
Stud. Univ. Babeş-Bolyai Math. 64(2019), No. 3, 367–385
DOI: http://dx.doi.org/10.24193/subbmath.2019.3.08

Some results on a question of Li, Yi and Li

Abhijit Banerjee and Sujoy Majumder

Abstract. The purpose of this paper is to study the uniqueness problems of cer-
tain difference polynomials of meromorphic functions sharing a nonzero polyno-
mial. The results of this paper improve and generalize some recent results due
to Li, Yi and Li [11]. Some examples have been exhibited to show that some
conditions used in the paper are sharp.
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1. Introduction, definitions and results

In this paper by meromorphic functions we shall always mean meromorphic
functions in the complex plane.

We adopt the standard notations of value distribution theory (see [6]). For a non-
constant meromorphic function f , we denote by T (r, f) the Nevanlinna characteristic
of f and by S(r, f) any quantity satisfying S(r, f) = o{T (r, f)} as r → ∞ possibly
outside a set of finite linear measure. We denote by T (r) the maximum of T (r, f) and
T (r, g). The notation S(r) denotes any quantity satisfying S(r) = o(T (r)) as r −→∞,
outside of a possible exceptional set of finite linear measure.

A meromorphic function a(z) is called a small function with respect to f , pro-
vided that T (r, a) = S(r, f). The order of f is defined by

σ(f) = lim sup
r−→∞

log T (r, f)

log r
.

For a ∈ C ∪ {∞}, we define

Θ(a; f) = 1− lim sup
r−→∞

N(r, a; f)

T (r, f)

and

δ(a; f) = 1− lim sup
r−→∞

N(r, a; f)

T (r, f)
.
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Let f(z) and g(z) be two non-constant meromorphic functions. Let a(z) be a small
function with respect to f(z) and g(z). We say that f(z) and g(z) share a(z) CM
(counting multiplicities) if f(z)− a(z) and g(z)− a(z) have the same zeros with the
same multiplicities, we say that f(z), g(z) share a(z) IM (ignoring multiplicities) if
we do not consider the multiplicities.

We say that a finite value z0 is called a fixed point of f if f(z0) = z0 or z0 is a
zero of f(z)− z.

Let f(z) be a transcendental meromorphic function and n ∈ N. Many authors
have investigated the value distributions of fnf ′. At the starting point, we recall the
result of Hayman (see [5], Corollary of Theorem 9). In 1959, Hayman proved the
following theorem.

Theorem A. [5] Let f(z) be a transcendental meromorphic function and n ∈ N such
that n ≥ 3. Then fn(z)f ′(z) = 1 has infinitely many solutions.

The case n = 2 was settled by Mues [15] in 1979. Bergweiler and Eremenko [1]
showed that f(z)f ′(z)− 1 has infinitely many zeros.

For an analogue of the above results Laine and Yang [10] investigated the value
distribution of difference products of entire functions in the following manner.

Theorem B. [10] Let f(z) be a transcendental entire function of finite order, and c be
a non-zero complex constant. Then for n ≥ 2, fn(z)f(z + c) assumes every non-zero
value a ∈ C infinitely often.

The following example shows that Theorem B does not remain valid if n = 1.

Example 1.1. [10] Let f(z) = 1 + ez. Then f(z)f(z + πi)− 1 = −e2z has no zeros.

The following example shows that Theorem B does not remain valid if f(z) is
of infinite order.

Example 1.2. [13] Let f(z) = e−e
z

. Then f2(z)f(z + c) − 2 = −1 and ρ(f) = ∞,
where c is a non-zero constant satisfying ec = −2. Clearly f2(z)f(z + c) − 2 has no
zeros.

It is to be mentioned that in the meantime Chen, Huan and Zheng [2] obtained
some results a part of which related to the content of the present paper.

In 2009, Liu and Yang [13] further improved Theorem B and obtained the next
result.

Theorem C. [13] Let f(z) be a transcendental entire function of finite order, and c
be a non-zero complex constant. Then, for n ≥ 2, fn(z)f(z + c)− p(z) has infinitely
many zeros, where p(z) is a non-zero polynomial.

The following example shows that the condition “ρ(f) < ∞” in Theorem C is
necessary.

Example 1.3. [13] Let f(z) = e−e
z

. Then fn(z)f(z + c) − P (z) = 1 − P (z) and
ρ(f) =∞, where c is a non-zero constant satisfying ec = −n, P (z) is a non-constant
polynomial, n is a positive integer. Clearly fn(z)f(z + c) − P (z) has finitely many
zeros.
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In 2010, Qi, Yang and Liu [16] studied the uniqueness of the difference monomials
and obtained the following result.

Theorem D. [16] Let f(z) and g(z) be two transcendental entire functions of finite
order, and c ∈ C \ {0}; let n ∈ N such that n ≥ 6. If fn(z)f(z + c) and gn(z)g(z + c)
share z CM, then f(z) ≡ t1g(z) for a constant t1 that satisfies tn+1

1 = 1.

Theorem E. [16] Let f(z) and g(z) be two transcendental entire functions of finite
order, and c ∈ C \ {0}; let n ∈ N such that n ≥ 6. If fn(z)f(z + c) and gn(z)g(z + c)
share 1 CM, then f(z)g(z) ≡ t2 or f(z) ≡ t3g(z) for some constants t2 and t3 that
satisfy tn+1

2 = 1 and tn+1
3 = 1.

In 2014, Li, Yi and Li [11] improved Theorems C, D and E to meromorphic
functions and obtained a number of results as follows.

Theorem F. [11] Let f(z) be a transcendental meromorphic function such that its
order ρ(f) < ∞, let c be a non-zero complex number, and let n ≥ 6 be an integer.
Suppose that P (z) 6≡ 0 is a polynomial. Then fn(z)f(z+c)−P (z) has infinitely many
zeros.

Theorem G. [11] Let f(z) be a transcendental meromorphic function such that its
order ρ(f) < ∞ and δ(∞; f(z)) > 0, let c be a non-zero complex number, and let
n ≥ 5 be an integer. Suppose that P (z) 6≡ 0 is a polynomial. Then fn(z)f(z+c)−P (z)
has infinitely many zeros.

