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On the periodicity of meromorphic functions
when sharing two sets IM

Molla Basir Ahamed

Abstract. In this paper, we have considered two sets sharing problems, and inves-
tigated on some sufficient conditions for the periodicity of meromorphic functions
and obtained two results improving the result of Bhoosnurmath-Kabbur [6], Qi-
Dou-Yang [17] and Zhang [20]. The results are:

Let S1 =

{
z :

∫ z−a

0

(t− a)n(t− b)4dt + 1 = 0

}
and S2 =

{
a, b

}
, where

n ≥ 4(n ≥ 2) be an integer. Let f(z) be a non-constant meromorphic (entire)

function satisfying Ef(z)(Sj) = Ef(z+c)(Sj), (j = 1, 2) then f(z) ≡ f(z + c).
Some examples have been exhibited to show that, the meromorphic functions, we
have considered may be of infinite order, and also to show that the sets considered
in the main results, can’t be replace by some arbitrary sets. At the last section,
we have posed a question for the future research in this direction.
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1. Introduction

We assume that the reader is familiar with the elementary Nevanlinna theory,
see, e.g., [11, 13, 14, 18]. Meromorphic functions are always non-constant, unless
otherwise specified. For such a function f and a ∈ C =: C ∪ {∞}, each z with
f(z) = a will be called a-point of f . We will use here some standard definitions and
basic notations from this theory. In particular by N(r, a; f) (N(r, a; f)) we denote the
counting function (reduced counting function) of a-points of meromorphic functions
f , T (r, f) is the Nevanlinna characteristic function of f and S(r, f) is used to denote
each functions which is of smaller order than T (r, f) when r →∞.

We also denote C∗ := C \ {0}. As for the standard notation in the uniqueness
theory of meromorphic functions, suppose that f and g are meromorphic. Denoting
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Ef (a) (Ef (a)), the set of all a-points of f counting multiplicities (ignoring multiplic-
ities). We say that two meromorphic functions f , g share the value a CM (IM) if
Ef (a) = Eg(a) (Ef (a) = Eg(a)).

The classical results in the uniqueness theory of meromorphic functions are the
five-point, resp. four-point, theorems due to Nevanlinna [16]: If two meromorphic
functions f , g share five distinct values in the extended complex plane IM , then
f ≡ g. The beauty of this result lies in the fact that there is no counterpart of this
result in the real function theory. Similarly, if two meromorphic functions f, g share
four distinct values in the extended complex plane CM , then f ≡ T ◦ g, where T is
a Möbius transformation.

Clearly these results initiated the study of uniqueness of two meromorphic func-
tions f and g. The study becomes more interesting if the function g is related with f .

Definition 1.1. For a non-constant meromorphic function f and any set S ⊂ C, we
define

Ef (S) =
⋃
a∈S

{
(z, p) ∈ C× N : f(z) = a, with multiplicity p

}
,

Ef (S) =
⋃
a∈S

{
(z, 1) ∈ C× {1} : f(z) = a

}
.

If Ef (S) = Eg(S) (Ef (S) = Eg(S)) then we simply say f and g share S Counting
Multiplicities(CM) (Ignoring Multiplicities(IM)).

Evidently, if S contains one element only, then it coincides with the usual defi-
nition of CM(IM) sharing of values.

Definition 1.2. For a non-constant meromorphic function g and a ∈ C, we define

N (2

(
r,

1

g − a

)
the reduced counting function of those a-points of g of multiplicities

≥ 2.

In 1976, Gross [12] precipitated the research instigating the set sharing problem
with a more general set up made tracks various direction of research for the uniqueness
theory.

In connection with the question posed by Gross in[12], a sprinkling number of
results have been obtained by many mathematicians [2, 3, 5, 9, 19, 21] concerning the
uniqueness of meromorphic functions sharing two sets. But in most of the preceding
results, in the direction, one set has always been kept fixed as the set of poles of a
meromorphic function.

Recently set sharing corresponding to a function and its shift or difference op-
erator have been given priority by the researchers than that of the introductory one.

In what follows, c always means a non-zero constant. For a non-constant mero-
morphic function, we define its shift and difference operator respectively by f(z + c)
and ∆cf = f(z + c)− f(z).

