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A topological representation of double
Boolean lattices

Brigitte E. Breckner and Christian Săcărea

Abstract. Boolean Concept Logic has been introduced by R. Wille as a mathe-
matical theory based on Formal Concept Analysis. Concept lattices are extended
with two new operations, negation and opposition which then lead to algebras
of protoconcepts which are equationally equivalent to double Boolean algebras.
In this paper, we provide a topological representation for double Boolean alge-
bras based on the so-called DB-topological contexts. A double Boolean algebra is
then represented as the algebra of clopen protoconcepts of some DB-topological
context.
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1. Introduction

Formal Concept Analysis (FCA) is a prominent field of Applied Mathematics
which is grounded on the mathematization of the notion of concept and concept hier-
archy, having a wide range of applications in data analysis and knowledge discovery
in databases. Topological FCA is an extension of FCA to topological spaces and is
investigating issues related to the interplay between Topology and FCA.

Topological contexts were defined as an attempt to represent 0-1-lattices by open
concepts of some topological context, i.e., formal concepts whose extents and intents
are open sets. This theory was then completed to a categorical duality in a series of
papers at the beginning of the 1990s, but for the sake of a more natural description,
closed concepts were considered in order to represent 0-1-lattices ([3], [4]). Later on,
a duality theory for 0-1 polarity lattices was developed in [5].

Categorical aspects in topological FCA have been studied in [1], especially for
the metric case, while uniform contexts have been investigated in [8].

Bounded lattices, i.e., 0-1-lattices, have already been described by some topologi-
cal representations by Stone [10], Priestley [7], and Urquhart [11]. Each of these repre-
sentations is given via special topological spaces: compact totally disconnected spaces
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for Boolean lattices; spectral spaces or compact totally order-disconnected spaces for
bounded distributive lattices; and the so-called L-spaces for arbitrary bounded lat-
tices. In fact, when representing 0-1-lattices by standard topological contexts, one can
recover all the above representations within the so-called double arrow space, i.e., a
structure within the non-incidence of some topological context KT .

Contextual Logic has been introduced by R. Wille as a logical extension of FCA
”... with the aim to support knowledge representation and knowledge processing [...].
It is grounded on the traditional philosophical understanding of logic as the doctrine of
the forms of thinking [...]” ([13].) While a logical extension of a formal context is quite
straightforward, the same extension on concept lattices (which could be understood
as the pattern counterpart of a context) is no longer straightforward, because of the
semantics of the negation operator.

For introducing negations, two approaches were considered: a generalization of
formal concepts to semiconcepts and protoconcepts, introducing the algebra of semi-
concepts and the algebra of protoconcepts, respectively, which then leads to the notion
of double Boolean algebra [6].

The main results of this paper are based on the representation theorem for
double Boolean algebras from [6]. We define the notion of a DB-topological context in
order to represent every double Boolean algebra as an algebra of clopen protoconcepts
of a DB-topological context and show how this representation can be extended to a
categorical duality.

2. Formal Concept Analysis

The basic structure FCA is using is a formal context. Using concept forming
operators, formal concepts are extracted described as maximal patterns of incidences
of a given binary relation. Concepts are ordered by the subconcept-superconcept re-
lation and they form a conceptual hierarchy, i.e., a complete lattice which contains
all knowledge patterns we can extract from a formal context. In Contextual Logic,
a formal context is the mathematical structure in which the semantics of logical op-
erators is declared, while for Conceptual Logic the same role is played by a concept
lattice. Here we recall only some basic definitions. For more, we refer to [2].

Definition 2.1. A formal context is a triple K = (G,M, I), where G and M are sets
and I ⊆ G ×M is a binary relation. The set G is called set of objects, M is the set of
attributes and I is called incidence relation.

For sets A ⊆ G and B ⊆M , we define concept forming operators by
A′ = {m ∈M ∣ gIm for all g ∈ A} and B′ = {g ∈ G ∣ gIm for all m ∈ B}.

These operators form a Galois connection on the power sets of G and M , respectively.

Definition 2.2. A formal concept of the context K = (G,M, I) is a pair (A,B) with
A ⊆ G, B ⊆ M and A′ = B,B′ = A. The set A is called extent and B is called the
intent of the concept (A,B). The set of all concepts of K is denoted by B(K).

On the set B(K) of concepts we define the subconcept-superconcept relation by
(A1,B1) ≤ (A2,B2)⇔ A1 ⊆ A2(⇔ B1 ⊇ B2).
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Theorem 2.3 (Basic Theorem on Concept Lattices). Let K ∶= (G,M, I) be a formal
context. The concept lattice (B(K),≤) is a complete lattice in which infimum and
supremum are given by:

⋀
t∈T
(At,Bt) = (⋂

t∈T
At, (⋃

t∈T
Bt)

′′),

⋁
t∈T
(At,Bt) = ((⋃

t∈T
At)

′′
,⋂
t∈T

Bt).