Theorem H. [11] Let f(z) and g(z) be two distinct transcendental meromorphic func-
tions of finite order, let c be a non-zero complex number, let n ≥ 14 be an inte-
ger and let P (z) 6≡ 0 be a polynomial such that 2 deg(P ) < n − 1. Suppose that
fn(z)f(z + c)− P (z) and gn(z)g(z + c)− P (z) share 0 CM. Then

(I) if n ≥ 10 and if fn(z)f(z + c)/P (z) is a Möbius transformation of
gn(z)g(z + c)/P (z), then one of the following two cases will hold:

(i) f(z) ≡ tg(z), where t 6= 1 is a constant satisfying tn+1 = 1.
(ii) f(z)g(z) = t, where P (z) reduces to a non-zero constant c1, say, and t is

a constant such that tn+1 = c21.
(II) if n ≥ 14, then one of the two cases (I) (i) and (I) (ii) will hold.

Theorem I. [11] Let f(z) and g(z) be two distinct transcendental meromorphic func-
tions of finite order, let c be a non-zero complex number, let n ≥ 12 be an integer and
let P (z) 6≡ 0 be a polynomial such that 2 deg(P ) < n+ 1. Suppose that f(z) and g(z)
share ∞ IM, fn(z)f(z + c)− P (z) and gn(z)g(z + c)− P (z) share 0,∞ CM. Then

(I) if n ≥ 10 and if fn(z)f(z + c)/P (z) is a Möbius transformation of
gn(z)g(z + c)/P (z), then one of the following two cases will hold:

(i) f(z) ≡ tg(z), where t 6= 1 is a constant satisfying tn+1 = 1.
(ii) f(z) = eQ(z) and g(z) = te−Q(z), where P (z) reduces to a non-zero constant

c1, say, and t is a constant such that tn+1 = c21, Q(z) is a non-constant
polynomial.

(II) if n ≥ 12, then one of the two cases (I) (i) and (I) (ii) will hold.
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Theorem J. [11] Let f(z) and g(z) be two distinct non-constant meromorphic func-
tions of finite order. Suppose that c is a non-zero complex number and n ≥ 17 is an
integer. If fn(z)f(z + c) − z and gn(z)g(z + c) − z share 0 CM, then f(z) ≡ tg(z),
where t 6= 1 is a constant satisfying tn+1 = 1.

Theorem K. [11] Let f(z) and g(z) be two distinct non-constant meromorphic func-
tions of finite order, c be a non-zero complex number and n ≥ 13 be an integer.
Suppose that f(z) and g(z) share ∞ IM, fn(z)f(z+c)−z and gn(z)g(z+c)−z share
0,∞ CM. Then f(z) ≡ tg(z), where t 6= 1 is a constant satisfying tn+1 = 1.

At the end of [11] the following open problem was posed by the authors.
Open problem. What can be said about the conclusion of Corollary 1.1 [11] if we
replace the condition “n ≥ 6” with “2 ≤ n ≤ 5”?

One of our objective to write this paper is to solve this open problem.
Next we recall the notion of weighted sharing [9] as it will render an useful tool

to relax the nature of sharing.

Definition 1.1. [9] Let k ∈ N ∪ {0} ∪ {∞}. For a ∈ C ∪ {∞} we denote by Ek(a; f)
the set of all a-points of f where an a-point of multiplicity m is counted m times if
m ≤ k and k + 1 times if m > k. If Ek(a; f) = Ek(a; g), we say that f , g share the
value a with weight k.

We write f , g share (a, k) to mean that f , g share the value a with weight k.
Clearly if f , g share (a, k) then f , g share (a, p) for any integer p, 0 ≤ p < k. Also
we note that f , g share a value a IM or CM if and only if f , g share (a, 0) or (a,∞)
respectively.

Next observing the above results the following questions are inevitable.
Question 1. Can the lower bound of n be further reduced in Theorem I?
Question 2. Can one replaced the condition δ(∞; f) > 0 of Theorem G by weaker
one?
Question 3. Can“CM” sharing in Theorems H, I, J, K be reduced to finite weight
sharing?

In this paper we want to investigate the above situations. We now present the
following theorems which are the main results of the paper.

Theorem 1.1. Let f(z) be a transcendental meromorphic function of finite order, c ∈
C \ {0} be fixed, n ∈ N such that n > 1 and let a(z)(6≡ 0,∞) be a small function of
f(z). If

Θ(0; f) + Θ(∞; f) >
5− n

2
,

then fn(z)f(z + c)− a(z) has infinitely many zeros.

Theorem 1.2. Let f(z) and g(z) be two distinct transcendental meromorphic functions
of finite order, c be a non-zero complex number, n ≥ 14 be an integer and p(z) 6≡ 0
be a polynomial such that 2 deg(p) < n − 1. Suppose that fn(z)f(z + c) − p(z) and
gn(z)g(z + c)− p(z) share (0, 2). Then

(I) if n ≥ 10 and if fn(z)f(z + c)/p(z) is a Möbius transformation of
gn(z)g(z + c)/p(z), then one of the following two cases will hold:
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(i) f(z) ≡ tg(z), where t 6= 1 is a constant satisfying tn+1 = 1.
(ii) f(z)g(z) ≡ t, where p(z) reduces to a nonzero constant c1, say, and t is a

constant such that tn+1 = c21.
(II) if n ≥ 14, then one of the two cases (I) (i) or (I) (ii) will hold.

Theorem 1.3. Let f(z) and g(z) be two distinct transcendental meromorphic functions
of finite order, c be a non-zero complex number, n ≥ 12 be an integer and p(z) 6≡ 0
be a polynomial such that 2 deg(p) < n + 1. Suppose that f and g share (∞, 0),
fn(z)f(z + c)− p(z) and gn(z)g(z + c)− p(z) share (0, 2) and (∞,∞). Then

(I) if n ≥ 8 and if fn(z)f(z + c)/p(z) is a Möbius transformation of
gn(z)g(z + c)/p(z), then one of the following two cases will hold:

(i) f(z) ≡ tg(z), where t 6= 1 is a constant satisfying tn+1 = 1.
(ii) f(z) = eQ(z) and g(z) = te−Q(z), where p(z) reduces to a non-zero constant

c1, say, and t is a constant such that tn+1 = c21, Q(z) is a non-constant
polynomial.

