S ∈ B(X) given by
S = S1 ⊕ 0 where S1e0 = 0 and S1ei = ei−1 for 1 ≤ i ≤ p. Clearly, for ε /∈ {−1, 0} we
have

(T1 + εS1)e0 = 0 and (T1 + εS1)ei = (εi + ε)ei−1 for 1 ≤ i ≤ p.

Hence (T1 + εS1)pep = λe0 6= 0 where λ = (εp + ε) . . . (ε1 + ε).
Therefore e0 ∈ ker(T1 + εS1) ∩ ran(T1 + εS1)p, and consequently

a(T1 + εS1) = d(T1 + εS1) ≥ p+ 1

by (2.5). But, we have also

a(T1 + εS1) ≤ a(T + εS) and d(T1 + εS1) ≤ d(T + εS).

Since T + εS ∈ F±n (X), then a(T + εS) ≤ n or d(T + εS) ≤ n. Thus dimX1 ≤ n.

Now, if T ∈ F+
n (X) (resp. F−n (X)) then T is upper (resp. lower) semi-Browder, and

so the space X1 (resp. X2) is uniquely determined and X1 = N∞(T ) (resp. X2 =
R∞(T )) (see [15, Theorem 20.10]). This proves that T ∈ B+n (X) (resp. B−n (X)). �

For a subset Γ ⊆ B(X), we write Int(Γ) for its interior. As a consequence of Theorem
2.5, we derive the following corollary.

Corollary 2.6. We have Int(F+
n (X)) = B+n (X), Int(F−n (X)) = B−n (X) and

Int(F±n (X)) = B±n (X).

Proof. Let us show that Int(F+
n (X)) = B+n (X). Note that B+n (X) ⊆ Int(F+

n (X))
because B+n (X) is open. Let T /∈ B+n (X), then Theorem 2.5 ensures the existence of an
operator S ∈ B(X) and a sequence (εk) converging to zero such that T+εkS /∈ F+

n (X)
for all k ≥ 0. Consequently, T /∈ Int(F+

n (X)).

Similarly, we prove that Int(F−n (X)) = B−n (X) and Int(F±n (X)) = B±n (X). �

Theorem 2.7. Let H be a separable complex infinite-dimensional Hilbert space and let
T ∈ B(H). Then the following assertions are equivalent:

1. T ∈ B±n (H) (resp. B+n (H), B−n (H));
2. for every S ∈ B(H) there exists ε0 > 0 such that T+εS ∈ An(H)∪Dn(H) (resp.
An(H), Dn(H)), for all numbers (equivalently, rational numbers) |ε| < ε0.
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Proof. (1) ⇒ (2) follows immediately from Proposition 2.2.
(2) ⇒ (1). Suppose that for every S ∈ B(H) there exists ε0 > 0 such that

T + εS ∈ An(H) ∪ Dn(H) for all |ε| < ε0. Then, using [12, Proposition 2.5], we get
that T is a semi-Browder operator. The rest of the proof is similar to the proof of
Theorem 2.5. �

Using a similar proof of Corollary 2.6, we get the following result.

Corollary 2.8. We have Int(An(H) ∪ Dn(H)) = B±n (H), Int(An(H)) = B+n (H) and
Int(Dn(H)) = B−n (H).

3. B+
n (X), B−

n (X) and B±
n (X) under rank-one perturbations

Let z ∈ X and let f ∈ X∗ be non-zero. We denote by z⊗f the rank-one operator
defined by (z ⊗ f)(x) = f(x)z for all x ∈ X. Note that every rank-one operator in
B(X) can be written in this form.

In [13], the authors proved that for a rank-one operator F ∈ B(X) and for T ∈
B(X) with dim ker(T ) ≤ n, we have either dim ker(T +F ) ≤ n or dim ker(T −F ) ≤ n.
In the following, we extend this result to the setting of the hyper-kernel subspace.