Now-a-days among the researchers [1, 4, 6, 7, 8, 17, 20], an increasing amount
of interest has been found to find the possible relationship between a meromorphic
function f(z) and its shift f(z + c) or its difference ∆cf .
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At the earlier stage, several authors were devoted to find uniqueness problems
between two meromorphic functions f and g sharing two sets. But in this particular
direction, the first inspection for uniqueness of a meromorphic function and its shift
was due to Zhang [20].

In 2010, Zhang [20] obtained the following results.

Theorem A. [20] Let m ≥ 2, n ≥ 2m+4 with n and n−m having no common factors.
Let a and b be two non-zero constant such that the equation wn+awn−m+b = 0 has no
multiple roots. Let S1 = {w : wn+awn−m+b = 0} and S2 = {∞}. Suppose that f(z)
is a non-constant meromorphic function of finite order. Then Ef(z)(Sj) = Ef(z+c)(Sj)
(j = 1, 2) imply that f(z) ≡ f(z + c).

Remark 1.1. For meromorphic function, note that #(S1) = 9 when the nature of
sharing is CM .

Theorem B. [20] Let n ≥ 5 be an integer and let a, b be two non-zero constants such
that the equation wn + awn−1 + b = 0 has no multiple roots.
Denote S1 = {w : wn + awn−1 + b = 0}. Suppose that f is a non-constant entire
function of finite order. Then Ef(z)(S1) = Ef(z+c)(S1) implies f(z) ≡ f(z + c).

Remark 1.2. For entire function, note that #(S1) = 5, when the nature of sharing is
CM .

Thus we see that Zhang obtained the results for meromorphic function with the
cardinality of main range set as 9 and for entire function as 5.

Later, Qi-Dou-Yang [17] studied the case for m = 1 in Theorem A and with the
aid of some extra supposition and got #(S1) = 6 when the nture of sharing is CM .

Afterworlds, Bhoosnurmath-Kabbur [6] improved Theorem A by reducing the
lower bound of the cardinality of range set in a little different way and obtained the
following result.

Theorem C. [6] Let n ≥ 8 be an integer and c(6= 0, 1) is a constant such that the
equation

P (w) =
(n− 1)(n− 2)

2
wn − n(n− 2)wn−1 +

n(n− 1)

2
zn−2 − c.

Let us suppose that S1 = {w : P (w) = 0} and S2 = {∞}. Suppose that f(z) is
a non-constant meromorphic function of finite order. Then Ef(z)(Sj) = Ef(z+c)(Sj)
(j = 1, 2) imply that f(z) ≡ f(z + c).

Remark 1.3. For meromorphic function, we see that #(S1) = 8 when the nature of
sharing is CM .

The worth noticing fact is that, the lower bound of the cardinality of the main
range set for the meromorphic function has always been fixed to 8 without the help
of any extra supposition.

So for the improvement of all the above mentioned results it is quite natural to
investigate in this direction. Theorems A, B, C really motivates oneself for further
study in this direction by solving the following question.
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Question 1.1. Is it possible to diminish further the lower bound of the cardinalities of
the main range sets in Theorems A, B and C ?

We also note that no attempts have so far been made by any researchers, till
now to the best of our knowledge, to relax the nature of sharing the sets in connection
with the periodicity of a meromorphic function when sharing sets. So the following
question is inevitable.

Question 1.2. Can we relax the nature of sharing the sets from CM to IM in Theorems
A, B and C ?

It would be interesting to know what happens if we replace the set of poles {∞}
by new set in Theorems A, B, C.

In all the above mentioned results, the respective authors have considered mero-
morphic function with finite ordered and got their results. So a natural investigation
is that: Are Theorems A, B, C not valid for infinite ordered meromorphic function ?

The following examples show that Theorems A, B, C are true for infinite ordered
meromorphic functions also.

Example 1.1. Let

f(z) =
exp

(
exp

(
2πiz
c

))
exp

(
2πiz
c

)
− 1

.

Clearly f(z) and f(z + c) share the corresponding sets S1 and S2 in Theorems A, B,
C, and f(z) ≡ f(z + c).

