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Goldie absolute direct summand rings and
modules
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Abstract. In the present paper, we introduce and study Goldie ADS modules
and rings, which subsume two generalizations of Goldie extending modules due
to Akalan et al. [3] and ADS-modules due to Alahmadi et al. [7]. A module M
will be called a Goldie ADS module if for every decomposition M = S ⊕ T of
M and every complement T ′ of S, there exists a submodule D of M such that
T ′βD and M = S⊕D. Various properties concerning direct sums of Goldie ADS
modules are established.
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1. Introduction

The purpose of the present paper is to introduce and study Goldie ADS modules,
which allow us to give a unified approach of Goldie extending modules and ADS-
modules, introduced by E. Akalan et al. [3] and A. Alahmadi et al. [7], respectively. We
define a Goldie ADS module by the property that for every decomposition M = S⊕T
of M and every complement T ′ of S, there exists a submodule D of M such that
T ′βD and M = S ⊕ D. We study these modules, generalizing several results both
on Goldie extending modules and ADS-modules. We show that a non-singular Goldie
ADS module is an ADS module. We emphasize that our properties are of the same type
as those for Goldie extending modules and ADS-modules, sharing similar limitations
in studying certain properties, such as the closure of the respective class of modules
under direct sums. We also analyze when a direct summand of Goldie ADS modules
is a Goldie ADS and also when a direct sum of Goldie ADS module is Goldie ADS,
by using the concepts of relative ejectivity. In the last section, we look at Goldie ADS
property of some ring extensions.
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2. Definitions and notions

In this paper, R will present an associative ring with identity and all modules
over R are unitary right modules. We also write MR to indicate that M is a right
R-module. We shall denote the fact that a submodule N is essential in a module M
by N ≤e M . The following generalization of relative injectivity is introduced in [3,
Definition 2.1]. Let N and M be modules. N is called M -ejective if, for each K ≤M
and each homomorphism f : K → N , there exist a homomorphism f : M → N
and a X ≤e K such that f(x) = f(x), for all x ∈ X. M and N is called mutually
ejective if M is N -ejective and N is M -ejective. A submodule K of M is called fully
invariant if f(K) ⊆ K for every f ∈ EndR(M). Clearly 0 and M are fully invariant
submodules of M . The right R-module M is called a duo module provided every
submodule of M is fully invariant. The singular submodule of a module M will be
denoted by Z(M) = {m ∈ M : mI = 0 for some I ≤e RR}. A module M is called
singular (respectively non-singular) if Z(M) = M (respectively Z(M) = 0).

(CS): Every complement submodule of M is a direct summand of M .
(C2): Every submodule of M that is isomorphic to a direct summand of M is

itself a direct summand of M .
(C3): For any two direct summands A and B of M with A ∩ B = 0, the sum

A+B is a direct summand of M .
A module M is called is called continuous (respectively, quasi continuous) if M

satisfies (CS) and (C2) (respectively, (CS) and (C3)).
Let M be an R-module and X,Y ≤ M . In [3], the notion of β relation on

submodules X,Y of M , denoted by XβY , is defined such as XβY if and only if
X ∩ A = 0 implies Y ∩ A = 0 and Y ∩ B = 0 implies X ∩ B = 0 for all A,B ≤ M .
A right module M is Goldie extending if for each X ≤ M , there exists a direct
summand D of M such that XβD. M is Goldie extending if and only if for each
closed submodule C of M there is a direct summand D of M such that CβD.

Another notion generalizing extending property, ADS (Absolute Direct Sum-
mand) modules, was recently considered in [7]. It was introduced by Fuchs [10] for
abelian groups and for general modules by Alahmadi, Jain and Leroy [7]. As the au-
thors pointed out in [7], if R is commutative then every cyclic R-module is ADS. Also
every right quasi-continuous module is ADS, but the converse is not true. However,
a right ADS module which is also CS is quasi-continuous. Also in [14], Quynh and
Koşan proved that every ADS module satisfies (C3). Hence, this is a class of modules
between quasi-continuous modules and modules satisfying the (C3) condition. Quynh
and Koşan gave also different characterizations of ADS modules and showed how to
characterize semisimple modules and semisimple artinian rings using the ADS. The
SC and SI rings were also characterized by the ADS notion in [14].

3. Goldie absolute direct summand modules

A module M is called Goldie absolute direct summand (Goldie ADS) if, for
every decomposition M = S ⊕ T of M and every complement T ′ of S, there exists a
submodule D of M such that T ′βD and M = S ⊕D.
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A ring R right Goldie ADS if the (right) R-module R is Goldie ADS. We know
that extending modules are Goldie extending, but need not be ADS. Similarly, Goldie
extending modules do not necessarily satisfy Goldie ADS. Hence, the notions extend-
ing, Goldie extending, ADS and the property Goldie ADS are not directly related.