Proposition 3.1. Let T ∈ B(X) be such that dimN∞(T ) ≤ n, and let F ∈ B(X) be a
rank-one operator. Then either dimN∞(T + F ) ≤ n or dimN∞(T − F ) ≤ n.

Before giving the proof of this proposition, we need to establish some lemmas.
For T, F ∈ B(X), let

M(T, F ) = {x ∈ N∞(T ) : FT ix = 0 for all i ≥ 0}.

Clearly, M(T, F ) is a T -invariant subspace of N∞(T )∩ ker(F ). Furthermore, if T has
a finite ascent, then M(T, F ) is closed.

Lemma 3.2. Let T ∈ B(X) be non-zero, and let F = z ⊗ f be a rank-one operator
such that ker(T ) ∩ ker(F ) = {0}. Assume that there exist an integer m ≥ 0 and a
vector x ∈ ker(T + F )m+1 \ ker(T + F )m such that x /∈ M(T, F ). Then x is a linear
combination of linearly independent vectors xi, 0 ≤ i ≤ m, such that

(T + F )x0 = 0, (T + F )xi = xi−1 for 1 ≤ i ≤ m, and f(xi) = δi0 for 0 ≤ i ≤ m.

Proof. Let ui = (T +F )m−ix for 0 ≤ i ≤ m. It follows that ui, 0 ≤ i ≤ m, are linearly
independent vectors, (T + F )u0 = 0 and (T + F )ui = ui−1 for 1 ≤ i ≤ m. Since
ker(T ) ∩ ker(F ) = {0}, we infer that f(u0) 6= 0. Without loss of generality we may
assume that f(u0) = 1. Consider the scalars c0, c1, . . . , cm−1 defined inductively by

c0 = −f(u1)
c1 = −c0f(u1)− f(u2)
c2 = −c1f(u1)− c0f(u2)− f(u3)
...
cm−1 = −cm−2f(u1)− · · · − c0f(um−1)− f(um).
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This means that we have

f(ui) +

i∑
k=1

ci−kf(uk−1) = 0 for 1 ≤ i ≤ m. (3.1)

Let x0 = u0 and xi = ui +

i∑
k=1

ci−kuk−1 for 1 ≤ i ≤ m. Clearly, the vectors xi,

0 ≤ i ≤ m, are linearly independent. Moreover, it follows from (3.1) that f(xi) = δi0
for 0 ≤ i ≤ m. Furthermore, we have (T + F )x0 = (T + F )u0 = 0 and

(T + F )xi = (T + F )ui +

i∑
k=1

ci−k(T + F )uk−1 = ui−1 +

i∑
k=2

ci−kuk−2 = xi−1

for 1 ≤ i ≤ m. Finally, we have

x = um ∈ Span{ui : 0 ≤ i ≤ m} = Span{xi : 0 ≤ i ≤ m}.

This completes the proof. �

The following lemma is a special case of Proposition 3.1, and it will be required
for proving that proposition.

Lemma 3.3. Let T ∈ B(X) be such that dimN∞(T ) ≤ n, and let F ∈ B(X) be a
rank-one operator such that ker(T )∩ ker(F ) = {0}. Then either dimN∞(T +F ) ≤ n
or dimN∞(T − F ) ≤ n.

Proof. Write F = z ⊗ f where z ∈ X and f ∈ X∗ are non-zero. Clearly, if either
ker(T+F )n+1 or ker(T−F )n+1 is contained in M(T, F ), then either dimN∞(T+F ) ≤
n or dimN∞(T − F ) ≤ n respectively. Hence, we may assume that ker(T + F )n+1 *
M(T, F ) and ker(T − F )n+1 * M(T, F ). Let 0 ≤ m, p ≤ n be the biggest integers for
which there exist x ∈ ker(T+F )m+1\ker(T+F )m and y ∈ ker(T−F )p+1\ker(T−F )p

such that x, y /∈ M(T, F ). Without loss of generality we can assume that m ≤ p. We
will show that dimN∞(T + F ) ≤ n. Using the previous lemma, we infer that y is a
linear combination of linearly independent vectors yi, 0 ≤ i ≤ p, such that

(T − F )y0 = 0, (T − F )yi = yi−1 for 1 ≤ i ≤ p, and f(yi) = δi0 for 0 ≤ i ≤ p.