A complete lattice V is isomorphic to B(K) if and only if there are mappings γ̃ ∶ G→ V
and µ̃ ∶M → V such that γ̃(G) is supremum-dense in V , µ̃(M) is infimum-dense in
V and gIm is equivalent to γ̃g ≤ µ̃m for all g ∈ G and all m ∈ M . In particular,
V ≃ B(V,V,≤).

Every object and every attribute can be recovered in the concept lattice of the
given context. For an object g ∈ G, we write g′ instead of {g}′ for the object intent
{m ∈M ∣ gIm} of the object g. Correspondingly, m′ stands for the attribute extent
{g ∈ G ∣ gIm} of the attribute m. Using the symbols from the Basic Theorem, we
write γg for the object concept (g′′, g′) and µm for the attribute concept (m′,m′′).

Definition 2.4. A context (G,M, I) is called clarified, if for any objects g, h ∈ G from
g′ = h′ always follows that g = h and, correspondingly, m′ = n′ implies m = n for all
m,n ∈M .

Definition 2.5. A clarified context (G,M, I) is called row reduced, if every object con-
cept is ⋁-irreducible, and column reduced, if every attribute concept is ⋀-irreducible.
A context which is row reduced and column reduced is called reduced.

If (G,M, I) is a context, g ∈ G an object, and m ∈M an attribute, we write

g ↙m ∶⇔
⎧⎪⎪⎨⎪⎪⎩

gI/m and

if g′ ⊆ h′ and g′ ≠ h′, then hIm;

g ↗m ∶⇔
⎧⎪⎪⎨⎪⎪⎩

gI/m and

if m′ ⊆ n′ and m′ ≠ n′, then gIn;

g ↙↗m ∶⇔ g ↙m and g ↗m.

Thus, g ↙m if and only if g′ is maximal among all object intents which do not contain
m. In other words: g ↙ m holds if and only if g does not have the attribute m, but
m is contained in the intent of every proper subconcept of γg.

The relation ↙↗⊆ G×M is called the double-arrow space of the context (G,M, I).

3. Generalization of Concepts: Semi- and Protoconcepts

As stated in [13] and [14], the research in the field of Contextual Logic is struc-
tured in three major themes: Contextual Concept Logic, Contextual Judgement Logic,
and Contextual Conclusion Logic. In order to develop a satisfactory theory of Con-
textual Concept Logic, there was necessary to introduce a suitable notion of negation
and to overcome some difficulties due to the fact that the complement of an extent
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(intent) is generally not an extent (intent). The solution was a generalization of con-
cepts to semiconcepts and protoconcepts. While formal concepts are structured in
a complete lattice, protoconcepts will give rise to a structure called double Boolean
algebra.

In the following, we give the basic facts and results about algebras of protocon-
cepts and double Boolean algebras, for a complete information see [6] and [13].

Definition 3.1. Let K ∶= (G,M, I) be a formal context. A semiconcept of K is defined
as a pair (A,B) with A ⊆ G and B ⊆M such that A′ = B or B′ = A. A pair (A,B) is
called a protoconcept if A′′ = B′ (or equivalently A′ = B′′). We denote by H(K) the set
of all semiconcepts of a formal context K. The set of all protoconcepts of K is denoted
by P(K). Obviously, every semiconcept is a protoconcept, hence H(K) ⊆P(K).

In the following, we consider mainly sets of protoconcepts, pointing out the
differences when semiconcepts are involved.

The set P(K) of all protoconcepts of K carries a natural order ⊑ which is defined
by (A1,B1) ⊑ (A2,B2) ∶⇔ A1 ⊆ A2 and B1 ⊇ B2. This order does not generally yield
a lattice structure on P(K). However, there are natural operations on P(K) which
can be defined as follows:

(A1,B1) ⊓ (A2,B2) ∶= (A1 ∩A2, (A1 ∩A2)′)
(A1,B1) ⊔ (A2,B2) ∶= ((B1 ∩B2)′,B1 ∩B2)

⌝(A,B) ∶= (G ∖A, (G ∖A)′)
⌟(A,B) ∶= ((M ∖B)′,M ∖B)

� ∶= (∅,M)
⊺ ∶= (G,∅).

The set P(K) together with the operations ⊓,⊔,⌝,⌟,�, and ⊺ is called the algebra
of protoconcepts of K and is denoted by P(K). The operations are named meet, join,
negation, opposition, nothing and all. The corresponding structure in the case of
semiconcepts is the algebra of semiconcepts which will be denoted by H(K).