Example 1.2. Let

f(z) =
exp

(
sin
(
2πz
c

))
tan

(
πz
c

)
− 1

.

Evidently, f(z) and f(z + c) share the corresponding sets S1 and S2 in Theorems A,
B, C, and f(z) ≡ f(z + c).

One can construct such examples plenty in numbers. Therefore, one natural
question arises as follows:

Question 1.3. Can we get a corresponding results like Theorems A, B, C by omitting
the term finite ordered ?

2. Main results

Answering all the questions affirmatively is the main motivation of writing this
paper. Throughout the paper, for an integer n ≥ 4, we will denote by

P(z) =

∫ z−a

0

(t− a)n(t− b)4dt+ 1, where a, b ∈ C with a 6= b.

Following are the two main result of this paper.
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Theorem 2.1. Let S1 = {z : P(z) = 0} and S2 =

{
a, b

}
, where a ∈ C∗, n ≥ 4 be an

integer. If f(z) be a non-constant meromorphic function satisfying

Ef(z)(Sj) = Ef(z+c)(Sj), (j = 1, 2)

then f(z) ≡ f(z + c).

Remark 2.1. For non-entire meromorphic function, one may observe that #(S1) = 9
when the nature of sharing is IM .

Theorem 2.2. Let S1 = {z : P(z) = 0} and S2 =

{
a, b

}
, where a ∈ C∗, n ≥ 2 be an

integer. If f(z) be a non-constant entire function satisfying Ef(z)(Sj) = Ef(z+c)(Sj),
(j = 1, 2), then f(z) ≡ f(z + c).

Remark 2.2. For entire function, we see that #(S1) = 7 when the nature of sharing
is IM .

The following examples satisfy Theorems 2.1 and 2.2 for “entire” as well as
“meromorphic” functions.

Example 2.1. Let us suppose that

f(z) =
tan

(πz
c

)
+ α

tan
(πz
c

)
− β

+

cos

(
2πz

c

)
+ γ

sin

(
2πz

c

)
− δ

,

where α, β, γ, δ, c ∈ C∗. It is clear that Ef(z)(Sj) = Ef(z+c)(Sj), (j = 1, 2) in
Theorem 2.1 and note that f(z) ≡ f(z + c).

Example 2.2. Let

f(z) =
α+ β sin2

(πz
c

)
γ − δ cos2

(πz
c

) ,
where p be an even positive integer, α, β, γ, δ, c ∈ C∗.
It is clear that Ef(z)(Sj) = Ef(z+c)(Sj), (j = 1, 2) in Theorem 2.1 and note that
f(z) ≡ f(z + c).

Example 2.3. Let

f(z) = aepz + b cos2
(πz
c

)
,

where p be an even positive integer, a, b , c ∈ C∗ with ec = −1. It is clear that
Ef(z)(Sj) = Ef(z+c)(Sj), (j = 1, 2) in Theorem 2.2 and note that f(z) ≡ f(z + c).

The next examples shows that the set considered in Theorem 2.1 for “entire”
and Theorem 2.2 for “meromorphic” functions respectively can not be replaced by
arbitrary sets.
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Example 2.4. Let us suppose that S1 = {ζ : ζ9 − 1 = 0} and S2 = {0,∞}. Let

f(z) =
aez

b− d sin2
(πz
c

) .
It is clear that Ef(z)(Sj) = Ef(z+c)(Sj), (j = 1, 2) in Theorem 2.1 with ec = ζ and
a, b, c, d ∈ C∗ and note that f(z) 6≡ f(z + c).

Example 2.5. Let us suppose that S1 = {ζ : ζ7 − 1 = 0} and S2 = {0, 1}. Let

f(z) = exp
(

cos
(πz
c

))
or exp

(
sin
(πz
c

))
.

Then f(z + c) = exp
(
− cos

(πz
c

))
or exp

(
− sin

(πz
c

))
respectively. It is clear that

Ef(z)(Sj) = Ef(z+c)(Sj), (j = 1, 2) in Theorem 2.2 and note that f(z) 6≡ f(z + c).