From this, one can easily see that (T + F )y0 = 2z and (T + F )yi = Tyi = yi−1 for
1 ≤ i ≤ p, and so (T + F )kyi = yi−k for 0 ≤ k ≤ i ≤ p. Thus, we get easily that

I +

p∑
i=0

yi ⊗ f(T + F )i =

p∏
i=0

(
I + yi ⊗ f(T + F )i

)
.

Furthermore, since f((T + F )iyi) = f(y0) = 1 for 0 ≤ i ≤ p, the above equation
defines an invertible operator denoted by S.

Let u ∈ ker(T + F )n+1 be an arbitrary non-zero vector, and let 0 ≤ r ≤ n be
such that u ∈ ker(T + F )r+1 \ ker(T + F )r. If u ∈ M(T, F ), then f(T iu) = 0, and so
(T + F )iu = T iu for every i ≥ 0. Hence, Su = u ∈ M(T, F ) ⊆ N∞(T ). Consider the
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case when u /∈ M(T, F ). Then, Lemma 3.2 asserts that u is a linear combination of
linearly independent vectors xi, 0 ≤ i ≤ r, satisfying

(T + F )x0 = 0, (T + F )xi = xi−1 for 1 ≤ i ≤ r, and f(xi) = δi0 for 0 ≤ i ≤ r.
It follows that (T + F )kxi = xi−k for k ≥ 0 and 0 ≤ i ≤ r, where we set formally
xj = 0 for j < 0. Now, by the definition of m, we have r ≤ m ≤ p. This allows
us to obtain easily that Sxi = xi + yi for 0 ≤ i ≤ r. It follows that T iSxi =
x0 + y0 ∈ ker(T ), and hence Sxi ∈ N∞(T ) for 0 ≤ i ≤ r. Consequently, we get that
Su ∈ N∞(T ). The vector u was arbitrary, therefore S ker(T + F )n+1 ⊆ N∞(T ). So
that dim ker(T +F )n+1 ≤ n. According to Remark 2.1, this completes the proof. �

For T, F ∈ B(X), we denote respectively by T̃ and F̃ the operators induced by

T and F on X/M(T, F ). Note that the hyper-kernels of T̃ +cF̃ and T +cF are related
by the following relation (see [17, Lemma 2.9])

N∞(T̃ + cF̃ ) = N∞(T + cF )/M(T, F ) for all c ∈ K. (3.2)

Proof of Proposition 3.1. Firstly, if F̃ = 0, then it follows from (3.2) that

N∞(T̃ + F̃ ) = N∞(T + F )/M(T, F ) = N∞(T̃ ) = N∞(T )/M(T, F ).

So that dimN∞(T + F ) = dimN∞(T ) ≤ n.

Now, consider the case F̃ 6= 0. Then z /∈ M(T, F ), and for every x ∈ X, we have

x+ M(T, F ) ∈ ker(T̃ ) ∩ ker(F̃ ) ⇔ Tx ∈ M(T, F ) and Fx = f(x)z ∈ M(T, F )

⇔ Tx ∈ M(T, F ) and f(x) = 0

⇔ x ∈ M(T, F ).