For an arbitrary element x in P(K) we denote by x⊔ ∶= x⊔x and by x⊓ ∶= x⊓x. Let
P(K)⊓ ∶= {(A,A′) ∣ A ⊆ G} = H(K)⊓ and P(K)⊔ ∶= {(B′,B) ∣ B ⊆M} = H(K)⊔. Until
now, there is no obvious difference between algebras of semiconcepts and algebras of
protoconcepts. But if we have a closer look to their structure, from the definition of
semiconcepts, we have H(K) = H(K)⊓ ∪ H(K)⊔, relation which does not hold for an
algebra of protoconcepts. The main difference between algebras of semiconcepts and
algebras of protoconcepts consists exactly in the existence of some “non-Boolean”
elements whose influence on the structure and behaviour of such algebras is described
in [6] and [13].

The formal concepts can be recovered in the meet of the two Boolean parts of
P(K), i.e., B(K) ∶= P(K)⊓ ∩P(K)⊔ = H(K)⊓ ∩H(K)⊔, where B(K) is the complete
lattice of the (formal) concepts of K. The term “non-Boolean” elements, respectively
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Boolean part of an algebra of protoconcepts (semiconcepts), is justified by the follow-
ing additional operations defined as

x⩏ y ∶= ⌝(⌝x ⊓ ⌝y) and x⩎ y ∶= ⌟(⌟x ⊔ ⌟y),

⊺ ∶= ⌝� and � ∶= ⌟⊺.
Obviously, P(K)⊓ together with the restrictions of the operations ⊓,⩏,⌝,�,⊺

is a Boolean algebra denoted P(K)⊓, which is isomorphic to the Boolean algebra

of all subsets of G. Dually, P(K)⊔ together with the restrictions of the operations
⩎,⊔,⌟,�,⊺ is a Boolean algebra denoted by P(K)⊔, and which is antiisomorphic to
the Boolean algebra of all subsets of M .

Proposition 3.2. The following equations are valid in P(K):
1a) (x ⊓ x) ⊓ y = x ⊓ y 1b) (x ⊔ x) ⊔ y = x ⊔ y
2a) x ⊓ y = y ⊓ x 2b) x ⊔ y = y ⊔ x
3a) x ⊓ (y ⊓ z) = (x ⊓ y) ⊓ z 3b) x ⊔ (y ⊔ z) = (x ⊔ y) ⊔ z
4a) x ⊓ (x ⊔ y) = x ⊓ x 4b) x ⊔ (x ⊓ y) = x ⊔ x
5a) x ⊓ (x⩏ y) = x ⊓ x 5b) x ⊔ (x⩎ y) = x ⊔ y
6a) x ⊓ (x⩏ y) = (x ⊓ y)⩏ (x ⊓ z) 6b) x ⊔ (y ⩎ z) = (x ⊔ y)⩎ (x ⊔ z)
7a) ⌝ ⌝ (x ⊓ y) = x ⊓ y 7b) ⌟ ⌟ (x ⊔ y) = x ⊔ y
8a) ⌝(x ⊓ x) = ⌝x 8b) ⌟(x ⊔ x) = ⌟x
9a) x ⊓ ⌝x = � 9b) x ⊔ ⌟x = ⊺
10a) ⌝� = ⊺ ⊓ ⊺ 10b) ⌟⊺ = � ⊔ �
11a) ⌝⊺ = � 11b) ⌟� = ⊺

12) (x ⊓ x) ⊔ (x ⊓ x) = (x ⊔ x) ⊓ (x ⊔ x).
Furthermore, the following condition holds in H(K):

13) x = x ⊓ x or x = x ⊔ x.

4. Double Boolean Algebras

Double Boolean algebras are algebraic structures D ∶= (D,⊓,⊔,⌝,⌟,�,⊺) of type
(2,2,1,1,0,0) satisfying the equations 1a) to 11a), 1b) to 11b) and 12) of the precedent
Proposition. If a double Boolean algebra satisfies also condition 13) of Proposition
3.3.1, it is called pure. An algebraic structure of the type (2,2,1,1,0,0) in which only
equations 1a) to 11a) and 1b) to 11b) are valid is called weak double Boolean algebra.
As one can easily see, algebras of protoconcepts are double Boolean algebras, while
algebras of semiconcepts are pure double Boolean algebras.

We can define a quasiorder on a (weak) double Boolean algebra similar to that
defined on the algebra of protoconcepts, namely

x ⊑ y ∶⇔ x ⊓ y = x ⊓ x and x ⊔ y = y ⊔ y.