(II) if n ≥ 12, then one of the two cases (I) (i) or (I) (ii) will hold.

Theorem 1.4. Let f(z) and g(z) be two distinct non-constant meromorphic functions
of finite order and let p(z) be a non-constant polynomial such that deg(p) = l. Suppose
that c is a non-zero complex number and n ≥ 14 + 3l is an integer.
If fn(z)f(z+ c)− p(z) and gn(z)g(z+ c)− p(z) share (0, 2), then f(z) ≡ tg(z), where
t 6= 1 is a constant satisfying tn+1 = 1.

Remark 1.1. It is easy to see that the conditions f(z) and g(z) as well as

fn(z)f(z + c)− p(z) and gn(z)g(z + c)− p(z)

have common poles in Theorem 1.3 are sharp by the following examples.

Example 1.4. Let

P1(z) =
1

ez + 1
and Q1(z) =

1

ez − 1
.

Let c be a non-zero constant satisfying ec = −1. Clearly P1(z) and Q1(z) are tran-
scendental meromorphic functions of finite order. Let t be a nonzero constant such
that tn+1 = 1 and let

f(z) =
P1(z)

Q1(z)
, g(z) = t

Q1(z)

P1(z)
.

Then f(z) and g(z) are transcendental meromorphic functions of finite order. Note
that neither f(z) and g(z) nor fn(z)f(z + c)− 1 and gn(z)g(z + c)− 1 have common
poles. Clearly fn(z)f(z + c) − 1 and gn(z)g(z + c) − 1 share (0,∞), but neither
f(z) ≡ tg(z) nor f(z) = eQ(z) and g(z) = t1e

−Q(z), where t1 is a nonzero constant
and Q(z) is a non-constant polynomial.

Example 1.5. Let

f(z) = p(z)
ez − 1

ez + 1
and g(z) = p(z)

ez + 1

ez − 1
,
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where p(z) is a non-zero polynomial.
Let c be a non-zero constant satisfying ec = −1. Clearly f(z) and g(z) are transcen-
dental meromorphic functions of finite order. Note that neither f(z) and g(z) nor
fn(z)f(z + c)− pn(z)p(z + c) and gn(z)g(z + c)− pn(z)p(z + c) have common poles.
Clearly fn(z)f(z + c)− pn(z)p(z + c) and gn(z)g(z + c)− pn(z)p(z + c) share (0,∞),
but neither f(z) ≡ tg(z) nor f(z) = eQ(z) and g(z) = t1e

−Q(z), where t1 is a non-zero
constant and Q(z) is a non-constant polynomial.

Example 1.6. Let

P1(z) =

∞∑
n=0

e−n
2

zn + 2 and Q1(z) =

∞∑
n=0

e−n
3

z2n + 3.

Clearly P1(z) and Q1(z) are transcendental entire functions with zero order. Let t be
a non-zero constant such that tn+1 = 1 and let

f(z) =
P1(z)

Q1(z)
, g(z) = t

Q1(z)

P1(z)
.

Then f(z) and g(z) are transcendental meromorphic functions with zero order. Note
that neither f(z) and g(z) nor fn(z)f(z + c)− 1 and gn(z)g(z + c)− 1 have common
poles. Clearly fn(z)f(z + c) − 1 and gn(z)g(z + c) − 1 share (0,∞), but neither
f(z) ≡ tg(z) nor f(z) = eQ(z) and g(z) = t1e

−Q(z), where t1 is a non-zero constant
and Q(z) is a non-constant polynomial.

We now explain following definitions and notations which are used in the paper.

Definition 1.2. [8] Let a ∈ C ∪ {∞}. For p ∈ N we denote by N(r, a; f |≤ p) the
counting function of those a-points of f (counted with multiplicities) whose mul-
tiplicities are not greater than p. By N(r, a; f |≤ p) we denote the corresponding
reduced counting function.

In an analogous manner we can define N(r, a; f |≥ p) and N(r, a; f |≥ p).

Definition 1.3. [9] Let k ∈ N∪{∞}. We denote by Nk(r, a; f) the counting function of
a-points of f , where an a-point of multiplicity m is counted m times if m ≤ k and k
times if m > k. Then Nk(r, a; f) = N(r, a; f) +N(r, a; f |≥ 2) + . . .+N(r, a; f |≥ k).
Clearly N1(r, a; f) = N(r, a; f).

2. Lemmas

Let F and G be two non-constant meromorphic functions. Henceforth we shall
denote by H the following function.

H =

(
F ′′

F ′
− 2F ′

F − 1

)
−
(

G′′

G′
− 2G′

G− 1

)
. (2.1)

Lemma 2.1. [18] Let f(z) be a non-constant meromorphic function and let an(z)
(6≡ 0), an−1(z), . . . , a0(z) be meromorphic functions such that T (r, ai(z)) = S(r, f)
for i = 0, 1, 2, . . . , n. Then

T (r, anf
n + an−1f

n−1 + . . .+ a1f + a0) = nT (r, f) + S(r, f).
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Lemma 2.2. [3] Let f(z) be a meromorphic function of finite order σ, and let c ∈ C\{0}
be fixed. Then for each ε > 0, we have

m

(
r,
f(z + c)

f(z)

)
+m

(
r,

f(z)

f(z + c)

)
= O(rσ−1+ε).

Lemma 2.3. [4] Let f(z) be a meromorphic function of finite order σ, and let c ∈ C\{0}
be fixed. Then for each ε > 0, we have

T (r, f(z + c)) = T (r, f(z)) +O(rσ−1+ε) +O(log r)

and

σ(f(z + c)) = σ(f(z)).

The following lemma has little modifications of the original version (Theorem 2.1 of
[3]).

Lemma 2.4. Let f(z) be a transcendental meromorphic function of finite order, c ∈
C \ {0} be fixed. Then

T (r, f(z + c)) = T (r, f) + S(r, f).