This implies that ker(T̃ ) ∩ ker(F̃ ) = {0}.
Since dimN∞(T̃ ) ≤ n− q where q = dim M(T, F ), the previous lemma ensures that

either dimN∞(T̃ + F̃ ) ≤ n− q or dimN∞(T̃ − F̃ ) ≤ n− q. Thus, we get that either
dimN∞(T + F ) ≤ n or dimN∞(T − F ) ≤ n. This completes the proof. �

Throughout the sequel, Λ will denote any of the subsets B+n (X), B−n (X) or
B±n (X). Also, the subset Bn(X) = B+n (X) ∩ B−n (X), introduced and studied in [17],
will be used in the rest of this paper.

Recall that for a semi-Fredholm operator T ∈ B(X), the index is defined by

ind(T ) = dim ker(T )− codim ran(T ),

and if the index is finite, T is said to be Fredholm. It should be noted that if ind(T ) = 0
then a(T ) = d(T ) (see [12, Lemma 2.3]). Moreover, in this case

T ∈ Λ ⇔ T ∈ Bn(X) ⇔ dimN∞(T ) ≤ n.

Proposition 3.4. Let T ∈ Λ and let F ∈ B(X) be a rank-one operator. Then either
T + F ∈ Λ or T − F ∈ Λ.

Before proving this proposition, a duality relation between B+n (X) and B−n (X) should
be established first. For a subset M ⊆ X, we denote by M⊥ = {f ∈ X∗ : M ⊆ ker(f)}
its annihilator.
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Lemma 3.5. Let T be a bounded operator on X. Then :

T ∈ B+n (X) (resp. B−n (X)) ⇔ T ∗ ∈ B−n (X∗) (resp. B+n (X∗)).

Proof. Suppose that T ∈ B+n (X). In particular, T is a semi-Fredholm operator, and
so ran(T k) is closed for every k ≥ 0. Since a(T ) ≤ n, it follows from [15, Corollary
A.1.17] that

ker(Tn+1)⊥ = ker(Tn)⊥ = ran((T ∗)n+1) = ran((T ∗)n).

Thus, d(T ∗) ≤ n. Using [15, Theorem A.1.20] we get that

codimR∞(T ∗) = codim ran((T ∗)n) = dim ker(Tn) = dimN∞(T ) ≤ n.
So that T ∗ ∈ B−n (X∗). The proofs of the converse and of the statement for B−n (X)
are similar. �

Proof of Proposition 3.4. Let T ∈ Λ, and let F ∈ B(X) be a rank-one operator.
It follows from [15, Theorem 16.16] that T + F and T − F are semi-Fredholm. If
T ∈ B+n (X) then Proposition 3.1 implies that either T+F ∈ B+n (X) or T−F ∈ B+n (X).

The case when T ∈ B−n (X) follows from the first one by duality. �

The following theorem, will play a crucial role in proving the main results.

Theorem 3.6. Let F ∈ B(X) be a non-zero operator. Then the following assertions
hold:

1. There exists an invertible operator T ∈ B(X) such that T + F /∈ Λ.
2. If dim ran(F ) ≥ 2, then there exists an invertible operator T ∈ B(X) such that
T + F /∈ Λ and T − F /∈ Λ.

Proof. Suppose first that ran(F ) has an infinite dimension. Then codim ker(F ) =∞,
and hence there exist linearly independent vectors xi, 0 ≤ i ≤ 2n + 1, that generate
a subspace having trivial intersection with ker(F ). It follows that the vectors Fxi,
0 ≤ i ≤ 2n+ 1, are linearly independent. Write

X = Span{xi : 0 ≤ i ≤ 2n+ 1} ⊕ Y = Span{Fxi : 0 ≤ i ≤ 2n+ 1} ⊕ Z,
where Y, Z are two closed subspaces and Y = F−1Z. Then there exists an invertible
operator T ∈ B(X) such that TY = Z, and Txi = (−1)iFxi for 0 ≤ i ≤ 2n+ 1.
Clearly, x2i+1 ∈ ker(T + F ) and x2i ∈ ker(T − F ) for 0 ≤ i ≤ n, and hence

dim ker(T ± F ) > n.

