Properties of absolute- $-k$-paranormal operators and contractions for $*-\mathcal{A}(k)$ operators

Ilmi Hoxha, Naim L. Braha and Agron Tato

Abstract

First, we see if T is absolute- $*$ - k-paranormal for $k \geq 1$, then T is a normaloid operator. We also see some properties of absolute- $-k$ - k-paranormal operator and $*-\mathcal{A}(k)$ operator. Then, we will prove the spectrum continuity of the class $*-\mathcal{A}(k)$ operator for $k>0$. Moreover, it is proved that if T is a contraction of the class $*-\mathcal{A}(k)$ for $k>0$, then either T has a nontrivial invariant subspace or T is a proper contraction, and the nonnegative operator

$$
D=\left(T^{*}|T|^{2 k} T\right)^{\frac{1}{k+1}}-\left|T^{*}\right|^{2}
$$

is a strongly stable contraction. Finally if $T \in *-\mathcal{A}(k)$ is a contraction for $k>0$, then T is the direct sum of a unitary and $C .0$ (c.n.u) contraction.
Mathematics Subject Classification (2010): 47A10, 47B37, 15A18.
Keywords: Class $*-\mathcal{A}(k)$ operators, absolute-*-k-paranormal operators, normaloid operators, continuity spectrum, contractions.

1. Introduction

Throughout this paper, let H and K be infinite dimensional separable complex Hilbert spaces with inner product $\langle\cdot, \cdot\rangle$. We denote by $L(H, K)$ the set of all bounded operators from H into K. To simplify, we put $L(H):=L(H, H)$. For $T \in L(H)$, we denote by $\operatorname{ker}(T)$ the null space and by $T(H)$ the range of T. The null operator and the identity on H will be denoted by O and I, respectively. If T is an operator, then T^{*} denotes its adjoint. We shall denote the set of all complex numbers by \mathbb{C}, the set of all non-negative integers by \mathbb{N} and the complex conjugate of a complex number λ by $\bar{\lambda}$. The closure of a set M will be denoted by \bar{M} and we shall henceforth shorten $T-\lambda I$ to $T-\lambda$. An operator $T \in L(H)$, is a positive operator, $T \geq O$, if $\langle T x, x\rangle \geq 0$ for all $x \in H$. We write by $\sigma(T), \sigma_{p}(T)$, and $\sigma_{a}(T)$ spectrum, point spectrum and approximate point spectrum respectively. Sets of isolated points and accumulation points of $\sigma(T)$ are denoted by iso $\sigma(T)$ and acc $\sigma(T)$, respectively. We
write $r(T)$ for the spectral radius. It is well known that $r(T) \leq\|T\|$. The operator T is called normaloid if $r(T)=\|T\|$.

A contraction is an operator T such that $\|T x\| \leq\|x\|$ for all $x \in H$. A proper contraction is an operator T such that $\|T x\|<\|x\|$ for every nonzero $x \in H$. A strict contraction is an operator such that $\|T\|<1$ (i.e., $\sup _{x \neq 0} \frac{\|T x\|}{\|x\|}<1$). Obviously, every strict contraction is a proper contraction and every proper contraction is a contraction. An operator T is said to be completely non-unitary (c.n.u) if T restricted to every reducing subspace of H is non-unitary.

An operator T on H is uniformly stable, if the power sequence $\left\{T^{m}\right\}_{m=1}^{\infty}$ converges uniformly to the null operator (i.e., $\left\|T^{m}\right\| \rightarrow O$). An operator T on H is strongly stable, if the power sequence $\left\{T^{m}\right\}_{m=1}^{\infty}$ converges strongly to the null operator (i.e., $\left\|T^{m} x\right\| \rightarrow 0$, for every $x \in H$).

A contraction T is of class C_{0}. if T is strongly stable (i.e., $\left\|T^{m} x\right\| \rightarrow 0$ and $\|T x\| \leq\|x\|$ for every $x \in H$). If T^{*} is a strongly stable contraction, then T is of class $C .0 . T$ is said to be of class C_{1}. if $\lim _{m \rightarrow \infty}\left\|T^{m} x\right\|>0$ (equivalently, if $T^{m} x \nrightarrow 0$ for every nonzero x in H). T is said to be of class $C_{\cdot 1}$ if $\lim _{m \rightarrow \infty}\left\|T^{* m} x\right\|>0$ (equivalently, if $T^{* m} x \nrightarrow 0$ for every nonzero x in H). We define the class $C_{\alpha \beta}$ for $\alpha, \beta=0,1$ by $C_{\alpha \beta}=C_{\alpha} \cdot \cap C_{\cdot \beta}$. These are the Nagy-Foiaş classes of contractions [21, p.72]. All combinations are possible leading to classes C_{00}, C_{01}, C_{10} and C_{11}. In particular, T and T^{*} are both strongly stable contractions if and only if T is a C_{00} contraction. Uniformly stable contractions are of class C_{00}.

For an operator $T \in L(H)$, as usual, $|T|=\left(T^{*} T\right)^{\frac{1}{2}}$. An operator T is said to be a normal operator if $T^{*} T=T T^{*}$ and T is said to be hyponormal, if $|T|^{2} \geq\left|T^{*}\right|^{2}$. An operator $T \in L(H)$, is said to be paranormal [11], if $\left\|T^{2} x\right\| \geq\|T x\|^{2}$ for every unit vector x in H. Further, T is said to be $*$-paranormal [1], if $\left\|T^{2} x\right\| \geq\left\|T^{*} x\right\|^{2}$ for every unit vector x in H.

In [13] authors Furuta, Ito and Yamazaki introduced the class \mathcal{A} operator, respectively the class $\mathcal{A}(k)$ operator defined as follows: For each $k>0$, an operator T is from class $\mathcal{A}(k)$ operator if

$$
\left(T^{*}|T|^{2 k} T\right)^{\frac{1}{k+1}} \geq|T|^{2}
$$

(for $k=1$ it defines class \mathcal{A} operator), and they showed that the class \mathcal{A} is a subclass of paranormal operators.

In the same paper, authors introduced the absolute- k-paranormal operators as follows: For each $k>0$, an operator T is absolute- k-paranormal if

$$
\left\||T|^{k} T x\right\| \geq\|T x\|^{k+1}
$$

for every unit vector $x \in H$. In case where $k=1$ it defines the paranormal operator. The class $\mathcal{A}(k)$ operator is included in the absolute- k-paranormal operator for any $k>0,[13$, Theorem 2]).
B. P. Duggal, I. H. Jeon, and I. H. Kim [5], introduced $*$-class \mathcal{A} operator. An operator $T \in L(H)$ is said to be a $*$-class \mathcal{A} operator, if $\left|T^{2}\right| \geq\left|T^{*}\right|^{2}$. A $*$-class \mathcal{A} is a generalization of a hyponormal operator, [5, Theorem 1.2], and $*$-class \mathcal{A} is a subclass of the class of $*$-paranormal operators, [5, Theorem 1.3]. We denote the set of $*$-class
\mathcal{A} by \mathcal{A}^{*}. An operator $T \in L(H)$ is said to be a k-quasi-*-class \mathcal{A} operator [20], if

$$
T^{* k}\left(\left|T^{2}\right|-\left|T^{*}\right|^{2}\right) T^{k} \geq O
$$

for a nonnegative integer k.
In [24] authors, S. Panayappan and A. Radharamani introduced the class $*-\mathcal{A}(k)$ operator and absolute- $*-k$-paranormal operator.