Lemma 4.1. [13] In a (weak) double Boolean algebra the following conditions hold:
(1) x ⊓ y ⊑ x ⊑ x ⊔ y,
(2) the mapping x↦ x ⊓ y preserves ⊑ and ⊓,
(3) the mapping x↦ x ⊔ y preserves ⊑ and ⊔.
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For a (weak) double Boolean algebra D ∶= (D,⊓,⊔,⌝,⌟,�,⊺) further operations
are defined as in the preceding section by

x⩏ y ∶= ⌝(⌝x ⊓ y) and x⩎ y ∶= ⌟(⌟x ⊔ ⌟y),

⊺ ∶= ⌝� and � ∶= ⌟⊺.
In addition, let x⊓ ∶= x ⊓ x and x⊔ ∶= x ⊔ x. Lead again by the preceding section we
define D⊓ ∶= {x⊓ ∣ x ∈ D} and D⊔ ∶= {x⊔ ∣ x ∈ D}. Now, (weak) double Boolean
algebras can be characterized as special ordered structures.

Proposition 4.2. [6] Let D ∶= (D,⊓,⊔,⌝,⌟,�,⊺) be a (weak) double Boolean algebra.
Then the following conditions are satisfied.

(1) (D,⊑) is a quasi-ordered set.
(2) D⊓ ∶= (D⊓,⊓,⩏,⌝,�,⊺) is a Boolean algebra whose order relation is the

restriction of ⊑ to D⊓.
(3) D⊔ ∶= (D⊔,⩎,⊔,⌟,�,⊺) is a Boolean algebra whose order relation is the

restriction of ⊑ to D⊔.
(4) y ⊑ x⊓⇔ y ⊑ x for x ∈D and y ∈D⊓.
(5) x⊔ ⊑ y⇔ x ⊑ y for x ∈D and y ∈D⊔.
(6) x ⊑ y⇔ x⊓ ⊑ y⊓ and x⊔ ⊑ y⊔ for x, y ∈D.

How close weak double Boolean algebras are to double Boolean algebras is made
clear by the following Proposition.

Proposition 4.3. [6] Let D ∶= (D,⊓,⊔,⌝,⌟,�,⊺) be a weak double Boolean algebra with
D = D⊓ ∪D⊔. Then ◻ ∶= {(x,x) ∣ x ∈ D} ∪ {(x⊓⊔, x⊔⊓) ∣ x ∈ D} ∪ {(x⊔⊓, x⊓⊔) ∣ x ∈ D}
is a congruence relation of D.

5. Filters of Double Boolean Algebras

Let D be a double Boolean algebra. Our task is to give a topological repre-
sentation of a double Boolean algebra as an algebra of protoconcepts of a suitable
topological context. First, we have to remark that algebras of protoconcepts are or-
dered structures, so we will consider only regular double Boolean algebras, i.e., double
Boolean algebras for which ⊑ is an order. There is no restriction of generality since
every double Boolean algebra can be regularized by a suitable factorization.

Definition 5.1. Let L be an ordered set, F be a filter of L, and I an ideal of L. We
say that F is I-maximal if F is a maximal filter which is disjoint from I. Dually,
F -maximal ideals are defined. We obtain the following sets:

F0(L) :={F ⊆ L ∣ ∃I ∈ I(L) ∶ F is I maximal}
I0(L) :={I ⊆ L ∣ ∃I ∈ F(L) ∶ I is F −maximal}
M(L) :={(F, I) ∈ F0(L) × I0(L) ∣ F is I −maximal and

I is F −maximal}.
The elements of M(L) are called maximal filter-ideal pairs.

Definition 5.2. A filter of a double Boolean algebra D is defined to be to be a subset
F of D satisfying
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1. x ∈ F and x ⊑ y in D imply y ∈ F ;
2. If x ∈ F and y ∈ F then x ⊓ y ∈ F .

An ideal of D is defined dually. A subset F0 is called a base of a filter F if F = {y ∈
D ∣ x ⊑ y for some x ∈ F0}, and we write F =↑F0. A base of an ideal is defined dually.
If D is a regular double Boolean algebra, we denote by F(D) the set of all filters of D
and by I(D) the set of all ideals of D. A filter F of D is called prime if F ∩D⊓ is a
prime filter in D⊓; a prime ideal is defined dually. The prime filters and prime ideals
are collected in Fp(D) and Ip(D), respectively.

Lemma 5.3. The following holds true:

1. F is a filter of a regular double Boolean algebra D if and only if the characteristic
function is an order homomorphism preserving ⊓.

2. The filter F is prime if and only if the characteristic function of F preservers ⌝
too.

Proof. 1. Let F ∈ F(D). We define the map φ ∶D → 2 by

φ(x) =
⎧⎪⎪⎨⎪⎪⎩

1, x ∈ F
0, x ∉ F.

Let x, y ∈ F , then x⊓y ∈ F and so φ(x⊓y) = φ(x)∧φ(y) = 1. For x ∈ F and y ∉ F
or x ∉ F and y ∈ F we have that x ⊓ y ∉ F , hence φ(x ⊓ y) = φ(x) ∧ φ(y) = 0.