Example 3.1. Let R = Z2[x1, x2, ...], where xi are commuting indeterminants satisfy-
ing the relations: x3i = 0 for all i, xixj = 0 for all i 6= j, and x2i = x2j for all i and j.
Then R is a commutative, semiprimary ring with simple essential socle. But R is not a
self-injective ring (see [13, Example 5.45]). On the other hand, RR is soc-RR-injective
by [8, Example 5.7]. It follows that RR is soc-(RR ⊕ RR)-injective by [8, Theorem
2.2(4)]. We have Soc(RR⊕RR) = Soc(RR)⊕Soc(RR) is finitely generated. Therefore
RR ⊕ RR is soc-(RR ⊕ RR)-injective by [8, Theorem 2.10]. Since Soc(RR ⊕ RR) is
essential in RR⊕RR, then RR⊕RR is self-ejective by [3, Corollary 2.5(iii)]. It follows
that for each decomposition RR ⊕ RR = A ⊕ B, A and B are mutually ejective by
Lemma 3.11(2). It shows that RR ⊕ RR is Goldie ADS by Lemma 3.6. On the other
hand, RR⊕RR is not ADS. Indeed, if RR⊕RR is ADS, then R must be self-injective,
a contradiction.

Example 3.2. Let R be a triangle matrix ring over a field K. Then RR is CS. Note
that RR is non-singular. Since RR is not a C3-module, RR is not ADS. It follows that
RR is not Goldie ADS by Corollary 3.7.

Example 3.3 ([14, Example 2.10]). Let K be a field and let R = K[x, y]/〈x2, xy, y2〉.
Assume that S is any simple injective R-module. Let M = R ⊕ S. Then M is not a
CS-module (since R is indecomposable and not uniform). On the other hand, R,S are
relatively injective, and any two decompositions of M are isomorphic (since R and
End(S) are local rings). Hence M is an ADS module.

Let us mention the following equivalent conditions for Goldie ADS modules.

Lemma 3.4. The following conditions are equivalent for a module M .

1. M is Goldie ADS.
2. For every decomposition M = S ⊕ T of M and every complement T ′ of S, there

exists a submodule D of M and X of M such that X ≤e T ′, X ≤e D and
M = S ⊕D.

Proof. (1) ⇒ (2). Assume that M is Goldie ADS and M has a decomposition M =
S ⊕ T . Let T ′ be a complement of S. Then there exists a submodule D of M such
that T ′βD and M = S ⊕D. Let X = T ′ ∩D. Hence X ≤e T

′, X ≤e D.
(2)⇒ (1) is obvious. �

It is well-known that in general the class of extending modules is not closed under
direct sums, and this behavior is also carried on by Goldie extending modules and
ADS-modules. Finding necessary and sufficient conditions for ensuring the closure of
such classes under direct sums has been one of the most important open problems in
the theory of extending modules and their generalizations. In the next parts of our
work, we shall deal with such a problem for Goldie ADS modules.
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In order to obtain when a direct sum of two Goldie ADS modules has the same
property, the following concept generalizing relative injectivity will be useful.

Lemma 3.5 ([3, Theorem 2.7]). Let M1 and M2 be modules such that M = M1 ⊕M2.
Then M1 is M2-ejective if and only if for every K ≤M such that K ∩M1 = 0, there
exists M3 ≤M such that M = M1 ⊕M3 and K ∩M3 ≤e K.

In [7, Lemma 3.1], it is shown that an R-module M is ADS if and only if for
each decomposition M = A⊕B, A and B are mutually injective.

Lemma 3.6. An R-module M is Goldie ADS if and only if for each decomposition
M = A⊕B, A and B are mutually ejective.

Proof. Suppose M = A⊕B is Goldie ADS. We will show that A is B-ejective. Let K
be a submodule of M such that K ∩ A = 0. So K is contained in a complement, say
C, of A. Then, by hypothesis, there exists D ≤ M such that CβD and M = A⊕D.
It is easy to see that K ∩D ≤e K. Thus, we have A is B-ejective by Lemma 3.5.

Conversely, suppose for each decomposition M = A⊕B, A and B are mutually
ejective. Let C be a complement of A. By Lemma 3.5, there exists and D ≤M such
that M = A⊕D and C∩D ≤e C. So, A⊕ (C∩D) ≤e M . It follows that C∩D ≤e D.
So we are done by Lemma 3.4. �

Let M1 and M2 be modules with Z(M1) = 0 and M = M1⊕M2. In [3, Corollary
2.8], it is shown that M1 is M2-injective if and only if M1 is M2-ejective. As the authors
pointed out in [3], if Z(M) = 0 and M is R-ejective, then M is injective (because of
the Baer criterion).

Corollary 3.7. A non-singular Goldie ADS module is ADS.

Proof. By Lemma 3.6 and [3, Corollary 2.8]. �

We collect, in the following theorem, some fundamental properties of Goldie ADS
modules.

Theorem 3.8. Assume that M is Goldie ADS. Then the following statements hold.