Definition 1.1. For each $k>0$, an operator T is absolute-*- k-paranormal if

$$
\left\||T|^{k} T x\right\| \geq\left\|T^{*} x\right\|^{k+1}
$$

for every unit vector $x \in H$.
In case where $k=1$ it defines the $*$-paranormal operator.
Definition 1.2. For each $k>0$, an operator T is class $*-A(k)$, if

$$
\left(T^{*}|T|^{2 k} T\right)^{\frac{1}{k+1}} \geq\left|T^{*}\right|^{2}
$$

In case where $k=1$ it defines the \mathcal{A}^{*} class operators.
In this paper, we shall show behavior of the class $*-\mathcal{A}(k)$ operator and absolute-*-k-paranormal operator.

2. Properties of absolute-*- k-paranormal operator and $*-\mathcal{A}(k)$ operator

Theorem 2.1. If T is an absolute-*-k-paranormal operator for $k>0$, then T is a normaloid operator.

Proof. Let T be an absolute- $*$ - k-paranormal operator. In case where $k=1, T$ is a *-paranormal operator, then by [1, Theorem 1.1] it follows that T is a normaloid operator. Following, it will be proved that for $k>1$ the operator T is a normaloid operator, because for $0<k<1$, it was proved in [3](Theorem 2.9). Without losing the generality, assume $\|T\|=1$. Since T is an absolute- $*-k$-paranormal, then

$$
\left\|T^{*} x\right\|^{k+1} \leq\left\||T|^{k} T x\right\|\|x\|^{k} \leq\left\||T|^{k-1}\right\|\| \| T \mid T x\| \| x\left\|^{k} \leq\right\| T^{2} x\| \| x \|^{k}
$$

for all $x \in H$. Therefore,

$$
\begin{equation*}
\frac{\left\|T^{*} x\right\|^{k+1}}{\|x\|^{k}} \leq\left\|T^{2} x\right\| \leq\|x\| \tag{2.1}
\end{equation*}
$$

for all $x \in H$.
By definition of $\left\|T^{*}\right\|$, there exists a sequence $\left\{x_{i}\right\}$ of unit vectors such that

$$
\begin{equation*}
\left\|T^{*} x_{i}\right\| \rightarrow\left\|T^{*}\right\|=\|T\|=1 \tag{2.2}
\end{equation*}
$$

Put $x=x_{i}$ in (2.1), then we have.

$$
\begin{equation*}
\frac{\left\|T^{*} x_{i}\right\|^{k+1}}{\left\|x_{i}\right\|^{k}} \leq\left\|T^{2} x_{i}\right\| \leq\left\|x_{i}\right\|=1 \tag{2.3}
\end{equation*}
$$

so, $\left\|T^{2} x_{i}\right\| \rightarrow 1$, by (2.2) and (2.3), that is

$$
\left\|T^{2}\right\|=1=\|T\|^{2}
$$

Let us now suppose that

$$
\begin{equation*}
\left\|T^{n-1} x_{i}\right\| \rightarrow 1,\left\|T^{n-2} x_{i}\right\| \rightarrow 1 \text { and }\left\|T^{n-3} x_{i}\right\| \rightarrow 1 \text { for } n \geq 3 \tag{2.4}
\end{equation*}
$$

Put $x=T^{n-2} x_{i}$ in (2.1), then we have

$$
\begin{equation*}
\frac{\left\|T^{*} T^{n-2} x_{i}\right\|^{k+1}}{\left\|T^{n-2} x_{i}\right\|^{k}} \leq\left\|T^{n} x_{i}\right\| \leq\left\|T^{n-2} x_{i}\right\| \tag{2.5}
\end{equation*}
$$

From Cauchy-Schwarz inequality we have

$$
\begin{equation*}
\frac{\left\|T^{n-2} x\right\|^{2}}{\left\|T^{n-3} x\right\|} \leq\left\|T^{*} T^{n-2} x\right\| \tag{2.6}
\end{equation*}
$$

From relations (2.5) and (2.6) we have

$$
\frac{\left\|T^{n-2} x_{i}\right\|^{k+2}}{\left\|T^{n-3} x_{i}\right\|^{k+1}} \leq \frac{\left\|T^{*} T^{n-2} x_{i}\right\|^{k+1}}{\left\|T^{n-2} x_{i}\right\|^{k}} \leq\left\|T^{n} x_{i}\right\| \leq\left\|T^{n-2} x_{i}\right\|
$$

respectively:

$$
\begin{equation*}
\frac{\left\|T^{n-1} x_{i}\right\|^{k+2}}{\left\|T^{n-3} x_{i}\right\|^{k+1}} \leq \frac{\left\|T^{n-2} x_{i}\right\|^{k+2}}{\left\|T^{n-3} x_{i}\right\|^{k+1}} \leq \frac{\left\|T^{*} T^{n-2} x_{i}\right\|^{k+1}}{\left\|T^{n-2} x_{i}\right\|^{k}} \leq\left\|T^{n} x_{i}\right\| \leq\left\|T^{n-2} x_{i}\right\| \tag{2.7}
\end{equation*}
$$

Hence, $\left\|T^{n} x_{i}\right\| \rightarrow 1$, by (2.4) and (2.7) that is $\left\|T^{n}\right\|=1=\|T\|^{n}$. Consequently

$$
\left\|T^{n}\right\|=1=\|T\|^{n}
$$

for all positive integers n by induction.
Example 2.2. An example of non-absolute-*- k-paranormal operator which is a normaloid operator. Let us denote by

$$
T=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)
$$

Then $\left\|T^{n}\right\|=\|T\|^{n}$ for all positive integers n. However, the relation

$$
\left\||T|^{k} T x\right\| \geq\left\|T^{*} x\right\|^{k+1}
$$

does not hold for the unit vector $e_{3}=(0,0,1)$. With which was proved that T is a non-absolute- $-k$-paranormal operator, but it is a normaloid operator.

It is known that there exists a linear operator T, so that T^{n} is compact operator for some $n \in \mathbb{N}$, but T itself is not compact. For instance, take any nilpotent noncompact operator (If $\left(e_{n}\right)_{n}$ is an orthonormal basis of H then the shift defined by $T\left(e_{2 n}\right)=e_{2 n+1}$ and $T\left(e_{2 n+1}\right)=0$ is not a compact operator for which $\left.T^{2}=O\right)$.