Now, for x, y ∉ F , we have that x⊓ y ∉ F and, since ⊺ ∈ F , we obtain that φ
is a ⊓-homomorphism. Define F ∶= φ−1(1), then φ(x) = φ(y) = 1 for x, y ∈ F and
so φ(x ⊓ y) = 1, implying that x ⊓ y ∈ F . Let now x ∈ F and y ∈ D with x ⊑ y.
Then, by definition, φ(x) = 1 and

x ⊑ y⇔ x ⊓ y = x ⊓ x and x ⊔ y = y ⊔ y;

hence φ(x⊓y) = φ(x)∧φ(y) = φ(x⊓). Since x ∈ F , we have φ(x⊓) = 1. By Lemma
4.1, from x ⊑ y follows x ⊓ y ⊑ y ⊓ y, and since φ was an order homomorphism,
we have that φ(y⊓) = 1, i.e., y⊓ ∈ F . We conclude that F⊓ is a filter of D⊓, hence
F is a filter of D too.

2. Let F be a prime filter and φ ∶ D → 2 defined as above. As one can easily see,
the only case where a proof deserves to be made is x, y ∉ F . Consider x, y ∉ F
arbitrary chosen, then x⊓, y⊓ ∉ F . But F ∩D⊓ is a prime filter of the Boolean
algebra D⊓, hence ⌝x⊓,⌝y⊓ ∈ F ∩D⊓. It follows that φ(⌝x⊓) = φ(⌝x) = ⌝φ(x).
For x ∈ F , we obviously have φ(⌝x) = ⌝φ(x); hence φ is a ⌝ - homomorphism,
since the same holds for x ∉ F .

◻

Remark 5.4. If F ∈ Fp(D), then F ∩D⊓ is a prime filter of the Boolean algebra D⊓
and so there is an ideal I of D⊓, so that F ∩D⊓ is I-maximal and dually for prime
ideals.

Let now F be a filter in D and x ∈ F . Then x ⊓ x =∶ x⊓ ∈ F and so F ∩D⊓ ≠ ∅.
For any x⊓ ∈ F we have that x ∈ F since x ⊓ x ⊑ x. It follows that x ∈ F ⇔ x⊓ ∈ F .
Hence F ∩D⊓ ∈ F(D⊓). In fact, x⊓ ∈ F and x⊓ ⊑ y⊓ implies y⊓ ∈ F and so y⊓ ∈ F ∩D⊓.

An easy calculation shows the validity of the following Lemma:
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Lemma 5.5. Let L and M be two regular double Boolean algebras and f ∶ L →M an
onto homomorphism. Then

a) F ∈ F(L)⇒ f(F ) ∈ F(M), and I ∈ I(L)⇒ f(I) ∈ I(M).
b) E ∈ Fp(M)⇒ f−1(E) ∈ Fp(L) and H ∈ Ip(M)⇒ f−1(H) ∈ Ip(L).
c) (E,H) ∈M(M)⇒ (f−1(E), f−1(H)) ∈M(L).

We conclude this section with a basic result from [6].

Lemma 5.6. Let F be a filter of a double Boolean algebra D.

1. F ∩D⊓ and F ∩D⊔ are filters of the Boolean algebra D⊓ and D⊔, respectively;
2. Each filter of the Boolean algebra D⊓ is a base of some filter of D; in particular,
F ∩D⊓ is a base of F .

6. Topological Representation

Double Boolean algebras play a substantial role in the development of the Con-
cept Logic, a role which is in a certain way similar to that played by Boolean algebras
in the classical Logic. In the following, we develop a topological representation the-
ory for regular double Boolean algebras, i.e., double Boolean algebras for which the
quasiorder ⊑ is an order relation.

A topological space is denoted by (X,T ) where T is the set of all closed subsets
of X. Consider the context K ∶= (G,M, I) and let T be a topology on G and τ
be a topology on M . A clopen protoconcept is a pair (A,B) ∈ P(K) with A ⊆ G
clopen, and B ⊆ M clopen too. We denote the set of all clopen protoconcepts by
Pco((G,T ), (M,τ), I).

Definition 6.1. KDB ∶= ((G,T ), (M,τ), I) is called a DB-topological context if:

(i) (G,T ) and (M,τ) are topological spaces and I ⊆ G ×M .

(ii) If A ⊆ G is a clopen set then A′ ⊆ M is clopen too, and the same holds for
clopen sets in M .

(iii) A subbasis for the closed and for the open sets in G is given by the extents
of clopen protoconcepts of KDB and, dually, a subbasis for the closed and for the
open subsets of M is given by the intents of clopen protoconcepts of KDB .

Remark 6.2. 1. The set Pco(KDB) inherits the ordering from P(KDB). We shall

denote this ordered set by Pco(KDB).
2. Using the same idea as in [3], we are able to represent the 0-1-lattice D⊓ ∩D⊔

by the 0-1-lattice of clopen concepts of a suitable DB-topological context.