Lemma 2.5. [7] Let f(z) be a non-constant meromorphic function of finite order and
c ∈ C. Then

N(r, 0; f(z + c)) ≤ N(r, 0; f(z)) + S(r, f), N(r,∞; f(z + c)) ≤ N(r,∞; f) + S(r, f),

N(r, 0; f(z + c)) ≤ N(r, 0; f(z)) + S(r, f), N(r,∞; f(z + c)) ≤ N(r,∞; f) + S(r, f).

Lemma 2.6. Let f(z) be a non-constant meromorphic function of finite order σ, c ∈
C \ {0} be fixed and let Φ(z) = fn(z)f(z+ c), where n ∈ N such that n > 1. Then for
each ε > 0, we have

(n− 1) T (r, f) ≤ T (r,Φ) +O(rσ−1+ε) + S(r, f).

Proof. The proof of lemma follows from Lemmas 2.6 [14] and 2.2. �

Lemma 2.7. Let f(z) be a non-constant meromorphic function of finite order σ, c ∈
C \ {0} be fixed and let n ∈ N with n > 1. Then S(r, fn(z)f(z + c)) = S(r, f).

Proof. By Lemmas 2.1 and 2.3 we have

T (r, fn(z)f(z + c)) ≤ T (r, fn) + T (r, f(z + c))

≤ T (r, fn) + T (r, f) +O(rσ−1+ε) +O(log r) + S(r, f)

≤ (n+ 1) T (r, f) +O(rσ−1+ε) +O(log r) + S(r, f),

for all ε > 0. This shows that T (r, fn(z)f(z + c)) = O(T (r, f)).
Also by Lemma 2.6 we have T (r, f) = O(T (r, fn(z)f(z + c))). Thus we have

S(r, fn(z)f(z + c)) = S(r, f).

This completes the proof. �

Lemma 2.8. [9] Let f and g be two non-constant meromorphic functions sharing (1, 2).
Then one of the following holds:

(i) T (r, f) ≤ N2(r, 0; f) +N2(r, 0; g) +N2(r,∞; f) +N2(r,∞; g) + S(r, f) + S(r, g),
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(ii) fg ≡ 1,
(iii) f ≡ g.

Lemma 2.9. [20] Let H be defined as in (2.1). If H ≡ 0 and

lim sup
r−→∞

N(r, 0;F ) +N(r, 0;G) +N(r,∞;F ) +N(r,∞;G)

T (r)
< 1, r ∈ I,

where I is a set of infinite linear measure, then F ≡ G or F ·G ≡ 1.

Lemma 2.10. [[19], Lemma 7.1] Let F and G be two non-constant meromorphic func-
tions such that G is a Möbius transformation of F . Suppose that there exists a subset
I ⊂ R+ with its measure mesI = +∞ such that

N(r, 0;F ) +N(r, 0;G) +N(r,∞;F ) +N(r,∞;G) < (λ+ o(1))T (r, F ),

as r ∈ I and r →∞, where λ < 1, then F ≡ G or F ·G ≡ 1.

Lemma 2.11. [Hadamard Factorization Theorem] Let f be an entire function of finite
order σ with zeros a1, a2, . . ., each zeros is counted as often as its multiplicity. Then
f can be expressed in the form

f(z) = β(z)eα(z),

where α(z) is a polynomial of degree not exceeding [σ] and β(z) is the canonical product
formed with the zeros of f .

Lemma 2.12. Let f(z), g(z) be two non-constant meromorphic functions of finite order
σ, c ∈ C \ {0} and n ∈ N such that n ≥ 2. If

fn(z)f(z + c) ≡ gn(z)g(z + c),

then f(z) ≡ tg(z) for some constant t 6= 1 such that tn+1 = 1.

Proof. Suppose

fn(z)f(z + c) ≡ gn(z)g(z + c). (2.2)

Let h = f
g . Then from (2.2) we have

hn(z) ≡ 1

h(z + c)
. (2.3)

Now by Lemmas 2.1, 2.2 and 2.5 we get

nT (r, h) = T (r, hn) + S(r, h) = T

(
r,

1

h(z + c)

)
+ S(r, h)

≤ N(r, 0;h(z + c)) +m

(
r,

1

h(z + c)

)
+ S(r, h)

≤ N(r, 0;h(z)) +m

(
r,

h(z)

h(z + c)

)
+m

(
r,

1

h(z)

)
+ S(r, h)

≤ T (r, h) +O(rσ−1+ε) + S(r, h),

which is a contradiction since n ≥ 2. Hence h must be a constant, which implies that
hn+1 = 1, where h 6= 1, thus f(z) = tg(z) for some constant t 6= 1 such that tn+1 = 1.
This completes the the proof. �
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Lemma 2.13. Let f(z), g(z) be two non-constant meromorphic functions of finite order
σ, c ∈ C \ {0} and n ∈ N such that n ≥ 2. Let p(z) be a nonzero polynomial such that
2 deg(p) < n− 1. Suppose

fn(z)f(z + c)gn(z)g(z + c) ≡ p2(z).

Then f(z)g(z) ≡ t, where p(z) reduces to a nonzero constant c1, say, and t is a
constant such that tn+1 = c21.

In particular when f and g share (∞, 0) and 2 deg(p) < n+ 1, then

f(z) = eQ(z) and g(z) = te−Q(z),

where p(z) reduces to a nonzero constant c1, say, and t is a constant such that

tn+1 = c21,

Q(z) is a non-constant polynomial.

Proof. Suppose

fn(z)f(z + c)gn(z)g(z + c) ≡ p2(z). (2.4)

Let h1 = fg. Then from (2.4) we have

hn1 (z) ≡ p2(z)

h1(z + c)
. (2.5)

First we suppose that h1(z) is a non-constant meromorphic function. We now consider
following two cases.