In this context, we will show that in cases where an operator T is an absolute-$*-k$-paranormal operator and if its exponent T^{n} is compact, for some $n \in \mathbb{N}$, then T is compact too.

Theorem 2.3. If T is an absolute-*-k-paranormal operator for $k>0$ and if T^{n} is compact for some $n \in \mathbb{N}$, then it follows that T is compact too.

Proof. Compactness of T^{n} implies countable spectrum (consisting of mutually orthogonal eigenvalues ([26], Theorem 6)), this then implies T^{n} normal compact, hence T is normal compact.

Corollary 2.4. If T, R are absolute-*-k-paranormal operators for $k>0$ and if T^{n} and R^{m} are compact for some $n, m \in \mathbb{N}$, then it follows that $T \oplus R$ is compact too.
Corollary 2.5. If T, R are absolute-*-k-paranormal operators for $k>0$ and if T^{n} is a compact operator for some $n \in \mathbb{N}$ or R^{m} is a compact operator for some $m \in \mathbb{N}$, then it follows that $T \otimes R$ is compact too.
Lemma 2.6. [16, Hansen Inequality] If $A, B \in L(H)$, satisfying $A \geq O$ and $\|B\| \leq 1$, then

$$
\left(B^{*} A B\right)^{\delta} \geq B^{*} A^{\delta} B \text { for all } \delta \in(0,1]
$$

Lemma 2.7. [12, Löwner-Heinz Inequality] If $A, B \in L(H)$, satisfying $A \geq B \geq O$, then $A^{\delta} \geq B^{\delta}$ for all $\delta \in[0,1]$.

A subspace M of space H is said to be nontrivial invariant(alternatively, T invariant) under T if $\{0\} \neq M \neq H$ and $T(M) \subseteq M$.
Theorem 2.8. If T is a class $*-\mathcal{A}(k)$ operator for $0<k \leq 1$ and M is its invariant subspace, then the restriction $\left.T\right|_{M}$ of T to M is also a class $*-\mathcal{A}(k)$ operator.
Proof. Since M is an invariant subspace of T, T has the matrix representation

$$
T=\left(\begin{array}{ll}
A & B \\
O & C
\end{array}\right) \quad \text { on } \quad H=M \oplus M^{\perp}
$$

Let P be the projection of H onto M, where $A=\left.T\right|_{M}$ and $\left(\begin{array}{cc}A & O \\ O & O\end{array}\right)=T P=P T P$.
Since T is a class $*-\mathcal{A}(k)$ operator, we have

$$
P\left(\left(T^{*}|T|^{2} T\right)^{\frac{1}{k+1}}-\left|T^{*}\right|^{2}\right) P \geq O
$$

By Hansen inequality, we have

$$
\begin{aligned}
\left(\begin{array}{cc}
\left|A^{*}\right|^{2} & O \\
O & O
\end{array}\right) & \leq\left(\begin{array}{cc}
\left|A^{*}\right|^{2}+\left|B^{*}\right|^{2} & O \\
O & O
\end{array}\right) \\
& \leq\left(P T^{*} P|T|^{2 k} P T P\right)^{\frac{1}{k+1}}
\end{aligned}
$$

Since

$$
P|T|^{2 k} P \leq\left(P|T|^{2} P\right)^{k}
$$

then

$$
P T^{*} P|T|^{2 k} P T P \leq P T^{*}\left(P|T|^{2} P\right)^{k} T P
$$

By Löwner-Heinz inequality we have

$$
\left(P T^{*} P|T|^{2 k} P T P\right)^{\frac{1}{k+1}} \leq\left(P T^{*}\left(P|T|^{2} P\right)^{k} T P\right)^{\frac{1}{k+1}}
$$

So, we have

$$
\left(\begin{array}{cc}
\left|A^{*}\right|^{2} & O \\
O & O
\end{array}\right) \leq\left(\begin{array}{cc}
\left(A^{*}\left|A^{*}\right|^{2 k} A\right)^{\frac{1}{k+1}} & O \\
O & O
\end{array}\right)
$$

Hence, A is a class $*-\mathcal{A}(k)$ operator on M.
Theorem 2.9. If T is a class $*-\mathcal{A}(k)$ operator, has the representation $T=\lambda \oplus A$ on $\operatorname{ker}(T-\lambda) \oplus(\operatorname{ker}(T-\lambda))^{\perp}$, where $\lambda \neq 0$ is an eigenvalue of T, then A is a class $*-\mathcal{A}(k)$ operator with $\operatorname{ker}(A-\lambda)=\{0\}$.

Proof. Since $T=\lambda \oplus A$, then $T=\left(\begin{array}{ll}\lambda & O \\ O & A\end{array}\right)$ and we have:

$$
\begin{aligned}
\left(T^{*}|T|^{2 k} T\right)^{\frac{1}{k+1}}-\left|T^{*}\right|^{2} & =\left(\begin{array}{cc}
|\lambda|^{2(k+1)} & O \\
O & A^{*}|A|^{2 k} A
\end{array}\right)^{\frac{1}{k+1}}-\left(\begin{array}{cc}
|\lambda|^{2} & O \\
O & \left|A^{*}\right|^{2}
\end{array}\right) \\
& =\left(\begin{array}{cc}
|\lambda|^{2} & O \\
O & \left(A^{*}|A|^{2 k} A\right)^{\frac{1}{k+1}}
\end{array}\right)-\left(\begin{array}{cc}
|\lambda|^{2} & O \\
O & \left|A^{*}\right|^{2}
\end{array}\right) \\
& =\left(\begin{array}{cc}
O & O \\
O & \left(A^{*}|A|^{2 k} A\right)^{\frac{1}{k+1}}-\left|A^{*}\right|^{2}
\end{array}\right)
\end{aligned}
$$

Since T is a class $*-\mathcal{A}(k)$ operator, then A is a class $*-\mathcal{A}(k)$ operator.
Let $x_{2} \in \operatorname{ker}(A-\lambda)$. Then

$$
(T-\lambda)\binom{0}{x_{2}}=\left(\begin{array}{cc}
O & O \\
O & A-\lambda
\end{array}\right)\binom{0}{x_{2}}=\binom{0}{0}
$$

Hence $x_{2} \in \operatorname{ker}(T-\lambda)$. Since $\operatorname{ker}(A-\lambda) \subseteq(\operatorname{ker}(T-\lambda))^{\perp}$, this implies $x_{2}=0$. Representation of T implies $A-\lambda$ is injective and by Theorem $2.8 A$ is $*-\mathcal{A}(k)$.