But, we have also

ran(T + F ) ⊆ Span{Fx2i : 0 ≤ i ≤ n} ⊕ Z,
and

ran(T − F ) ⊆ Span{Fx2i+1 : 0 ≤ i ≤ n} ⊕ Z.
Then codim ran(T ± F ) > n, and so T ± F /∈ Λ. This establishes the assertions (1)
and (2).

Assume now that F is finite-rank, and let p = min{dim ran(F ), 2}. It follows
from [17, Proposition 2.12] that there exists an invertible operator T ∈ B(X) such
that T + F /∈ Bn(X) and T − (−1)pF /∈ Bn(X). But, T + F and T − (−1)pF are
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Fredholm operators of index zero, then T+F /∈ Λ and T−(−1)pF /∈ Λ. This completes
the proof. �

4. Proofs of the main results

As a consequence of Theorem 3.6 and Proposition 3.4, we have the following
result.

Lemma 4.1. Let Φ : B(X)→ B(X) be an additive surjective map. If Φ preserves Λ in
both directions, then Φ is injective and it preserves the set of rank-one operators in
both directions.

Proof. Suppose on the contrary that there exists F 6= 0 such that Φ(F ) = 0. Then,
by Theorem 3.6, there exists an invertible operator T ∈ B(X) satisfying T + F /∈ Λ.
But, Φ(T + F ) = Φ(T ) ∈ Λ. This contradiction proves that Φ is injective.

Let F ∈ B(X) with dim ran(F ) ≥ 2. Then it follows again by Theorem 3.6 that
there exists an invertible operator T ∈ B(X) such that T +F and T −F do not belong
to Λ, and hence Φ(T + F ) and Φ(T − F ) do neither. Therefore, by Proposition 3.4,
we obtain that dim ran(Φ(F )) ≥ 2. Since Φ is bijective and Φ−1 satisfies the same
properties as Φ, we obtain that Φ preserves the set of rank-one operators in both
directions. �

Recall that an operator T ∈ B(X) is said to be algebraic if there exists a non-zero
complex polynomial P for which P (T ) = 0. Such an operator T has finite ascent and
descent (see [3, Theorem 2.7] and [4, Theorem 1.5]). Moreover, we have

T ∈ Λ ⇔ T ∈ Bn(X) ⇔ dimN∞(T ) ≤ n.

Lemma 4.2. Let Φ : B(X)→ B(X) be an additive surjective map preserving Λ in both
directions. Then Φ(I) = cI where c is a non-zero scalar.

Proof. We claim first that S = Φ(I) is an algebraic operator. Let x ∈ X be non-zero.
If the set {Six : 0 ≤ i ≤ 2n+1} is linearly independent, then there exists a linear form
f ∈ X∗ such that f(Six) = −δi,2n+1 for 0 ≤ i ≤ 2n+ 1. Let T = S+Sn+1x⊗ fSn+1.
It follows that

T (Six) = Si+1x, for 0 ≤ i ≤ n− 1, and T (Snx) = 0.

Hence a(T ) ≥ n+ 1. On the other hand, we have

T ∗(fSi) = fSi+1, for 0 ≤ i ≤ n− 1, and T ∗(fSn) = 0.

Then a(T ∗) ≥ n + 1, and so d(T ) ≥ n + 1. Thus T /∈ Λ. This contradiction shows
that {Six : 0 ≤ i ≤ 2n + 1} is a linearly dependent set. The vector x was arbitrary,
therefore it follows from [2, Theorem 4.2.7] that S is algebraic.

Now assume, on the contrary, that S is not a scalar multiple of the identity.
Then there exists y1 ∈ X such that the vectors y1 and Sy1 are linearly independent.
Since S ∈ Λ, the subspace ran(S) has an infinite dimension, and hence there exists
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yi ∈ X, 2 ≤ i ≤ n, such that {y1, Syi : 1 ≤ i ≤ n} is a linearly independent set.
Consider linear forms gi ∈ X∗ such that

gi(y1) = 0 and gi(Syj) = −δij for 1 ≤ i, j ≤ n.