Case 1. Let h1(z) be a transcendental meromorphic function.
Now by Lemmas 2.1, 2.2 and 2.5 we get

nT (r, h1) = T (r, hn1 ) + S(r, h1) = T

(
r,

p2

h1(z + c)

)
+ S(r, h1)

≤ N(r, 0;h1(z + c)) +m

(
r,

1

h1(z + c)

)
+ S(r, h1)

≤ N(r, 0;h1(z)) +m

(
r,

1

h1(z)

)
+O(rσ−1+ε) + S(r, h1)

≤ T (r, h1) +O(rσ−1+ε) + S(r, h1),

which is a contradiction.
Case 2. Let h1(z) be a rational function.
Let

h1 =
h2
h3
, (2.6)

where h2 and h3 are two nonzero relatively prime polynomials. From (2.6) we have

T (r, h1) = max{deg(h2),deg(h3)} log r +O(1). (2.7)
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Now from (2.5), (2.6) and (2.7) we have

n max{deg(h2),deg(h3)} log r (2.8)

= T (r, hn1 ) +O(1)

≤ T (r, h1(z + c)) + 2 T (r, p) +O(1)

= max{deg(h2),deg(h3)} log r + 2 deg(p) log r +O(1).

We see that

max{deg(h2),deg(h3)} ≥ 1.

Now from (2.8) we deduce that

n− 1 ≤ 2 deg(p),

which contradicts our assumption that 2 deg(p) < n− 1.

Hence h1(z) is a non-zero constant. Let h1 = t ∈ C \ {0}. Therefore in this case p(z)
reduces to a non-zero constant. Let p(z) = c1 ∈ C \ {0}. So from (2.5) we see that

hn+1
1 ≡ c21, i.e., tn+1 ≡ c21.

Therefore

f(z)g(z) ≡ t,

where t is a constant such that tn+1 = c21.

In particular, suppose f(z) and g(z) share (∞, 0). Now from (2.4) one can easily
say that f(z) and g(z) are non-constant entire functions.
Let h1 = fg. First we suppose that h1 is non-constant.

Now from Case 1, one can easily say that h1 can not be a transcendental entire
function. Hence h1 is a non-constant polynomial. Since 2 deg(p) < n+ 1, from (2.4),
we arrive at a contradiction. Hence h1 is a nonzero constant, say t. Therefore in this
case p(z) reduces to a non-zero constant. Let p(z) = c1 ∈ C \ {0}.

Clearly 0 is a Picard exceptional value of both f(z) and g(z). Consequently both
f(z) and g(z) are transcendental entire functions.

Now by Lemma 2.11, f(z) and g(z) take the forms

f(z) = eQ(z) and g(z) = te−Q(z),

where t is a constant such that tn+1 = c21 and Q(z) is a non-constant polynomial.
This completes the proof. �

Lemma 2.14. Let f(z), g(z) be two non-constant meromorphic functions of finite order
σ, c ∈ C\{0} and n ∈ N such that n ≥ 2. Let p(z) be a non-constant polynomial such
that 2 deg(p) < n− 1. Then

fn(z)f(z + c)gn(z)g(z + c) 6≡ p2(z).

Proof. The proof of lemma follows from Lemma 2.13. �
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3. Proofs of the theorems

Proof of Theorem 1.1. Let Φ(z) = fn(z)f(z + c). Now in view of Lemmas 2.1, 2.6
and the second theorem for small functions (see [17]), we get

(n− 1)T (r, f)

≤ T (r,Φ) +O(rσ−1+ε) + S(r, f)

≤ N(r, 0; Φ) +N(r,∞; Φ) +N(r, a(z); Φ) +O(rσ−1+ε) +
(ε

3
+ o(1)

)
T (r, f)

≤ N(r, 0; fn) +N(r, 0; f(z + c)) +N(r,∞; fn) +N(r,∞; f(z + c)) +N(r, a(z); Φ)

+O(rσ−1+ε) +
(ε

3
+ o(1)

)
T (r, f)

≤ 2N(r, 0; f) + 2N(r,∞; f) +N(r, a(z); Φ) +O(rσ−1+ε) +
(ε

3
+ o(1)

)
T (r, f)

≤
(

4− 2Θ(0; f)− 2Θ(∞; f) +
2ε

3

)
T (r, f) +N(r, a(z); Φ)

+O(rσ−1+ε) +
(ε

3
+ o(1)

)
T (r, f)

≤ (4− 2Θ(0; f)− 2Θ(∞; f) + ε)T (r, f) +N(r, a(z); Φ) +O(rσ−1+ε) + o(T (r, f)),

for all ε > 0. Take ε < 2Θ(0; f) + 2Θ(∞; f). Since Θ(0; f) + Θ(∞; f) > 5−n
2 , from

above one can easily say that Φ(z) − a(z) has infinitely many zeros. This completes
the proof. �

Proof of Theorem 1.2. Let

F (z) =
fn(z)f(z + c)

p(z)
and G(z) =

gn(z)g(z + c)

p(z)
.

Then F and G share (1, 2). We now consider following two cases.
Case 1. Suppose F is a Möbius transformation of G.
By Valiron-Mokhon’ko Lemma, we see that T (r, F ) = T (r,G) + O(1). Clearly
S(r, F ) = S(r,G). Now in view of Lemmas 2.5 and 2.6, we get

N(r, 0;F ) +N(r, 0;G) +N(r,∞;F ) +N(r,∞;G)

= N(r, 0; f) +N(r, 0; f(z + c)) +N(r, 0; g) +N(r, 0; g(z + c))

+N(r,∞; f) +N(r,∞; f(z + c)) +N(r,∞; g) +N(r,∞; g(z + c))

+ S(r, f) + S(r, g)

= 2N(r, 0; f) + 2N(r,∞; f) + 2N(r, 0; g) + 2N(r,∞; g) + S(r, f) + S(r, g)

≤ 4T (r, f) + 4 T (r, g) +O(rσ−1+ε) +O(log r) + S(r, f) + S(r, g)

≤ 4

n− 1
T (r, F ) +

4

n− 1
T (r,G) +O(rσ−1+ε) +O(log r) + S(r, F ) + S(r,G)

≤ 8

n− 1
T (r, F ) +O(rσ−1+ε) +O(log r) + S(r, F ),
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for all ε > 0. Since n ≥ 10, we must have

N(r, 0;F ) +N(r, 0;G) +N(r,∞;F ) +N(r,∞;G) < (λ+ o(1))T (r, F ),

where λ < 1 and so by Lemma 2.10, we have either F ≡ G or F ·G ≡ 1.
We now consider following two sub-cases.
Sub-case 1.1. F ≡ G.
Then by Lemma 2.12, we have f(z) ≡ tg(z) for some constant t 6= 1 such that

tn+1 = 1.