3. Spectrum continuity on the set of class $*-\mathcal{A}(k)$ operator

Let $\left\{E_{n}\right\}_{n \in \mathbb{N}}$ be a sequence of compact subsets of \mathbb{C}. Let's define the inferior and superior limits of $\left\{E_{n}\right\}_{n \in \mathbb{N}}$, denoted respectively by $\liminf _{n \rightarrow \infty}\left\{E_{n}\right\}$ and $\limsup _{n \rightarrow \infty}\left\{E_{n}\right\}$ as it follows:

1) $\lim \inf _{n \rightarrow \infty}\left\{E_{n}\right\}=\{\lambda \in \mathbb{C}$: for every $\epsilon>0$, there exists $N \in \mathbb{N}$ such that $B(\lambda, \epsilon) \cap E_{n} \neq \emptyset$ for all $\left.n>N\right\}$,
2) $\lim \sup _{n \rightarrow \infty}\left\{E_{n}\right\}=\{\lambda \in \mathbb{C}$: for every $\epsilon>0$, there exists $J \subseteq \mathbb{N}$ infinite such that $B(\lambda, \epsilon) \cap E_{n} \neq \emptyset$ for all $\left.n \in J\right\}$.
If

$$
\liminf _{n \rightarrow \infty}\left\{E_{n}\right\}=\limsup _{n \rightarrow \infty}\left\{E_{n}\right\}
$$

then $\lim _{n \rightarrow \infty}\left\{E_{n}\right\}$ is said to exists and is equal to this common limit.
A mapping p, defined on $L(H)$, whose values are compact subsets on \mathbb{C} is said to be upper semi-continuous at T, if $T_{n} \rightarrow T$ then $\lim \sup _{n \rightarrow \infty} p\left(T_{n}\right) \subset p(T)$, and lower semi-continuous at T, if $T_{n} \rightarrow T$ then $p(T) \subset \liminf _{n \rightarrow \infty} p\left(T_{n}\right)$. If p is both upper and lower semi-continuous at T, then it is said to be continuous at T and in this case $\lim _{n \rightarrow \infty} p\left(T_{n}\right)=p(T)$.

The spectrum $\sigma: T \rightarrow \sigma(T)$ is upper semi-continuous by [15, Problem 102], but it is not continuous in general, [25, Example 4.6]

We write $\alpha(T)=\operatorname{dimker}(T), \beta(T)=\operatorname{dimker}\left(T^{*}\right)$. An operator $T \in L(H)$ is called an upper semi-Fredholm, if it has closed range and $\alpha(T)<\infty$, while T is called a lower semi-Fredholm if $\beta(T)<\infty$. However, T is called a semi-Fredholm operator if T is either an upper or a lower semi-Fredholm, and T is said to be a Fredholm operator if it is both an upper and a lower semi-Fredholm. If $T \in L(H)$ is semi-Fredholm, then the index is defined by

$$
\operatorname{ind}(T)=\alpha(T)-\beta(T)
$$

An operator $T \in L(H)$ is said to be upper semi-Weyl operator if it is upper semiFredholm and $\operatorname{ind}(T) \leq 0$, while $T \in L(H)$ is said to be lower semi-Weyl operator if it is lower semi-Fredholm and $\operatorname{ind}(T) \geq 0$. An operator is said to be Weyl operator if it is Fredholm of index zero.

Lemma 3.1. [22] If $\left\{T_{n}\right\} \subset L(H)$ and $T \in L(H)$ are such that T_{n} converges, according to the operator norm topology, to T then

$$
\operatorname{iso} \sigma(T) \subseteq \liminf _{n \rightarrow \infty} \sigma\left(T_{n}\right)
$$

Lemma 3.2. [2] Let H be a complex Hilbert space. Then there exists a Hilbert space Y such that $H \subset Y$ and a map $\varphi: L(H) \rightarrow L(Y)$ with the following properties:

1. φ is a faithful $*$-representation of the algebra $L(H)$ on Y, so:

$$
\begin{gathered}
\varphi\left(I_{H}\right)=I_{Y}, \varphi\left(T^{*}\right)=(\varphi(T))^{*}, \varphi(T S)=\varphi(T) \varphi(S) \\
\varphi(\alpha T+\beta S)=\alpha \varphi(T)+\beta \varphi(S) \text { for any } T, S \in L(H) \text { and } \alpha, \beta \in \mathbb{C}
\end{gathered}
$$

2. $\varphi(T) \geq 0$ for any $T \geq 0$ in $L(H)$,
3. $\sigma_{a}(T)=\sigma_{a}(\varphi(T))=\sigma_{p}(\varphi(T))$ for any $T \in L(H)$,
4. If T is a positive operator, then $\varphi\left(T^{\alpha}\right)=|\varphi(T)|^{\alpha}$, for $\alpha>0$,

Lemma 3.3. If T is a class $*-\mathcal{A}(k)$ operator, then $\varphi(T)$ is a class $*-\mathcal{A}(k)$ operator.
Proof. Let $\varphi: L(H) \rightarrow L(K)$ be Berberian's faithful *-representation and let T be a class $*-\mathcal{A}(k)$ operator. Then, we have

$$
\begin{aligned}
\left((\varphi(T))^{*}|\varphi(T)|^{2 k} \varphi(T)\right)^{\frac{1}{k+1}}-\left|(\varphi(T))^{*}\right|^{2} & =\left(\varphi\left(T^{*}\right) \varphi\left(|T|^{2 k}\right) \varphi(T)\right)^{\frac{1}{k+1}}-\left|\varphi\left(T^{*}\right)\right|^{2} \\
& =\left(\varphi\left(T^{*}|T|^{2 k} T\right)^{\frac{1}{k+1}}-\varphi\left(\left|T^{*}\right|^{2}\right)\right) \\
& =\varphi\left(\left(T^{*}|T|^{2 k} T\right)^{\frac{1}{k+1}}-\left|T^{*}\right|^{2}\right) \geq 0
\end{aligned}
$$

thus $\varphi(T)$ is a class $*-\mathcal{A}(k)$ operator.
Theorem 3.4. The spectrum σ is continuous on the set of class $*-\mathcal{A}(k)$ operator for $k>0$.

Proof of the theorem is based in idea's given in the paper [6].
Proof. Since the function σ is upper semi-continuous, if $\left\{T_{n}\right\} \subset L(H)$ is a sequence which converges, to $T \in L(H)$, by operator norm topology. Then $\lim \sup _{n \rightarrow \infty} \sigma\left(T_{n}\right) \subset$ $\sigma(T)$. Thus, to prove the theorem it would suffice to prove that if $\left\{T_{n}\right\}$ is a sequence of operators so that it belongs to class $*-\mathcal{A}(k)$ operator and $\lim _{n \rightarrow \infty}\left\|T_{n}-T\right\|=0$ for some class $*-\mathcal{A}(k)$ operator T, then $\sigma(T) \subset \liminf _{n \rightarrow \infty} \sigma\left(T_{n}\right)$. From [25, Proposition
4.9] it would suffice to prove $\sigma_{a}(T) \subset \liminf _{n} \sigma\left(T_{n}\right)$. Since $\sigma(T)=\sigma(\varphi(T)), \sigma\left(T_{n}\right)=$ $\sigma\left(\varphi(T)_{n}\right)$ and $\sigma_{a}(T)=\sigma_{a}(\varphi(T))$ we have

$$
\sigma_{a}(T) \subset \liminf _{n \rightarrow \infty} \sigma\left(T_{n}\right) \Longleftrightarrow \sigma_{a}(\varphi(T)) \subset \liminf _{n \rightarrow \infty} \sigma\left(\varphi(T)_{n}\right)
$$