If we let F =
∑n

i=1 S
2yi ⊗ gi, we obtain easily that Syj ∈ ker(S + F ), for 1 ≤ j ≤ n,

and (S + F )y1 = Sy1 ∈ ker(S + F ). Consequently, dimN∞(S + F ) ≥ n + 1. But,
we have also that S + F is an algebraic operator (see [4, Proposition 3.6]), therefore
S + F /∈ Λ. By Lemma 4.1, Φ is bijective and preserves rank-one operators in both
directions. Hence, we obtain that K = Φ−1(F ) is of rank non-greater than n and
I + K /∈ Λ. However, I + K is algebraic and ker((I + K)n+1) ⊆ ran(K), and so
I +K ∈ Λ. This contradiction completes the proof. �

Let τ be a field automorphism of K. An additive map A : X → Y between two
Banach spaces is called τ -semi linear if A(λx) = τ(λ)Ax holds for all x ∈ X and λ ∈ K.
Moreover, we say simply that A is conjugate linear when τ is the complex conjugation.
Notice that if A is non-zero and bounded, then τ is continuous, and consequently, τ
is either the identity or the complex conjugation (see [9, Theorem 14.4.2 and Lemma
14.5.1]). Moreover, in this case, the adjoint operator A∗ : Y ∗ → X∗, defined by
A∗(g) = τ−1 ◦ g ◦A for all g ∈ Y ∗, is again τ -semi linear.

Lemma 4.3. Let Φ : B(X)→ B(X) be an additive surjective map preserving Λ in both
directions. Then there exists a non-zero scalar c, and either

1. there exists an invertible bounded linear, or conjugate linear, operator A : X →
X such that Φ(F ) = cAFA−1 for all finite-rank operators F ∈ B(X), or

2. there exists an invertible bounded linear, or conjugate linear, operator B : X∗ →
X such that Φ(F ) = cBF ∗B−1 for all finite-rank operators F ∈ B(X). In this
case, X is reflexive.

Proof. The existence of a non-zero scalar c such that Φ(I) = cI is ensured by Lemma
4.2. Clearly, we can suppose without loss of generality that Φ(I) = I. Since Φ is
bijective and preserves the set of rank-one operators in both directions, then by [16,
Theorems 3.1 and 3.3], there exist a ring automorphism τ : K → K and either two
bijective τ -semi linear mappings A : X → X and C : X∗ → X∗ such that

Φ(x⊗ f) = Ax⊗ Cf for all x ∈ X and f ∈ X∗, (4.1)

or two bijective τ -semi linear mappings B : X∗ → X and D : X → X∗ such that

Φ(x⊗ f) = Bf ⊗Dx for all x ∈ X and f ∈ X∗. (4.2)

Suppose that Φ satisfies (4.1), and let us show that

C(f)(Ax) = τ(f(x)) for all x ∈ X and f ∈ X∗. (4.3)

Clearly, it suffices to establish that for all x ∈ X and f ∈ X∗, f(x) = −1 if and only if
C(f)(Ax) = −1. Let x ∈ X and f ∈ X∗. We can choose linearly independent vectors
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z1, . . . , zn in ker(f) ∩ ker(C(f)A). Then, it follows from [17, Lemma 3.8] that

f(x) = −1 ⇔ ∃{gi}ni=1 ⊆ X∗ : I + x⊗ f +

n∑
i=1

zi ⊗ gi /∈ Bn(X)

⇔ ∃{gi}ni=1 ⊆ X∗ : I + x⊗ f +

n∑
i=1

zi ⊗ gi /∈ Λ

⇔ ∃{gi}ni=1 ⊆ X∗ : I +Ax⊗ Cf +

n∑
i=1

Azi ⊗ Cgi /∈ Λ

⇔ ∃{gi}ni=1 ⊆ X∗ : I +Ax⊗ Cf +

n∑
i=1

Azi ⊗ Cgi /∈ Bn(X)

⇔ C(f)(Ax) = −1.