Example 2.6. Let

S1 =

{
− 1, 1, −i, 0, i, − 1√

2
,

1√
2

}
and S2 = {−2, 2}. Let f(z) = ez. It is clear that Ef(z)(Sj) = Ef(z+c)(Sj), (j = 1, 2)
in Theorem 2.2 with ec = −1, c ∈ C∗ and note that f(z) 6≡ f(z + c).

3. Auxiliary definitions and some lemmas

It was Fujimoto [10], who first discovered a special property of a polynomial,
reasonably called as critical injection property though initially Fujimoto [10] called it
as property (H).

Definition 3.1. Let P(w) be a non-constant monic polynomial. We call P(w) a unique-
ness polynomial if P(f) ≡ cP(g) implies f ≡ g for any non-constant meromorphic
functions f and g and any non-zero constant c. We also call P(w) a uniqueness poly-
nomial in a broad sense if P(f) ≡ P(g) implies f ≡ g.

Next we recall here the property (H) and critically injective polynomial. Let
P(w) be a monic polynomial without multiple zero whose derivative has mutually
distinct k-zeros e1, e2, . . . , ek with the multiplicities q1, q2, . . . , qk respectively.

Now, the property P(el) 6= P(em) for 1 ≤ l < m ≤ k is a known as property (H)
and a polynomial P(w) satisfying this property is called critically injective polynomial.

Given meromorphic functions f(z) and f(z + c) we associate F , G by

F = P(f), G = P(f(z + c)), (3.1)

to F , G we associate H and Φ by the following formulas

H =

(
1

F

)′′
(

1

F

)′ −
(

1

G

)′′
(

1

G

)′ =

(
F ′′

F ′
− 2F ′

F

)
−
(
G′′

G′
− 2G′

G

)
, (3.2)
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Φ =
F ′

F
− G

′

G
. (3.3)

Before proceeding to the actual proofs, we recall a few lemmas that take an
important role in the reasoning.

Lemma 3.1. [15] Let g be a non-constant meromorphic function and let

R#(g) =

n∑
i=1

aig
i

m∑
j=1

bjg
j

,

be an irreducible rational function in g with constant coefficients {ai}, {bj}, where
an 6= 0 and bm 6= 0. Then

T (r,R#(g)) = max{n,m} T (r, g) + S(r, g).

Lemma 3.2. [10] Let P(w) be a polynomial satisfying the property (H). Then, P(w)
is a uniqueness polynomial in a broad sense if and only if∑

1≤l<m≤k

q
l
q
m
>

k∑
l=1

q
l
. (3.4)

It can be easily verified that for the case k ≥ 4, the condition (3.4) is always
satisfied. Moreover, (3.4) holds when max{q1, q2, q3} ≥ 2 for the case k = 3 and when
min{q1, q2} ≥ 2 and q1 + q2 ≥ 5 for the case k = 2.

4. Proofs of the theorems

In this section, we give the proofs of our main results.

Proof of Theorem 2.1. Let f(z) and f(z + c) be any two non-constant meromorphic
functions. It is clear that

F ′ = (f(z)− a)n(f(z)− b)4f ′(z) and

G′ = (f(z + c)− a)n(f(z + c)− b)4f ′(z + c).

We now discuss the following two cases:

Case 1. There exists a λ > 1, I ⊂ R+ with measure of I as +∞ such that

2N

(
r,

1

f(z)− a

)
+ 2N

(
r,

1

f(z)− b

)
(4.1)

≥ λ

{
T (r, f(z)) + T (r, f(z + c))

}
+ S(r, f(z)) + S(r, f(z + c)),

where r → +∞, r ∈ I.
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Let Φ is defined as in (3.3). Our aim is to show that Φ = 0. Let if possible Φ 6≡ 0.
Then since n ≥ 4, so from the construction of Φ, we get

4N

(
r,

1

f(z)− a

)
+ 4N

(
r,

1

f(z)− b

)
≤ N

(
r,

1

Φ

)
. (4.2)

The possible poles of Φ occur at the following points: (i) poles of f(z), (ii) poles
of f(z + c), (iii) all the zeros of F of multiplicities ≥ 2 and (iv) all the zeros of G of
multiplicities ≥ 2.