Let $\lambda \in \sigma_{a}(\varphi(T))$. Then $\lambda \in \sigma_{p}(\varphi(T))$.
By Theorem 2.9, $\varphi(T)$ has a representation

$$
\varphi(T)=\lambda \oplus A \text { on } H=\operatorname{ker}(\varphi(T)-\lambda) \oplus(\operatorname{ker}(\varphi(T)-\lambda))^{\perp} \text { and } \operatorname{ker}(A-\lambda)=\{0\}
$$

Therefore $A-\lambda$ is upper semi-Fredholm operator and $\alpha(A-\lambda)=0$. There exists a $\epsilon>0$ such that $A-\left(\lambda-\mu_{0}\right)$ is upper semi-Fredholm operator with $\operatorname{ind}\left(A-\left(\lambda-\mu_{0}\right)\right)=$ $\operatorname{ind}(A-\lambda)$ and $\alpha\left(A-\left(\lambda-\mu_{0}\right)\right)=0$ for every μ_{0} such that $0<\left|\mu_{0}\right|<\epsilon$. Let's set $\mu=\lambda-\mu_{0}$, and we have $\varphi(T)-\mu=(\lambda-\mu) \oplus(A-\mu)$ is upper semi-Fredholm operator, $\operatorname{ind}(\varphi(T)-\mu)=\operatorname{ind}(A-\mu)$ and $\alpha(\varphi(T)-\mu)=0$.

Suppose the contrary, $\lambda \notin \liminf _{n \rightarrow \infty} \sigma\left(\varphi(T)_{n}\right)$. Then, there exists a $\delta>0$, a neighborhood $\mathcal{D}_{\delta}(\lambda)$ of λ and a subsequence $\left\{\varphi(T)_{n_{l}}\right\}$ of $\left\{\varphi(T)_{n}\right\}$ such that $\sigma\left(\varphi(T)_{n_{l}}\right) \cap \mathcal{D}_{\delta}(\lambda)=\emptyset$ for every $l \geq 1$. This implies that $\varphi(T)_{n_{l}}-\mu$ is a Fredholm operator and $\operatorname{ind}\left(\varphi(T)_{n_{l}}-\mu\right)=0$ for every $\mu \in \mathcal{D}_{\delta}(\lambda)$ and

$$
\lim _{n \rightarrow \infty}\left\|\left(\varphi(T)_{n_{l}}-\mu\right)-(\varphi(T)-\mu)\right\|=0
$$

It follows from the continuity of the index that $\operatorname{ind}(\varphi(T)-\mu)=0$ and $\varphi(T)-\mu$ is a Fredholm operator. Since $\alpha(\varphi(T)-\mu)=0, \mu \notin \sigma(\varphi(T))$ for every μ in a ϵ-neighborhood of λ. This contradicts Lemma 3.1, therefore we must have $\lambda \in \liminf _{n \rightarrow \infty} \sigma\left(\varphi(T)_{n}\right)$.

It is well known Index Product Theorem: "If S and T are Fredholm operators then $S T$ is a Fredholm operator and $\operatorname{ind}(S T)=\operatorname{ind}(S)+\operatorname{ind}(T)$ ". The converse of this theorem is not true in general. To see this, we have operators on l_{2} :

$$
T\left(x_{1}, x_{2}, x_{3}, \ldots\right)=\left(0, x_{1}, 0, x_{2}, 0, x_{3}, \ldots\right) \text { and } S\left(x_{1}, x_{2}, x_{3}, \ldots\right)=\left(x_{2}, x_{3}, x_{4}, \ldots\right)
$$

We see $S T=I$, so $S T$ is a Fredholm operator, but S and T are not Fredholm operators. However, if S and T are commuting operators and if $S T$ is a Fredholm operator then S and T are Fredholm operators. This fact is not true in general if S and T are Weyl operators, see [19, Remark 1.5.3].
Theorem 3.5. If S and T are commuting class $*-\mathcal{A}(k)$ operators for $0<k \leq 1$, then

$$
S, T \text { are Weyl operators } \Longleftrightarrow S T \text { is Weyl operator. }
$$

Proof. If S and T are Weyl operators, by Index Product Theorem, we have that $S T$ is a Weyl operator.

The converse, since $S T=T S$ then

$$
\operatorname{ker} S \cup \operatorname{ker} T \subseteq \operatorname{ker}(S T) \text { and } \operatorname{ker} S^{*} \cup \operatorname{ker} T^{*} \subseteq \operatorname{ker}(S T)^{*}
$$

then S and T are Fredholm operators.
Since S and T are class $*-\mathcal{A}(k)$ operators, from [26, theorem 2] S and T are class absolute- k^{*}-paranormal operators and by [26, theorem 6] we have $\operatorname{ind}(S) \leq 0$ and $\operatorname{ind}(T) \leq 0$. From

$$
\operatorname{ind}(S)+\operatorname{ind}(T)=\operatorname{ind}(S T)=0
$$

we have $\operatorname{ind}(S)=0$ and $\operatorname{ind}(T)=0$, so S and T are Weyl operators.

4. Contractions of the class $*-\mathcal{A}(k)$ operator

Definition 4.1. If the contraction T is a direct sum of the unitary and $C .0$ (c.n.u) contractions, then we say that T has a Wold-type decomposition.

Definition 4.2. [9] An operator $T \in L(H)$ is said to have the Fuglede-Putnam commutativity property (PF property for short) if $T^{*} X=X J$ for any $X \in L(K, H)$ and any isometry $J \in L(K)$ such that $T X=X J^{*}$.

Lemma 4.3. [8, 23] Let T be a contraction. The following conditions are equivalent:

1. For any bounded sequence $\left\{x_{n}\right\}_{n \in \mathbb{N} \cup\{0\}} \subset H$ such that $T x_{n+1}=x_{n}$ the sequence $\left\{\left\|x_{n}\right\|\right\}_{n \in \mathbb{N} \cup\{0\}}$ is constant,
2. T has a Wold-type decomposition,
3. T has the PF property.

Fugen Gao and Xiaochun Li [14] have proved that if a contraction $T \in \mathcal{A}^{*}$ has no nontrivial invariant subspace, then (a) T is a proper contraction and (b) The nonnegative operator $D=\left|T^{2}\right|-\left|T^{*}\right|^{2}$ is a strongly stable contraction. In [17] the authors proved: if T belongs to k-quasi-*-class \mathcal{A} and is a contraction, then T has a Wold-type decomposition and T has the PF property. In this section we extend these results to contractions in class $*-\mathcal{A}(k)$.