Thus, relation (4.3) holds, and arguing as in [16], we get that τ , A, C are continuous,
τ is the identity or the complex conjugation, and C = (A−1)∗. Therefore, τ−1 = τ
and, for every u ∈ X, we have

Φ(x⊗ f)u = τ(fA−1u)Ax = A(f(A−1u)x) = A(x⊗ f)A−1u.

Thus, Φ(x ⊗ f) = A(x ⊗ f)A−1 for all x ∈ X and f ∈ X∗; that is, Φ(F ) = AFA−1

for all finite-rank operators F ∈ B(X).
Now suppose that Φ satisfies (4.2), and let us show that

D(x)(Bf) = τ(f(x)) for all x ∈ X and f ∈ X∗. (4.4)

Let x ∈ X and f ∈ X∗. Choose linearly independent linear forms h1, . . . , hn ∈ X∗
such that hi(x) = 0 and D(x)(Bhi) = 0 for 1 ≤ i ≤ n. Then, it follows from the
surjectivity of D and from [17, Lemma 3.8] that

D(x)(Bf) = −1 ⇔ ∃{ui}ni=1 ⊆ X : I +Bf ⊗Dx+

n∑
i=1

Bhi ⊗Dui /∈ Bn(X)

⇔ ∃{ui}ni=1 ⊆ X : I +Bf ⊗Dx+

n∑
i=1

Bhi ⊗Dui /∈ Λ

⇔ ∃{ui}ni=1 ⊆ X : I + x⊗ f +

n∑
i=1

ui ⊗ hi /∈ Λ

⇔ ∃{ui}ni=1 ⊆ X : I + x⊗ f +

n∑
i=1

ui ⊗ hi /∈ Bn(X)

⇔ ∃{ui}ni=1 ⊆ X : I + f ⊗ Jx+

n∑
i=1

hi ⊗ Jui /∈ Bn(X∗)

⇔ f(x) = −1,

where J : X → X∗∗ is the natural embedding. Thus, relation (4.4) holds, and arguing
as in [16], we get that τ , B, D are continuous, τ is the identity or the complex
conjugation, and D = (B−1)∗J. But, the operators D and (B−1)∗, and therefore also
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J are bijections, which implies the reflexivity of X. Furthermore, τ−1 = τ and, for
every u ∈ X, we have

Φ(x⊗ f)u = (Bf ⊗ (B−1)∗J(x))u = (B−1)∗J(x)(u) ·Bf
= τ(J(x)(B−1u)) ·Bf = B(J(x)(B−1u)f)

= B(f ⊗ J(x))B−1u = B(x⊗ f)∗B−1u.

Thus, Φ(x⊗ f) = B(x⊗ f)∗B−1 for all x ∈ X and f ∈ X∗. Hence, Φ(F ) = BF ∗B−1

for all finite-rank operator F ∈ B(X). This completes the proof. �

Theorem 4.4. Let Φ : B(X) → B(X) be an additive surjective map preserving Λ in
both directions. Then there exists a non-zero scalar c, and either

1. there exists an invertible bounded linear, or conjugate linear, operator A : X →
X such that Φ(T ) = cATA−1 for all T ∈ B(X), or

2. there exists an invertible bounded linear, or conjugate linear, operator B : X∗ →
X such that Φ(T ) = cBT ∗B−1 for all T ∈ B(X).

Proof. Since Φ preserves Λ in both directions, it follows that Φ takes one of the two
forms in Lemma 4.3.

Suppose that Φ(F ) = cAFA−1 for all finite-rank operators F ∈ B(X). Let

Ψ(T ) = c−1A−1Φ(T )A for all T ∈ B(X).