So we have

N(r,Φ) ≤ N(r.f(z)) +N (2

(
r,

1

F

)
+N(r.f(z + c)) +N (2

(
r,

1

G

)
. (4.3)

By using First Fundamental Theorem and (4.2), (4.3), we get

4N

(
r,

1

f(z)− a

)
+ 4N

(
r,

1

f(z)− b

)
(4.4)

≤ N

(
r,

1

Φ

)
≤ N(r,Φ)

≤ N(r.f(z)) +N (2

(
r,

1

F

)
+N(r.f(z + c)) +N (2

(
r,

1

G

)
+S(r, f(z)) + S(r, f(z + c)).

Again since Ef(z)(S2) = Ef(z+c)(S2), so we must have

N

(
r,

1

f(z)− a

)
+N

(
r,

1

f(z)− b

)
(4.5)

= N

(
r,

1

f(z + c)− a

)
+N

(
r,

1

f(z + c)− b

)
.

Adding N

(
r,

1

F

)
+N

(
r,

1

G

)
on both sides of (4.4), we get

4N

(
r,

1

f(z)− a

)
+ 4N

(
r,

1

f(z)− b

)
+N

(
r,

1

F

)
(4.6)

+N

(
r,

1

G

)
≤ N(r.f(z)) +N

(
r,

1

F

)
+N(r.f(z + c)) +N

(
r,

1

G

)
+S(r, f(z)) + S(r, f(z + c)).
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Next using (4.5) in (4.6), we get

2

{
N

(
r,

1

f(z)− a

)
+N

(
r,

1

f(z)− b

)}
(4.7){

N

(
r,

1

f(z)− a

)
+N

(
r,

1

f(z)− b

)}
+N

(
r,

1

F

)
+N

(
r,

1

G

)
+

{
N

(
r,

1

f(z + c)− a

)
+N

(
r,

1

f(z + c)− b

)}
≤ N(r.f(z)) +N

(
r,

1

F

)
+N(r.f(z + c)) +N

(
r,

1

G

)
+ S(r, f(z))

+S(r, f(z + c)).

By applying Second Fundamental Theorem, we get

(n+ 5)

{
T (r, f(z)) + T (r, f(z + c))

}
(4.8)

≤ N

(
r,

1

F

)
+N

(
r,

1

f(z)− a

)
+N

(
r,

1

f(z)− b

)
+N

(
r,

1

G

)
+N

(
r,

1

f(z + c)− a

)
+N

(
r,

1

f(z + c)− b

)
+ S(r, f(z))

+S(r, f(z + c)).

Adding

2N

(
r,

1

f(z)− a

)
+ 2N

(
r,

1

f(z)− b

)
both sides in (4.8) and using (4.7), we get

(n+ 5)

{
T (r, f(z)) + T (r, f(z + c))

}
+ 2N

(
r,

1

f(z)− a

)
+2N

(
r,

1

f(z)− b

)
≤ N

(
r,

1

F

)
+N

(
r,

1

G

)
+N(r, f(z)) +N(r, f(z + c))

+S(r, f(z)) + S(r, f(z + c))

≤ (n+ 6)

{
T (r, f(z)) + T (r, f(z + c))

}
.

i.e.,

2N

(
r,

1

f(z)− a

)
+ 2N

(
r,

1

f(z)− b

)
≤
{
T (r, f(z)) + T (r, f(z + c))

}
,

which is not possible for λ > 1 in view of (4.1).
Thus, we get Φ ≡ 0. i.e., F ≡ AG, for A ∈ C \ {0}. Using Lemma 3.1, we have

T (r, f(z)) = T (r, f(z + c)) + S(r, f(z)). (4.9)
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Subcase 1.1. Let A 6= 1.
So from the relation F ≡ AG, we get

F −A ≡ A(G − 1). (4.10)

A simple calculation shows that the polynomial P(z)−A has all simple distinct
roots and let them be σj (j = 1, 2, . . . , n+ 5) and all σj 6= a, b. Also we note that the
polynomial P(z)−1 has roots as a of multiplicity n+ 1 and rest are δj (j = 1, 2, 3, 4).
Thus we see from (4.10) that

n+5∑
j=1

N

(
r,

1

f(z)− σj

)
(4.11)

= N

(
r,

1

f(z + c)− a

)
+

4∑
j=1

N

(
r,

1

f(z + c)− δj

)
.