Lemma 4.4. [4, Hölder-McCarthy inequality] Let T be a positive operator. Then, the following inequalities hold for all $x \in H$:

1. $\left\langle T^{r} x, x\right\rangle \leq\langle T x, x\rangle^{r}\|x\|^{2(1-r)}$ for $0<r<1$,
2. $\left\langle T^{r} x, x\right\rangle \geq\langle T x, x\rangle^{r}\|x\|^{2(1-r)}$ for $r \geq 1$.

Proof of the theorems below is based in idea's given in the paper [7].
Theorem 4.5. If T is a contraction of class $*-\mathcal{A}(k)$ operator, then the nonnegative operator

$$
D=\left(T^{*}|T|^{2 k} T\right)^{\frac{1}{k+1}}-\left|T^{*}\right|^{2}
$$

is a contraction whose power sequence $\left\{D^{n}\right\}_{n=1}^{\infty}$ converges strongly to a projection P and $T^{*} P=O$.

Proof. Suppose that T is a contraction of class $*-\mathcal{A}(k)$ operator. Then

$$
D=\left(T^{*}|T|^{2 k} T\right)^{\frac{1}{k+1}}-\left|T^{*}\right|^{2} \geq O
$$

Let $R=D^{\frac{1}{2}}$ be the unique nonnegative square root of D. Then for every x in H and any nonnegative integer n, we have

$$
\begin{aligned}
\left\langle D^{n+1} x, x\right\rangle & =\left\|R^{n+1} x\right\|^{2}=\left\langle D R^{n} x, R^{n} x\right\rangle \\
& \left.=\left\langle\left(T^{*}|T|^{2 k} T\right)^{\frac{1}{k+1}} R^{n} x, R^{n} x\right\rangle-\left.\langle | T^{*}\right|^{2} R^{n} x, R^{n} x\right\rangle \\
& \left.\leq\left.\left\langle T^{*}\right| T\right|^{2 k} T R^{n} x, R^{n} x\right\rangle^{\frac{1}{k+1}}\left\|R^{n} x\right\|^{2\left(1-\frac{1}{k+1}\right)}-\left\|T^{*} R^{n} x\right\|^{2} \\
& =\left\||T|^{k} T R^{n} x\right\|^{\frac{2}{k+1}}\left\|R^{n} x\right\|^{2\left(1-\frac{1}{k+1}\right)}-\left\|T^{*} R^{n} x\right\|^{2} \\
& \leq\left\||T|^{k} T\right\|^{\frac{2}{k+1}}\left\|R^{n} x\right\|^{2}-\left\|T^{*} R^{n} x\right\|^{2} \\
& \leq\left\|R^{n} x\right\|^{2}-\left\|T^{*} R^{n} x\right\|^{2} \\
& \leq\left\|R^{n} x\right\|^{2}=\left\langle D^{n} x, x\right\rangle
\end{aligned}
$$

Thus R (and so D) is a contraction (set $n=0$), and $\left\{D^{n}\right\}_{n=1}^{\infty}$ is a decreasing sequence of nonnegative contractions. Then, $\left\{D^{n}\right\}_{n=1}^{\infty}$ converges strongly to a projection, say P. Moreover

$$
\sum_{n=0}^{m}\left\|T^{*} R^{n} x\right\|^{2} \leq \sum_{n=0}^{m}\left(\left\|R^{n} x\right\|^{2}-\left\|R^{n+1} x\right\|^{2}\right)=\|x\|^{2}-\left\|R^{m+1} x\right\|^{2} \leq\|x\|^{2}
$$

for all nonnegative integers m and for every $x \in H$. Therefore $\left\|T^{*} R^{n} x\right\| \rightarrow 0$ as $n \rightarrow \infty$. Then, we have

$$
T^{*} P x=T^{*} \lim _{n \rightarrow \infty} D^{n} x=\lim _{n \rightarrow \infty} T^{*} R^{2 n} x=0
$$

for every $x \in H$. So that $T^{*} P=O$.
Theorem 4.6. Let T be a contraction of class $*-\mathcal{A}(k)$ operator. If T has no nontrivial invariant subspace, then

1) T is a proper contraction;
2) The nonnegative operator

$$
D=\left(T^{*}|T|^{2 k} T\right)^{\frac{1}{k+1}}-\left|T^{*}\right|^{2}
$$

is a strongly stable contraction.
Proof. Suppose that T is a class $*-\mathcal{A}(k)$ operator.

1) From [18, Theorem 3.6] we have

$$
T^{*} T x=\|T\|^{2} x \text { if and only if }\|T x\|=\|T\|\|x\| \text { for every } x \in H
$$

Put $M=\{x \in H:\|T x\|=\|T\|\|x\|\}=\operatorname{ker}\left(|T|^{2}-\|T\|^{2}\right)$, which is a closed subspace of H. In the following, we shall show that M is a T-invariant subspace. For all $x \in M$, we have

$$
\begin{aligned}
\|T(T x)\|^{2} & \leq\|T\|^{2}\|T x\|^{2}=\|T\|^{4}\|x\|^{2}=\| \| T\left\|^{2} x\right\|^{2}=\left\|T^{*} T x\right\|^{2} \\
& \leq\left\|\left(T^{*}|T|^{2 k} T\right)^{\frac{1}{k+1}} T x\right\|\|T x\| \leq\left\|\left(T^{*}|T|^{2 k} T\right)^{\frac{1}{k+1}} T x\right\|\|T\|\|x\| .
\end{aligned}
$$

So,

$$
\|T\|^{4}\|x\|^{2} \leq\left\|\left(T^{*}|T|^{2 k} T\right)^{\frac{1}{k+1}} T x\right\|\|T\|\|x\|
$$

thus,

$$
\|T\|^{3}\|x\| \leq\left\|\left(T^{*}|T|^{2 k} T\right)^{\frac{1}{k+1}} T x\right\|
$$

and

$$
\begin{aligned}
\left\|\left(T^{*}|T|^{2 k} T\right)^{\frac{1}{k+1}} T x\right\| & =\left\langle\left(T^{*}|T|^{2 k} T\right)^{\frac{2}{k+1}} T x, T x\right\rangle^{\frac{1}{2}} \\
& \leq\left\langle\left(T^{*}|T|^{2 k} T\right)^{2} T x, T x\right\rangle^{\frac{1}{2(k+1)}}\|T x\|^{\left(1-\frac{1}{k+1}\right)} \\
& =\left\|T^{*}|T|^{2 k} T T x\right\|^{\frac{1}{k+1}}\|T x\|^{\left(1-\frac{1}{k+1}\right)} \\
& \leq\|T\|^{\frac{2 k+3}{k+1}}\|x\|^{\frac{1}{k+1}}\|T\|^{\frac{k}{k+1}}\|x\|^{\frac{k}{k+1}} \\
& =\|T\|^{3}\|x\|
\end{aligned}
$$