Clearly, Ψ satisfies the same properties as Φ. Furthermore, Ψ(I) = I and Ψ(F ) = F
for all finite-rank operators F ∈ B(X). Let T ∈ B(X) and choose an arbitrary rational
number λ such that T −λ and Ψ(T )−λ are invertible. Let F ∈ B(X) be a finite-rank
operator. Since T − λ+ F and Ψ(T )− λ+ F are Fredholm of index zero, then

T − λ+ F ∈ Bn(X) ⇔ T − λ+ F ∈ Λ ⇔ Ψ(T )− λ+ F ∈ Λ

⇔ Ψ(T )− λ+ F ∈ Bn(X).

Hence, we get by [17, Proposition 2.17] that Ψ(T ) = T .
This shows that Φ(T ) = cATA−1 for all T ∈ B(X).
Now suppose that Φ(F ) = cBF ∗B−1 for all finite-rank operators F ∈ B(X). Then
Lemma 4.3 ensures that X is reflexive. By considering

Γ(T ) = c−1J−1(B−1Φ(T )B)∗J for all T ∈ B(X),

we get in a similar way that Γ(T ) = T for all T ∈ B(X). Thus, Φ(T ) = cBT ∗B−1 for
all T ∈ B(X), as desired. This finishes the proof. �

With these results at hand, we are ready to prove our main results.

Proof of Theorem 1.1. (1)⇒ (4). Suppose that Φ preserves An(H) in both directions.
Using the fact that Φ is surjective, it follows by Theorem 2.7 that, for every T ∈ B(H),

T ∈ B+n (H)⇔ ∀S ∈ B(H),∃ε0 > 0 : {T + εS : ε ∈ Q and |ε| < ε0} ⊆ An(H)

⇔ ∀S ∈ B(H),∃ε0 > 0 : {Φ(T ) + εΦ(S) : ε ∈ Q and |ε| < ε0} ⊆ An(H)

⇔ ∀R ∈ B(H),∃ε0 > 0 : {Φ(T ) + εR : ε ∈ Q and |ε| < ε0} ⊆ An(H)

⇔ Φ(T ) ∈ B+n (H).
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Thus Φ preserves B+n (H) in both directions. It follows that Φ takes one of the two
forms in Theorem 4.4. Let us show that Φ cannot take the form

Φ(T ) = cBT ∗B−1 for all T ∈ B(H). (4.5)

Suppose on the contrary that Φ takes the form (4.5). Let {en : n ≥ 0} be an arbitrary
orthonormal basis of H. Consider the weighted unilateral shift operator U ∈ B(H)
given by

Uen = (n+ 1)−1en+1 for every n ≥ 0. (4.6)

Clearly, U is an injective quasi-nilpotent operator.
Thus, a(U∗) = d(U∗) =∞, U ∈ B+n (H) and U∗ /∈ B±n (H).
So that Φ(U) = cBU∗B−1 /∈ B±n (H), a contradiction.

(2) ⇒ (4). Now, suppose that Φ preserves Dn(H) in both directions. As above,
using Theorem 2.7 we infer that Φ preserves B−n (H) in both directions, and so Φ takes
one of the two forms in Theorem 4.4. Consider the unilateral shift operator S ∈ B(H)
given by

Se0 = 0 and Sen = en−1 for n ≥ 1.

Clearly, S is surjective and a(S) =∞.
Thus, d(S∗) = ∞, S ∈ B−n (H) and S∗ /∈ B−n (H). This contradiction shows that Φ
cannot take the form (4.5).

(3) ⇒ (4) is similar to the first implication with the same example (4.6).
(4) ⇒ (1), (2) and (3) are obvious. �

Proof of Theorem 1.2. Follows from Theorems 2.5 and 4.4. �

Proof of Corollary 1.3. The proof is similar to the proof of Theorem 1.1. �
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