Sub-case 1.2. F ·G ≡ 1.
Then

fn(z)f(z + c)gn(z)g(z + c) ≡ p2(z)

and so by Lemma 2.13, we have f(z)g(z) ≡ t, where p(z) reduces to a nonzero constant
c1, say and t is a constant such that

tn+1 = c21.

Case 2. Suppose n ≥ 14.
Now applying Lemma 2.8, we see that one of the following three sub-cases holds.
Sub-case 2.1. Suppose

T (r, F ) ≤ N2(r, 0;F ) +N2(r, 0;G) +N2(r,∞;F ) +N2(r,∞;G) + S(r, F ) + S(r,G).

Now by applying Lemmas 2.1 and 2.5, we have

T (r, F )

≤ N2(r, 0;F ) +N2(r, 0;G) +N2(r,∞;F ) +N2(r,∞;G) + S(r, f) + S(r, g)

= N2(r, 0; fnf(z + c)) +N2(r, 0; gng(z + c))

+N2(r,∞; fnf(z + c)) +N2(r,∞; gng(z + c)) + S(r, f) + S(r, g)

≤ N2(r, 0; fn) +N2(r, 0; f(z + c)) +N2(r, 0; gn) +N2(r, 0; g(z + c)) +N2(r,∞; fn)

+N2(r,∞; f(z + c)) +N2(r,∞; gn) +N2(r,∞; g(z + c)) + S(r, f) + S(r, g)

≤ 2N(r, 0; f) +N(r, 0; f(z + c)) + 2N(r, 0; g) +N(r, 0; g(z + c)) + 2N(r,∞; f)

+N(r,∞; f(z + c)) + 2N(r,∞; g) +N(r,∞; g(z + c)) + S(r, f) + S(r, g)

≤ 4T (r, f) +N(r, 0; f) +N(r,∞; f) + 4T (r, g)

+N(r, 0; g) +N(r,∞; g) +O(rσ−1+ε) +O(log r) + S(r, f) + S(r, g)

≤ 6T (r, f) + 6T (r, g) +O(rσ−1+ε) +O(log r) + S(r, f) + S(r, g),

for all ε > 0. From Lemma 2.6, we have

(n− 1)T (r, f) ≤ 6T (r, f) + 6T (r, g) +O(rσ−1+ε) +O(log r) + S(r, f) + S(r, g)

≤ 12T (r) +O(rσ−1+ε) +O(log r) + S(r). (3.1)

Similarly we have

(n− 1) T (r, g) ≤ 12 T (r) +O(rσ−1+ε) +O(log r) + S(r). (3.2)

Combining (3.1) and (3.2), we get

(n− 1) T (r) ≤ 12 T (r) +O(rσ−1+ε) +O(log r) + S(r),
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which contradicts with n ≥ 14.
Sub-case 2.2. F ≡ G.
Then by Lemma 2.12, we have f(z) ≡ tg(z) for some constant t 6= 1 such that

tn+1 = 1.

Sub-case 2.3. F ·G ≡ 1.
Then by Lemma 2.13, we have f(z)g(z) ≡ t, where p(z) reduces to a nonzero constant
c1, say and t is a constant such that tn+1 = c21. This completes the proof. �

Proof of Theorem 1.3. Let

F (z) =
fn(z)f(z + c)

p(z)
and G(z) =

gn(z)g(z + c)

p(z)
.

Also F , G share (1, 2) and (∞,∞) except for zeros of p(z). We now consider following
two cases.
Case 1. Suppose F is a Möbius transformation of G.
Let

F ≡ AG+B

CG+D
, (3.3)

where A,B,C,D are constants and AD −BC 6= 0. Again

T (r, F ) = T (r,G) +O(1). (3.4)

Clearly S(r, F ) = S(r,G). We now consider the following sub-cases:
Sub-case 1.1. Let AC 6= 0. Since F , G share (∞,∞), it follows from (3.3) that

N(r,∞;F ) = S(r, F ) and N(r,∞;G) = S(r, F ).

Again since

F ≡
A+ B

G

C + D
G

,

it follows that

N(r,
A

C
;F ) = S(r, F ).

So in view of Lemma 2.6 and using the second fundamental theorem, we get

(n− 1)T (r, f) ≤ T (r, fn(z)f(z + c)) +O(rσ−1+ε) + S(r, f)

≤ T (r, F ) +O(rσ−1+ε) + S(r, f)

≤ N(r, 0;F ) +N(r,∞;F ) +N

(
r,
A

C
;F

)
+O(rσ−1+ε) + S(r, f)

≤ 2N(r, 0; f) + 2N(r,∞; f) +O(rσ−1+ε) + S(r, f)

≤ 4T (r, f) +O(rσ−1+ε) + S(r, f),

for all ε > 0, which is impossible since n ≥ 6.
Sub-case 1.2. Let A 6= 0 and C = 0. Then F ≡ αG+ β, where

α =
A

D
6= 0 and β =

B

D
.
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Sub-case 1.2.1. Let β = 0. Then we get F ≡ αG. Since n ≥ 6, it follows that F − 1
and G− 1 have infinitely many zeros. Clearly 1 can not be a Picard exceptional value
of F and G. Since F , G share (1,∞), it follows that α = 1 and so F ≡ G, i.e.,

fn(z)f(z + c) ≡ gn(z)g(z + c).