Hence,

$$
\begin{equation*}
\|T\|^{3}\|x\|=\left\|\left(T^{*}|T|^{2 k} T\right)^{\frac{1}{k+1}} T x\right\| \tag{4.1}
\end{equation*}
$$

From relation (4.1) we have

$$
\begin{aligned}
\|T\|^{3}\|x\| & =\left\|\left(T^{*}|T|^{2 k} T\right)^{\frac{1}{k+1}} T x\right\| \\
& =\left\langle\left(T^{*}|T|^{2 k} T\right)^{\frac{2}{k+1}} T x, T x\right\rangle^{\frac{1}{2}} \\
& \leq\left\langle\left(T^{*}|T|^{2 k} T\right)^{2} T x, T x\right\rangle^{\frac{1}{2(k+1)}}\|T x\|^{\left(1-\frac{1}{k+1}\right)} \\
& =\left\|T^{*}|T|^{2 k} T T x\right\|^{\frac{1}{k+1}}\|T x\|^{\left(1-\frac{1}{k+1}\right)} \\
& \leq\left\|T^{*}|T|^{2 k}\right\| \frac{1}{k+1}\|T(T x)\|^{\frac{1}{k+1}}\|T x\|^{\left(1-\frac{1}{k+1}\right)}
\end{aligned}
$$

Then,

$$
\|T\|^{2}\|x\| \leq\|T(T x)\| \Longrightarrow\|T\|^{2}\|x\|=\|T(T x)\|
$$

respectively,

$$
\|T(T x)\|=\|T\|^{2}\|x\|=\|T\|\|T x\|
$$

Thus, M is a T-invariant subspace.
Now, let T be a contraction, i.e., $\|T x\| \leq x$, for every $x \in H$. If $\|T\|<1$, thus T is a strict contraction, then it is trivially a proper contraction. If $\|T\|=1$, thus T is nonstrict contraction, then $M=\{x \in H:\|T x\|=\|x\|\}$. Since T has no nontrivial invariant subspace, then the invariant subspace M is trivial: either $M=\{0\}$ or $M=H$. If $M=H$ then T is an isometry, and isometries have invariant subspaces. Thus $M=\{0\}$ so that $\|T x\|<\|x\|$ for every nonzero $x \in H$. So T is proper contraction.
2) Let T be a contraction of class $*-\mathcal{A}(k)$ operator. By the above theorem, we have D is a contraction, $\left\{D^{n}\right\}_{n=1}^{\infty}$ converges strongly to a projection P, and $T^{*} P=O$. So, $P T=O$. Suppose T has no nontrivial invariant subspaces. Since $\operatorname{ker} P$ is a nonzero invariant subspace for T whenever $P T=O$ and $T \neq O$, it follows that $\operatorname{ker} P=H$. Hence $P=O$, and so $\left\{D^{n}\right\}_{n=1}^{\infty}$ converges strongly to null operator O, so D is a strongly stable contraction. Since D is self-adjoint, then $D \in C_{00}$.

Corollary 4.7. Let T be a contraction of the class $*-\mathcal{A}(k)$ operator. If T has no nontrivial invariant subspace, then both T and the nonnegative operator

$$
D=\left(T^{*}|T|^{2 k} T\right)^{\frac{1}{k+1}}-\left|T^{*}\right|^{2}
$$

are proper contractions.
Proof. Since a self-adjoint operator T is a proper contraction if and only if T is a C_{00} contraction.

Theorem 4.8. If T is a contraction and class $*-\mathcal{A}(k)$ operator for $k>0$, then T has a Wold-type decomposition.
Proof. Since T is a contraction operator, the decreasing sequence $\left\{T^{n} T^{* n}\right\}_{n=1}^{\infty}$ converges strongly to a nonnegative contraction. We denote by

$$
S=\left(\lim _{n \rightarrow \infty} T^{n} T^{* n}\right)^{\frac{1}{2}}
$$

The operators T and S are related by $T^{*} S^{2} T=S^{2}, O \leq S \leq I$ and S is self-adjoint operator. By [10] there exists an isometry $V: \overline{S(H)} \rightarrow \overline{S(H)}$ such that $V S=S T^{*}$, and thus $S V^{*}=T S$, and $\left\|S V^{m} x\right\| \rightarrow\|x\|$ for every $x \in \overline{S(H)}$. The isometry V can be extended to an isometry on H, which we still denote by V.

For an $x \in \overline{S(H)}$, we can define $x_{n}=S V^{n} x$ for $n \in \mathbb{N} \cup\{0\}$. Then for all nonnegative integers m we have

$$
T^{m} x_{n+m}=T^{m} S V^{m+n} x=S V^{* m} V^{m+n} x=S V^{n} x=x_{n}
$$

and for all $m \leq n$ we have

$$
T^{m} x_{n}=x_{n-m}
$$

Since T is class $*-\mathcal{A}(k)$ operator for $k>0$ and nontrivial $x \in \overline{A(H)}$ we have

$$
\begin{aligned}
\left\|x_{n}\right\|^{4} & =\left\|T x_{n+1}\right\|^{4} \leq\left\|T^{*} T x_{n+1}\right\|^{2}\left\|x_{n+1}\right\|^{2} \\
& \leq\left\|\left(T^{*}|T|^{2 k} T\right)^{\frac{1}{k+1}} T x_{n+1}\right\|\left\|T x_{n+1}\right\|\left\|x_{n+1}\right\|^{2} \\
& \leq\left\langle\left(T^{*}|T|^{2 k} T\right)^{2} T x_{n+1}, T x_{n+1}\right\rangle^{\frac{1}{2(k+1)}}\left\|T x_{n+1}\right\|^{\left(1-\frac{1}{k+1}\right)}\left\|T x_{n+1}\right\|\left\|x_{n+1}\right\|^{2} \\
& =\left\|T^{*}|T|^{2 k} T T x_{n+1}\right\|^{\frac{1}{k+1}}\left\|x_{n}\right\|^{\left(1-\frac{1}{k+1}\right)}\left\|x_{n}\right\|\left\|x_{n+1}\right\|^{2} \\
& \leq\left\|T T x_{n+1}\right\| \frac{1}{k+1}\left\|x_{n}\right\|^{\frac{2 k+1}{k+1}}\left\|x_{n+1}\right\|^{2} \\
& =\left\|x_{n-1}\right\|^{\frac{1}{k+1}}\left\|x_{n}\right\|^{\frac{2 k+1}{k+1}}\left\|x_{n+1}\right\|^{2}
\end{aligned}
$$

hence

$$
\left\|x_{n}\right\| \leq\left\|x_{n-1}\right\|^{\frac{1}{2 k+3}}\left\|x_{n+1}\right\|^{\frac{2 k+2}{2 k+3}} \leq \frac{1}{2 k+3}\left(\left\|x_{n-1}\right\|+(2 k+2)\left\|x_{n+1}\right\|\right)
$$