Remark 6.3. Pco(KDB) is a subalgebra of P(KDB). Moreover, it becomes now evident
that it is necessary to consider clopen protoconcepts since the negation of a closed
protoconcept would not be any longer a closed protoconcept.

Proposition 6.4. For every DB-topological context KDB, the ordered set of clopen
protoconcepts Pco(KDB) is a regular double Boolean algebra.
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Proof. Remember that if (A,B) and (C,D) are clopen protoconcepts, then

(A,B) ⊓ (C,D) = (A ∩C, (A ∩C)′)
(A,B) ⊔ (C,D) = ((B ∩D)′,B ∩D)

⌝(A,B) = (G ∖A, (G ∖A)′)
⌟(A,B) = ((M ∖B)′,M ∖B)

� = (∅,M)
⊺ = (G,∅).

Since the involved sets are all clopen, it follows that the restrictions of these
operations to Pco(KDB), i.e., meet, join, negation, opposition, nothing and all are

well-defined. Since the ordering on Pco(KDB) is that inherited from P(KDB), it

follows that Pco(KDB) is a regular double Boolean algebra. ◻

For a regular double Boolean algebra D, we define the standard context of D
as K(D) ∶= (Fp(D),Ip(D),∆), where F∆I ∶⇔ F ∩ I ≠ ∅. On Fp(D) consider the
topology generated by the subbasis {Fx ∣ x ∈ D} with Fx ∶= {F ∈ Fp(D) ∣ x ∈ F}.
Dually, on Ip(D) consider the topology generated by the subbasis {Ix ∣ x ∈ D} with
Ix ∶= {I ∈ Ip(D) ∣ x ∈ I}. We denote the context K(D) with the above topologies by
KDB(D) and we will prove that KDB(D) is a DB-topological context.

Lemma 6.5. [6] The derivations in KDB(D) yield:

1. F ′
x = Ix = Ix⊔ for all x ∈D⊓.

2. I ′y = Fy = Fy⊓ for all y ∈D⊔.
3. F ′

z = Iz⊓ = Iz⊓⊔ and I ′z = Fz⊔ = Fz⊔⊓ for all z ∈D ∖ (D⊓ ∩D⊔).

The following result is true:

Theorem 6.6. For every regular double Boolean algebra D, the context KDB(D) is a
topological context.

Proof. We first remark that, by Lemma 6.5, the pair (Fx, Ix) is a protoconcept of
Pco(KDB(D)) for every x ∈ D: For any x ∈ D⊓ we have F ′

x = Ix = Ix⊔ and so

F ′′
x = I ′x⊔ = Fx⊔ = Fx⊔⊓ and I ′x = I ′x⊔ = Fx⊔ = Fx⊔⊓ . The same holds for x ∈ D⊔ and

for the “non-Boolean” elements in D ∖ (D⊓ ∩D⊔). Moreover, the complement of an
element of the given subbasis, cFx = Fp(D)∖Fx = {F ∈ Fp(D) ∣ x ∉ F} = F⌝x, is again
in that family, so every element of the subbasis is clopen. We want to prove now the
second condition, namely that for a clopen C ⊆ Fp(D), its derivation, C ′, is clopen
too.

Let C ⊆ Fp(D) be a clopen set, then C is closed and

C = ⋂
j∈J
( ⋃
a∈Aj

Fa)

where J ≠ ∅ is an arbitrary index-set and Aj ⊆D are finite sets for every j ∈ J .
Its complement

cC = ⋃
j∈J
( ⋂
a∈Aj

cFa) = ⋃
j∈J
( ⋂
a∈Aj

F⌝a)
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can be expressed in terms of the given subbasis too, proving that the family {Fx ∣ x ∈
D} is also a subbasis for the open subsets of Fp(D). Hence an arbitrary closed set
C ⊆ Fp(D) will be expressed as C = ⋂j∈J(⋃a∈Aj

Fa) and we denote the set of all
finite subsets of J with EJ . Then, for every E ∈ EJ , the order ideal ⋂j∈E ↓ Aj has
finitely many maximal elements. We denote the set of these maximal elements by max

⋂j∈E ↓ Aj . Thus, the element

sE ∶=⊔max ⋂
j∈E
↓ Aj

is well-defined for every E ∈ EJ and belongs to D. Define BJ ∶= {sE ∣ E ∈ EJ}.
We claim that

C ′ = ⋃
a∈BJ

Ia.

To prove this, let a ∈ BJ and I ∈ Ia. It follows that there is an E ∈ EJ with sE = a.
The filter F belongs to C if and only if F ∩Aj ≠ ∅ for all j ∈ J , and so F ∩Aj ≠ ∅
for j ∈ E, concluding that sE ∈ F . This statement is equivalent to F∆I for all F ∈ C;
hence I ∈ C ′.