Now by Lemma 2.12, we have f(z) ≡ tg(z) for some constant t 6= 1 such that tn+1 = 1.
Sub-case 1.2.2. Let β 6= 0. Clearly α 6= 1, as F , G share (1,∞). So in view of Lemmas
2.5 and 2.6 and using the second fundamental theorem, we get

(n− 1)T (r, f)

≤ T (r, fn(z)f(z + c)) +O(rσ−1+ε) + S(r, f)

≤ T (r, F ) +O(rσ−1+ε) + S(r, f)

≤ N(r,∞;F ) +N(r, 0;F ) +N(r, β;F ) +O(rσ−1+ε) + S(r, f)

≤ N(r,∞;F ) +N(r, 0;F ) +N(r, 0;G) + S(r, f)

≤ 2N(r,∞; f) + 2N(r, 0; f) + 2N(r, 0; g) +O(rσ−1+ε) + S(r, f) + S(r, g)

≤ 4T (r, g) + 2T (r, f) +O(rσ−1+ε) +O(log r) + S(r, f) + S(r, g),

for all ε > 0. Without loss of generality, we suppose that there exists a set I with
infinite measure such that T (r, f) ≤ T (r, g) for r ∈ I.
So for r ∈ I, we have

(n− 7) T (r, g) ≤ O(rσ−1+ε) +O(log r) + S(r, g),

for all ε > 0, which is a contradiction since n ≥ 8.
Case 1.3. Let A = 0 and C 6= 0. Then F ≡ 1

γG+δ , where γ = C
B 6= 0 and δ = D

B .

Sub-case 1.3.1. Let δ = 0. Then F ≡ 1
γG . Since F , G share (1,∞), it follows that γ = 1

and then FG ≡ 1, i.e., fn(z)f(z + c)gn(z)g(z + c) ≡ p2(z). Now by Lemma 2.13, we
have f(z) = eQ(z) and g(z) = te−Q(z), where p(z) reduces to a nonzero constant c1,
say and t is a constant such that tn+1 = c21 and Q(z) is a non-constant polynomial.
Sub-case 1.3.2. Let δ 6= 0. Clearly γ 6= 1, as F , G share (1,∞). Since F , G share
(∞,∞), it follows that N(r,∞;F ) = S(r, F ) and N(r,∞;G) = S(r, F ). Consequently

N(r,− δ
γ

;G) = S(r, F ).

So in view of Lemma 2.6 and using the second fundamental theorem, we get

(n− 1)T (r, g)

≤ T (r, gn(z)g(z + c)) +O(rσ−1+ε) + S(r, g)

≤ T (r,G) +O(rσ−1+ε) + S(r, g)

≤ N(r, 0;G) +N(r,∞;G) +N

(
r,
−δ
γ

;G

)
+O(rσ−1+ε) + S(r, g)

≤ 2N(r, 0; g) + 2N(r,∞; g) +O(rσ−1+ε) + S(r, g)

≤ 4T (r, g) +O(rσ−1+ε) + S(r, g),

for all ε > 0, which is impossible since n ≥ 6.
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Case 2. Suppose n ≥ 12.
We now consider following two sub-cases.

Sub-case 2.1. Let H 6≡ 0.

From (2.1) it can be easily calculated that the possible poles of H occur at (i) multiple
zeros of F and G, (ii) those 1 points of F and G whose multiplicities are different, (iii)
those poles of F and G whose multiplicities are different, (iv) zeros of F ′(G′) which
are not the zeros of F (F − 1)(G(G− 1)).

Since H has only simple poles we get

N(r,∞;H) (3.5)

≤ N∗(r,∞;F,G) +N∗(r, 1;F,G) +N(r, 0;F | ≥ 2) +N(r, 0;G| ≥ 2)

+N0(r, 0;F ′) +N0(r, 0;G′) + S(r, f) + S(r, g),

where N0(r, 0;F ′) is the reduced counting function of those zeros of F ′ which are not
the zeros of F (F − 1) and N0(r, 0;G′) is similarly defined.

Let z0 be a simple zero of F − 1 but p(z0) 6= 0. Then z0 is a simple zero of G− 1 and
a zero of H. So

N(r, 1;F | = 1) ≤ N(r, 0;H) ≤ N(r,∞;H) + S(r, f) + S(r, g). (3.6)

Note that

N∗(r,∞;F,G) = S(r, f).

Now using (3.5) and (3.6) we get

N(r, 1;F ) (3.7)

≤ N(r, 1;F | = 1) +N(r, 1;F | ≥ 2)

≤ N∗(r, 1;F,G) +N(r, 0;F | ≥ 2) +N(r, 0;G |≥ 2)

+N(r, 1;F |≥ 2) +N0(r, 0;F ′) +N0(r, 0;G′) + S(r, f) + S(r, g).

Now in view of Lemma 2.3 we get

N0(r, 0;G′) +N(r, 1;F |≥ 2) +N∗(r, 1;F,G) (3.8)

≤ N0(r, 0;G′) +N(r, 1;F |≥ 2) +N(r, 1;F |≥ 3)

= N0(r, 0;G′) +N(r, 1;G |≥ 2) +N(r, 1;G |≥ 3)

≤ N0(r, 0;G′) +N(r, 1;G)−N(r, 1;G)

≤ N(r, 0;G′ | G 6= 0) ≤ N(r, 0;G) +N(r,∞;G) + S(r, g).
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Hence using (3.7), (3.8) and Lemma 2.5, we get from the second fundamental theorem
that

T (r, F )

≤ N(r, 0;F ) +N(r,∞;F ) +N(r, 1;F )−N0(r, 0;F ′) + S(r, f)

≤ N(r, 0;F ) +N(r,∞;F ) +N(r, 0;F |≥ 2) +N(r, 0;G |≥ 2) +N∗(r, 1;F,G)

+N(r, 1;F |≥ 2) +N0(r, 0;G′) + S(r, f) + S(r, g)

≤ N2(r, 0;F ) +N2(r, 0;G) +N(r,∞;F ) +N(r,∞;G) + S(r, f) + S(r, g)

= N2(r, 0; fnf(z + c)) +N2(r, 0; gng(z + c))

+N(r,∞; fnf(z + c)) +N(r,∞; gng(z + c)) + S(r, f) + S(r, g)

≤ N2(r, 0; fn) +N2(r, 0; f(z + c)) +N2(r, 0; gn) +N2(r, 0; g(z + c)) +N(r,∞; fn)

+N(r,∞; f(z + c)) +N(r,∞; gn) +N(r,∞; g(z + c)) + S(r, f) + S(r, g)