By applying Second Fundamental Theorem and (4.9), we have

(n+ 3)T (r, f(z))

≤
n+5∑
j=1

N

(
r,

1

f(z)− σj

)
+ S(r, f(z))

≤ N

(
r,

1

f(z + c)− a

)
+

4∑
j=1

N

(
r,

1

f(z + c)− δj

)
+ S(r, f(z))

≤ 5T (r, f(z)) + S(r, f(z)),

which contradicts n ≥ 4.
Subcase 1.2. Let A = 1. i.e., we have F ≡ G. Thus we get P(f) ≡ P(f(z + c)). We

see that the polynomial P(z) =

∫ z−a

0

(t− a)n(t− b)4dt+ 1 satisfies the condition (H)

and (3.4) since P ′(z) = (z−a)n(z− b)4, k = 2, e1 = a, e2 = b and q1 = n ≥ 4, q2 = 4.
We next see that min{q1, q2} = min{n, 4} ≥ 2 and q1 + q2 = n+ 4 ≥ 5. Therefore by
Lemma 3.2, we see that the polynomial P(z) is a uniqueness polynomial in a broad
sense. Hence the relation P(f) ≡ P(f(z + c)) implies f(z) ≡ f(z + c).
Case 2. There exists I ⊂ R+ such that measure of I is +∞ such that

2N

(
r,

1

f(z)− a

)
+ 2N

(
r,

1

f(z)− b

)
(4.12)

≤
(

1 +
1

1000

){
T (r, (z)f) + T (r, f(z + c))

}
+ S(r, (z)f) + S(r, f(z + c).

We claim that H ≡ 0. Suppose that H 6≡ 0. Next in view of the definition H, we see
that

N
E

1)

(
r,

1

F

)
= N

E

1)

(
r,

1

G

)
≤ N

(
r,

1

H

)
. (4.13)

We see that the possible poles of H occur at the following points: (i) poles of f(z),
(ii) poles of f(z + c), (iii) zeros of f(z), (iv) 1-points of f(z), (v) all those zeros of



On the periodicity of meromorphic functions 507

f ′(z) which are not the zeros of f(z)(f(z) − 1) and (vi) all those zeros of f ′(z + c)
which are not the zeros of f(z + c)(f(z + c)− 1). Thus we get

N(r,H) ≤ N(r, f(z)) +N

(
r,

1

f(z)− a

)
+N

(
r,

1

f(z)− b

)
(4.14)

+ N(r, f(z + c)) +N0(r, 0; f ′(z)) +N0(r, 0; f ′(z + c)),

where N0

(
r,

1

f ′(z)

)
is the reduced counting function of all those zeros of f ′(z) which

are not the zeros of (f(z)− a)(f(z)− b). Similarly N0

(
r,

1

f ′(z + c)

)
is defined.

Therefore using First Fundamental Theorem, we get

N
E

1)

(
r,

1

F

)
r ≤ N

(
r,

1

H

)
(4.15)

≤ N(r,H)

≤ N(r, f(z)) +N

(
r,

1

f(z)− a

)
+N

(
r,

1

f(z)− b

)
+ N(r, f(z + c)) +N0(r, 0; f ′(z)) +N0(r, 0; f ′(z + c)).

We also note that

N (2

(
r,

1

F

)
≤ N0

(
r,

1

f ′(z)

)
, N (2

(
r,

1

G

)
≤ N0

(
r,

1

f ′(z + c)

)
.

We define

Ψ(z) :=
f ′(z)

[f(z)− a][(f(z)− b]
f ′(z + c)

[f(z + c)− a][f(z + c)− b
.