Consider I ∈ Ip(D) with a ∉ I for all a ∈ BJ . For all E ∈ EJ , there is a map

fE ∶ E → ⋃
j∈J

Aj

with fE(j) ∈ Aj and ⊓fE(E) ∉ I, hence sE ∈ (↑ ⊓fE(E))∖I. (Choose for fE(j) one of
the maximal elements of ↓ Aj which appears in sE . Then sE ∈↑ ⊓fE(E), but sE ∉ I.)

Rado’s Selection Theorem yields the existence of a map f ∶ J → ⋃j∈J Aj defined
by f(j) ∈ Aj for every j ∈ J , so that, for all E ∈ EJ , there is a filter F ∈ EJ with
E ⊆ F and f∣E = fF ∣E . It follows that the filter generated by {f(j) ∣ j ∈ J} contains
BJ and is disjoint from I. Zorn’s Lemma guarantees the existence of an I-maximal
filter containing the given one and so I ∉ C ′. We just have proved the openness of the
set C ′ in Ip(D).

The set C is clopen and the family {Fx ∣ x ∈ D} is a subbasis for the open sets
in Fp(D); hence C = ⋃k∈K(⋂b∈Bk

Fb), where K ≠ ∅ is an index-set and Bk are finite
subsets of D for every k ∈K. Since

⋂
b∈Bk

Fb = {F ∈ Fp(D) ∣ ∀b ∈ Bk ∶ b ∈ F} = FBk
,

we have that C = ⋃k∈K FBk
= ⋃k∈K FBk⊓

, where Bk⊓ ∶= {b⊓ ∣ b ∈ Bk}.
The following holds:

C ′ = ⋂
k∈K

F ′
Bk⊓

= ⋂
k∈K

IBk⊓
= ⋂

k∈K
IBk⊓⊔

= ⋂
k∈K

⋂
b∈Bk⊓⊔

Ib

concluding that C ′ is also closed and since it was also open, it is clopen. ◻

Now, we are able to give a representation theorem for regular double Boolean
algebras in terms of Formal Concept Analysis.

Theorem 6.7. Let D be a regular double Boolean algebra. Then

ι ∶D →Pco(KDB(D)), a↦ (Fa, Ia)
is an isomorphism.
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Proof. By Lemma 6.5, (Fx, Ix) is a protoconcept of K(D) for all x ∈ D. For x /⊑ y
in D⊓, there is always an F ∈ Fp(D) with x ∈ F but y ∉ F ; hence Fx ≠ Fy and so
(Fx, Ix) ≠ (Fy, Iy). Such inequality can be obtained dually for y /⊑ x in D⊔. If x /⊑ y in D
with x ∉D⊔ and y ∉D⊓ then, because ↑ x ∶= {y ∈D ∣ x ⊑ y} is a filter of D⊔ by Lemma
4.1, there exists an I ∈ Ip(D) with x ∈ I but y ∉ I; hence we have (Fx, Ix) ≠ (Fy, Iy)
also in this case and its dual.

Using Theorem 2 from [13], we deduce that the map ι is a homomorphism, since
Fx⊓y = Fx∩Fy, Ix⊔y = Ix∩Iy, F⌝x = Fp(D)∖Fx and I⌟x = Ip(D)∖Ix. These equalities
result from the following equivalences and their duals: F ∈ Fx⊓y ⇔ x ⊓ y ∈ F ⇔ x, y ∈
F ⇔ F ∈ Fx ∩ Fy and F ∈ F⌝x ⇔ ⌝x ∈ F ⇔ ⌝(x ⊓ x) ∈ F ⇔ x ⊓ x ∉ F ⇔ x ∉ F ⇔ F ∈
Fp(D) ∖ Fx (for a detailed proof of these equivalences, see [13]).

We want to prove that ι is onto. For this, let (A,B) ∈ Pco(K(D)) be a clopen

protoconcept, i.e., A = ⋂j∈J(⋃a∈Aj
Fa) where J is an index set and Aj are finite

subsets of D for every j ∈ J . But ⋃a∈Aj
Fa is a member of the given subbasis, since

c(⋃a∈Aj
Fa) = ⋂a∈Aj

cFa = ⋂a∈Aj
F⌝a = F⌝Aj = F⊓⌝Aj . The set Aj is finite for every

j ∈ J , so there is an xj ∈D with xj = ⊓⌝Aj ; hence ⋃a∈Aj
Fa = F⌝xj . By Lemma 2 [13],

there is a filter X ∈ F(D) with A = ⋂j∈J(⋃a∈Aj
Fa) = FX .