≤ 2 N(r, 0; f) +N(r, 0; f(z + c)) + 2 N(r, 0; g) +N(r, 0; g(z + c)) +N(r,∞; f)

+N(r,∞; f(z + c)) +N(r,∞; g) +N(r,∞; g(z + c)) + S(r, f) + S(r, g)

≤ 3T (r, f) +N(r, 0; f) +N(r,∞; f) + 3T (r, g)

+N(r, 0; g) +N(r,∞; g) +O(rσ−1+ε) +O(log r) + S(r, f) + S(r, g)

≤ 5T (r, f) + 5T (r, g) +O(rσ−1+ε) +O(log r) + S(r, f) + S(r, g),

for all ε > 0. From Lemma 2.6, we have

(n− 1)T (r, f) ≤ 5T (r, f) + 5T (r, g) +O(rσ−1+ε) +O(log r) + S(r, f) + S(r, g)

≤ 10T (r) +O(rσ−1+ε) +O(log r) + S(r). (3.9)

Similarly we have

(n− 1) T (r, g) ≤ 10 T (r) +O(rσ−1+ε) +O(log r) + S(r). (3.10)

Combining (3.9) and (3.10), we get

(n− 1) T (r) ≤ 10 T (r) +O(rσ−1+ε) +O(log r) + S(r),

which contradicts with n ≥ 12.
Case 2.2. Let H ≡ 0.
Here in view of Lemmas 2.5, 2.6 and proceeding in the same way as done in Theorem
1.2, we get

N(r, 0;F ) +N(r, 0;G) +N(r,∞;F ) +N(r,∞;G)

≤ 8

n− 1
T (r, F ) +O(rσ−1+ε) + S(r, F ),

for all ε > 0. Since n ≥ 10, we must have

N(r, 0;F ) +N(r, 0;G) +N(r,∞;F ) +N(r,∞;G) < (λ+ o(1))T (r, F ),

where λ < 1 and so by Lemma 2.9, we have either F ≡ G or F ·G ≡ 1.
We now consider following two sub-cases.
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Sub-case 2.2.1. F ≡ G.
Then by Lemma 2.12, we have f(z) ≡ tg(z) for some constant t 6= 1 such that
tn+1 = 1.
Sub-case 2.2.2. F ·G ≡ 1.
Then fn(z)f(z+c)gn(z)g(z+c) ≡ p2(z) and so by Lemma 2.13, we have f(z) = eQ(z)

and g(z) = te−Q(z), where p(z) reduces to a nonzero constant c1, say and t is a constant
such that tn+1 = c21, Q(z) is a non-constant polynomial. This completes the proof. �

Proof of Theorem 1.4. Let

F (z) =
fn(z)f(z + c)

p(z)
and G(z) =

gn(z)g(z + c)

p(z)
.

Then F and G share (1, 2) except for zeros of p(z). Note that

T (r, fn(z)f(z + c)) ≤ T (r, F ) + l log r and T (r, gn(z)g(z + c)) ≤ T (r,G) + l log r.

Also we see that T (r, f) ≥ log r +O(1) and T (r, g) ≥ log r +O(1).
Now applying Lemma 2.8, we see that one of the following three cases holds.
Case 1. Suppose

T (r, F ) ≤ N2(r, 0;F ) +N2(r, 0;G) +N2(r,∞;F ) +N2(r,∞;G) + S(r, F ) + S(r,G).

Now by applying Lemmas 2.1 and 2.5, we have

T (r, F )

≤ N2(r, 0;F ) +N2(r, 0;G) +N2(r,∞;F ) +N2(r,∞;G) + S(r, f) + S(r, g)

= N2(r, 0; fnf(z + c)) +N2(r, 0; gng(z + c))

+N2(r,∞; fnf(z + c)) +N2(r,∞; gng(z + c)) + 2l log r + S(r, f) + S(r, g)

≤ N2(r, 0; fn) +N2(r, 0; f(z + c)) +N2(r, 0; gn) +N2(r, 0; g(z + c)) +N2(r,∞; fn)

+N2(r,∞; f(z + c)) +N2(r,∞; gn) +N2(r,∞; g(z + c)) + 2l log r + S(r, f) + S(r, g)

≤ 2N(r, 0; f) +N(r, 0; f(z + c)) + 2N(r, 0; g) +N(r, 0; g(z + c)) + 2N(r,∞; f)

+N(r,∞; f(z + c)) + 2N(r,∞; g) +N(r,∞; g(z + c)) + 2l log r + S(r, f) + S(r, g)

≤ 4T (r, f) +N(r, 0; f) +N(r,∞; f) + 4T (r, g)

+N(r, 0; g) +N(r,∞; g) + 2l log r +O(rσ−1+ε) +O(log r) + S(r, f) + S(r, g)

≤ 6T (r, f) + 6T (r, g) + 2l log r +O(rσ−1+ε) +O(log r) + S(r, f) + S(r, g),

for all ε > 0. From Lemma 2.6, we have

(n− 1)T (r, f) (3.11)

≤ T (r, fn(z)f(z + c)) +O(rσ−1+ε)

≤ T (r, F ) + l log r +O(rσ−1+ε)

≤ 6T (r, f) + 6T (r, g) + 3l log r +O(rσ−1+ε) +O(log r) + S(r, f) + S(r, g)

≤ (12 + 3l)T (r) +O(rσ−1+ε) +O(log r) + S(r).

Similarly we have

(n− 1) T (r, g) ≤ (12 + 3l) T (r) +O(rσ−1+ε) +O(log r) + S(r). (3.12)
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Combining (3.11) and (3.12), we get

(n− 1) T (r) ≤ (12 + 3l) T (r) +O(rσ−1+ε) +O(log r) + S(r),

which contradicts with n ≥ 14 + 3l.
Sub-case 2.2. F ≡ G.
Then by Lemma 2.12 we have f(z) ≡ tg(z) for some constant t 6= such that tn+1 = 1.
Sub-case 2.3. F ·G ≡ 1.
Then we have fn(z)f(z + c)gn(z)g(z + c) ≡ p2(z). But this is impossible by Lemma
2.14. This completes the proof. �
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