From the definition of Ψ and by using First Fundamental Theorem and (4.5), we get

N0

(
r,

1

f ′(z)

)
+N0

(
r,

1

f ′(z + c)

)
(4.16)

≤ N

(
r,

1

Ψ

)
≤ N(r,Ψ)

≤ N

(
r,

1

f(z)− a

)
+N

(
r,

1

f(z)− b

)
+N

(
r,

1

f(z + c)− a

)
+N

(
r,

1

f(z + c)− b

)
+ S(r, f(z)) + S(r, f(z + c))

≤ 2N

(
r,

1

f(z)− a

)
+ 2N

(
r,

1

f(z)− b

)
+ S(r, f(z)) + S(r, f(z + c)).

Adding

N (2

(
r,

1

F

)
+N (2

(
r,

1

G

)
+N

(
r,

1

f(z)− a

)
+N

(
r,

1

f(z)− b

)
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both sides of (4.15), we get

N
E

1)

(
r,

1

F

)
+N (2

(
r,

1

F

)
+N (2

(
r,

1

G

)
+N

(
r,

1

f(z)− a

)
(4.17)

+ N

(
r,

1

f(z)− b

)
≤ N(r, f(z)) + 2N

(
r,

1

f(z)− a

)
+ 2N

(
r,

1

f(z)− b

)
+N(r, f(z + c))

+ 2N0

(
r,

1

f ′(z)

)
+ 2N0

(
r,

1

f ′(z + c)

)
.

i.e.,

N

(
r,

1

F

)
+N

(
r,

1

f(z)− a

)
+N

(
r,

1

f(z)− b

)
(4.18)

≤ N(r, f(z)) + 6N

(
r,

1

f(z)− a

)
+ 6N

(
r,

1

f(z)− b

)
+N(r, f(z + c))

+ S(r, f(z)) + S(r, f(z + c)).

Similarly, we get

N

(
r,

1

G

)
+N

(
r,

1

f(z + c)− a

)
+N

(
r,

1

f(z + c)− b

)
(4.19)

≤ N(r, f(z + c)) + 6N

(
r,

1

f(z + c)− a

)
+ 6N

(
r,

1

f(z + c)− b

)
+ N(r, f(z)) + S(r, f(z)) + S(r, f(z + c)).

By applying Second Fundamental Theorem and (4.12), (4.18) and (4.19), we get

(n+ 5)

{
T (r, f(z)) + T (r, f(z + c))

}
≤ N

(
r,

1

F

)
+N(r, f(z)) +N

(
r,

1

f(z)− a

)
+N

(
r,

1

G

)
+N(r, f(z + c))

+N

(
r,

1

f(z + c)− a

)
+ S(r, f(z)) + S(r, f(z + c))

≤ 2N(r, f(z)) + 2N(r, f(z + c)) + 6N

(
r,

1

f(z)− a

)
+ 6N

(
r,

1

f(z + c)− a

)
+ 6N

(
r,

1

f(z)− b

)
+ 6N

(
r,

1

f(z + c)− b

)
+ S(r, f(z)) + S(r, f(z + c))

≤
(

8 +
6

1000

){
T (r, f(z)) + T (r, f(z + c))

}
+ +S(r, f(z)) + S(r, f(z + c)),

which contradicts n ≥ 4.
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Therefore, we have H ≡ 0. Thus we get

1

F
≡ A
G

+ B, (4.20)

where A( 6= 0),B ∈ C. In view of Lemma 3.1, we see from (4.20) that

T (r, f(z)) = T (r, f(z + c)) + S(r, f(z)). (4.21)

Subcase 2.1. Let B 6= 0. Thus we must have

N(r, f(z)) = N(r,F) = N

r, 1

G +
A
B

 ≥ 3T (r, f(z + c)) + S(r, f(z + c)),

which is absurd in view of (4.21).
Subcase 2.2. So we have B = 0. Therefore (4.20) reduces to G = AF . Proceeding
exactly same way as done in Subcase 1.1, we get f(z) ≡ f(z + c). �

Proof of Theorem 2.2. Since f(z) is a non-constant entire function, so we must have
N(r, f(z)) = 0 and hence N(r, f(z + c)) = 0. Now keeping this in mind, the rest of
the proof follows the proof of Theorem 2.1. �

5. An open question

Question 5.1. Is it possible to reduce the cardinalities further of two sets sharing
problem (in case of IM sharing) for the periodicity of a meromorphic function f ?
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