Let us denote by A⊓ ∶= {F⊓ ∈ F0(D⊓) ∣ F⊓ = F ∩ D⊓, F ∈ A}. Since A =
⋂j∈J(⋃a∈Aj

Fa), we prove that A⊓ = ⋂j∈J(⋃a⊓∈Aj⊓
(Fa⊓)⊓). Let now F⊓ ∈ A⊓, then

there exists a filter F ∈ A, with F⊓ = F ∩D⊓. The following holds:

F ∈ A⇔ ∀j ∈ J ∃a ∈ Aj ∶ a ∈ F
⇒ ∀j ∈ J ∃a⊓ ∈ Aj⊓ ∶ a⊓ ∈ F
⇒ F⊓ ∈ ⋂

j∈J
( ⋃
a⊓∈Aj⊓

Fa⊓).

For the second inclusion, the following holds

F⊓ ∈ ⋂
j∈J
( ⋃
a⊓∈Aj⊓

Fa⊓)

⇒ ∀j ∈ J ∃a⊓ ∈ Aj⊓ ∶ a⊓ ∈ F⊓
⇒ ∀j ∈ J ∃a⊓ ∈ Aj⊓ ∶ a⊓ ∈ F ∶=↑ F⊓
⇒ ∃F ∈ A ∶ F⊓ = F ∩D⊓.

This proves the closeness of A⊓ in F0(D⊓). We have seen that A⊓ = (FX⊓)⊓. In
order to prove that A⊓ is a closed extent we use a similar approach to Proposition 5
from [3]. Hence there is an a ∈D⊓ with A⊓ = (Fa⊓)⊓, i.e., A = Fa for a suitable a ∈D,
which completes the proof. ◻

Remark 6.8. The topological representation of regular double Boolean algebras arises
from the topological representation of bounded lattices, considering every filter as a
basis of a filter Pco(K(D)) and dually for ideals.

With these considerations, we are now able to develop a duality for regular
double Boolean algebras. The following simple observations, will be used repeteadly.

Lemma 6.9. Consider F ∈ F(D) and I ∈ I(D).
1. If F ∩ I = ∅, then there is an F ∈ Fp(D) with F ⊆ F and F is I-maximal.



22 Brigitte E. Breckner and Christian Săcărea

2. If F ∩ I = ∅, then there is an I ∈ Ip(D) with I ⊆ I and I is F -maximal.

3. If F ∩ I = ∅, then there is an F ∈ Fp(D) and an I ∈ Ip(D) with F ⊆ F and I ⊆ I,
so that F is I-maximal and I is F -maximal.

Remark 6.10. A filter F ∈ Fp(D) if and only if there is an ideal I ∈ Ip(D) such that
F is I-maximal.

Lemma 6.11. Let D be a regular double Boolean algebra, F ∈ Fp(D) and I ∈ Ip(D).
Then:

1. F is I-maximal ⇔ F ↙ I in KDB(D).
2. I is F -maximal ⇔ F ↗ I in KDB(D).
3. (F, I) ∈M(D) ⇔ F ↙↗ I in KDB(D).

Remark 6.12. By the previous Lemma, we observe that the context KDB(D) is the
context reduction of (F(D),I(D),∆).

Definition 6.13. A DB-topological context is called standard if in addition the follow-
ing hold:

(R) KDB is reduced;
(S) gIm⇒ ∃(A,B) ∈Pco(KDB) ∶ g ∈ A and m ∈ B;

(Q) (cI, (ρ × σ)∣cI) is a quasicompact space where cI ∶= (G ×M)/I and ρ × σ
denotes the product topology on G ×M .

Remark 6.14. The topological context of a regular double Boolean algebra KDB(D)
is standard, due to the analogy to standard topological contexts as they have been
defined in [4].

The next Theorem completes our representation and its proof is similar to that
given by G. Hartung in [4] to the main representation theorem for standard topological
contexts. We only have to modify some sections were concepts have to be replaced by
protoconcepts, but this is an easy and routine job.

Theorem 6.15. Let KDB be a DB-standard topological context. The mappings

α ∶ G→ Fp(Pco(KDB)), g ↦ {(A,B) ∈Pco(KDB) ∣ g ∈ A}

β ∶M → Ip(Pco(KDB)), m↦ {(A,B) ∈Pco(KDB) ∣ m ∈ B}
define an isomorphism between topological contexts.

We conclude our considerations with the following Representation Theorem:

Theorem 6.16 (Representation Theorem). For every regular double Boolean algebra
D the context KDB(D) is a standard topological context with Pco(KDB(D)) ≃D. For

every standard topological context KDB, Pco(KDB) is a regular double Boolean algebra

and KDB ≃ KDB(Pco(KDB)). Moreover, the set of all clopen concepts of the standard
DB-topological context of every regular double Boolean algebra D is isomorphic to
D⊓ ∩D⊔.

This representation can easily be extended to a categorical duality, with mor-
phisms appropriately chosen. The methods used for this duality are widely described
in [1].
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