Thus

$$
(2 k+2)\left(\left\|x_{n+1}\right\|-\left\|x_{n}\right\|\right) \geq\left\|x_{n}\right\|-\left\|x_{n-1}\right\|
$$

Put, $b_{n}=\left\|x_{n}\right\|-\left\|x_{n-1}\right\|$, and we have

$$
\begin{equation*}
(2 k+2) b_{n+1} \geq b_{n} \tag{4.2}
\end{equation*}
$$

Since $x_{n}=T\left(x_{n+1}\right)$, then

$$
\left\|x_{n}\right\|=\left\|T x_{n+1}\right\| \leq\left\|x_{n+1}\right\| \text { for every } n \in \mathbb{N}
$$

then sequence $\left\{\left\|x_{n}\right\|\right\}_{n \in \mathbb{N} \cup\{0\}}$ is increasing. From

$$
S V^{n}=S V^{*} V^{n+1}=T S V^{n+1}
$$

we have

$$
\left\|x_{n}\right\|=\left\|S V^{n} x\right\|=\left\|T S V^{n+1} x\right\| \leq\left\|S V^{n+1} x\right\| \leq\|x\|
$$

for every $x \in \overline{S(H)}$ and $n \in \mathbb{N} \cup\{0\}$. Then $\left\{\left\|x_{n}\right\|\right\}_{n \in \mathbb{N} \cup\{0\}}$ is bounded. From this we have $b_{n} \geq 0$ and $b_{n} \rightarrow 0$ as $n \rightarrow \infty$.

It remains to check that all b_{n} equal zero. Suppose that there exists an integer $i \geq 1$ such that $b_{i}>0$. Using inequality (4.2) we get $b_{i+1} \geq \frac{b_{i}}{2 k+2}>0$, so $b_{i+1}>0$. From that and using again inequality (4.2), we can show by induction that $b_{n}>0$ for all $n>i$. This is contradictory with that $b_{n} \rightarrow 0$ as $n \rightarrow \infty$. So $b_{n}=0$ for all $n \in \mathbb{N}$ and thus $\left\|x_{n-1}\right\|=\left\|x_{n}\right\|$ for all $n \geq 1$. Thus the sequence $\left\{\left\|x_{n}\right\|\right\}_{n \in \mathbb{N} \cup\{0\}}$ is constant. From Lemma 4.3, T has a Wold-type decomposition.
Acknowledgment. The authors want to thank referees for valuable comment and suggestion given in the paper.

References

[1] Arora, S.C., Thukral, J.K., On a class of operators, Glas. Math. Ser. III, Vol 21, 41(1986), 381-386.
[2] Berberian, S.K., Approximate proper vectors, Proc. Amer. Math. Soc., 10(1959), 175-182.
[3] Braha, N.L., Hoxha, I., Mecheri, S., On class $\mathcal{A}\left(k^{*}\right)$ operators, Ann. Funct. Anal., 6(2015), no. 4, 90-106.
[4] Mc Carthy, C.A., Cp, Israel J. Math., 5(1967) 249-271.
[5] Duggal, B.P., Jeon, I.H., Kim, I.H., On *-paranormal contractions and properties for *-class \mathcal{A} operators, Linear Algebra Appl., 436(2012), no. 5, 954-962.
[6] Duggal, B.P., Jeon, I.H., Kim, I.H., Continuity of the spectrum on a class of upper triangular operator matrices, J. Math. Anal. Appl., 370(2010), 584-587.
[7] Duggal, B.P., Jeon, I.H., Kim, I.H., Contractions without non-trivial invariant subspaces satisfying a positivity condition, J. Inequal. Appl., 2016, Paper No. 116, 8 pp.
[8] Duggal, B.P., Cubrusly, C.S., Paranormal contractions have property PF, Far East J. Math. Sci., 14(2004), 237-249.
[9] Duggal, B.P., On Characterising contractions with C_{10} pure part, Integral Equations Operator Theory, 27(1997), 314-323.
[10] Durszt, E., Contractions as restricted shifts, Acta Sci. Math. (Szeged), 48(1985), 129134.
[11] Furuta, T., On the class of paranormal operators, Proc. Jap. Acad., 43(1967), 594-598.
[12] Furuta, T., Invitation to Linear Operators, Taylor and Francis Group, 2001.
[13] Furuta, T., Ito, M., Yamazaki, T., A subclass of paranormal operators including class of log-hyponormal and several classes, Sci. Math., 1(1998), no. 3, 389-403.
[14] Gao, F., Li, X., On *-class \mathcal{A} contractions, J. Inequal. Appl., 2013, 2013:239.
[15] Halmos, P.R., A Hilbert Space Problem Book, Springer-Verlag, New York, 1982
[16] Hansen, F., An operator inequality, Math. Ann., 246(1980) 249-250.
[17] Hoxha, I., Braha, N.L., The k-quasi-*-class \mathcal{A} contractions have property PF, J. Inequal. Appl., 2014, 2014:433.
[18] Kubrusly, C.S., Levan, N., Proper contractions and invariant subspace, Internat. J. Math. Sci., 28(2001), 223-230.
[19] Lee, W.Y., Lecture Notes on Operator Theory, Seoul 2008.
[20] Mecheri, S., Spectral properties of k-quasi-*-class \mathcal{A} operators, Studia Math., 208(2012), 87-96.
[21] Nagy, B. Sz., Foias, C., Harmonic Analysis of Operators on Hilbert Space, North-Holland, Amsterdam, 1970.
[22] Newburgh, J.D., The variation of Spectra, Duke Math. J., 18(1951), 165-176
[23] Pagacz, P., On Wold-type decomposition, Linear Algebra Appl., 436(2012), 3065-3071.
[24] Panayappan, S., Radharamani, A., A note on p-*-paranormal operators and absolute-k^{*}-paranormal operators, Int. J. Math. Anal., 2(2008), no. 25-28, 1257-1261.
[25] Sanchez-Perales, S., Cruz-Barriguete, V.A., Continuity of approximate point spectrum on the algebra $B(X)$, Commun. Korean Math. Soc., 28(2013), no. 3, 487-500.
[26] Yang, C., Shen, J., Spectrum of class absolute-*-k-paranormal operators for $0<k \leq 1$, Filomat, 27(2013), no. 4, 672-678.

Ilmi Hoxha
Faculty of Education, University of Gjakova "Fehmi Agani"
Avenue "Ismail Qemali" nn, Gjakovë, 50000, Kosova
e-mail: ilmihoxha011@gmail.com
Naim L. Braha
(Corresponding author)
Department of Mathematics and Computer Sciences, University of Prishtina
Avenue "George Bush" nn, Prishtinë, 10000, Kosova
e-mail: nbraha@yahoo.com
Agron Tato
Department of Mathematics
Polytechnic University of Tirana, Albania
e-mail: agtato@gmail.com