1. Every direct summand of M is Goldie ADS.
2. M satisfies (C3) condition on fully invariant summands.
3. For any decomposition M = A⊕B and any b ∈ B, A is bR-ejective.

Proof. (1) Assume that A is a direct summand of M , i.e., M = A ⊕ B for some
B ≤ M . Let A = A1 ⊕ A2 and K be a complement of A1 in A. Then we have
M = A1 ⊕ (A2 ⊕ B). First we show that K ⊕ B is a complement of A1 in M . Let
C ≤M such that K⊕B ≤ C and C∩A1 = 0. Then K ≤ C∩A and (C∩A)∩A1 = 0.
Since K is a complement of A1 in A, we can obtain that K = C ∩A. It follows that

K ⊕B = (C ∩A)⊕B = C ∩ (A⊕B) = C.

Since M is Goldie ADS, there exists a submodule D of M such that (K ⊕B)βD and
M = A1 ⊕D. Hence A = A1 ⊕ (D ∩A). It is easy to see that Kβ(D ∩A).

(2) Let A and B be fully invariant direct summands ofM such that A∩B = 0. We
shall show that A⊕B is a direct summand of M . Write M = A⊕A′ and M = B⊕B′
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for some submodules A′, B′ of M . By Lemma 3.6, A is A′-ejective. Hence there exists
M ′ ≤M such that M = M ′ ⊕A and B ∩M ′ ≤e B by Lemma 3.5. Inasmuch as B is
a fully invariant submodule of M , B = (M ′ ∩B)⊕ (A∩B) = M ′ ∩B. It follows that
B ≤M ′. Then M ′ = B ⊕ (M ′ ∩B′) and so M = A⊕B ⊕ (M ′ ∩B′).

(3) Suppose M has a decomposition M = A ⊕ B. By Lemma 3.6, the module
A is B-ejective. Let K = A⊕ bR and X be a submodule of K such that X ∩ A = 0.
Since A is B-ejective, there exists C ≤M such that M = A⊕C and X ∩C ≤e X by
Lemma 3.5. Note that K = A⊕ (C ∩K). It follows that (C ∩K)∩X = X ∩C ≤e X.
Now A is bR-ejective for any b ∈ B by Lemma 3.5. �

A module MR is called Goldie quasi continuous if M is Goldie extending and
satisfies (C3) (see [3]).

Proposition 3.9. Every Goldie quasi continuous module is Goldie ADS.

Proof. Assume that M has a decomposition M = S⊕T and T ′ is a complement of S
in M . Since M is Goldie extending, there exists a direct summand D of M such that
T ′βD. Since T ′ ∩ S = 0 we have D ∩ S = 0 by the equivalence relation β. We have
S ⊕ (T ′ ∩ D) ≤e M and obtain that S ⊕ D ≤e M . So, by (C3) property, we obtain
that M = S ⊕D. �

In [11], Kuratomi defined the GQC (generalized quasi continuous) modules by
using Goldie extending modules. M is said to be GQC if for every submodule X1

and X2 of M with X1 ∩ X2 = 0 there exists an essential submodules Yi ≤e Xi and
a decomposition M = A1 ⊕ A2 such that Yi is a submodule of Ai for i = 1, 2. Let
{Mi : i ∈ I} be a family of modules. The direct sum decomposition M = ⊕IMi is said
to be exchangeable if, for any direct summand X of M , there exists M i ≤Mi (i ∈ I)
such that M = X⊕ (⊕IM i). A module M is said to have the finite internal exchange
property (FIEF) if, any finite direct sum decomposition M = M1 ⊕M2 ⊕ · · · ⊕Mn is
exchangeable.

Corollary 3.10. The following statements are equivalent for a duo module M :

1. M is Goldie extending and Goldie ADS.
2. M is Goldie quasi continuous.
3. M is GQC with FIEP.

Proof. By Theorem 3.8, Proposition 3.9 and [11, Theorem 3.4]. �

We have the following direct sum decomposition theorem for Goldie extending
submodules.

Lemma 3.11 ([11, Proposition 2.1]). Let M,N , Mi and Ni be modules.

1. If N is M1-ejective and M2-ejective, then N is M1 ⊕M2-ejective.
2. Let M1 be a direct summand of M and N1 a direct summand of N . If M is
N -ejective, then M1 is N1-ejective.

3. If M1 and M2 are N -ejective modules then so is M1 ⊕M2.

The proof of the following proposition uses the similar argument as in [14].
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Proposition 3.12. Let M =
n⊕

i=1

Mi be direct sum of fully invariant submodules Mi’s .

Then M is Goldie ADS if and only if each Mi is Goldie ADS and Mi is Mj-ejective
for all i, j = 1, 2, . . . , n and i 6= j.

Proof. =⇒: By Theorem 3.8 (1), Mi’s are Goldie ADS. Again by Theorem 3.8 (2),
Mi ⊕Mj , which is a direct summand of M for i 6= j, is Goldie ADS. But by Lemma
3.6, Mi is Mj-ejective for i 6= j.

⇐=: Let M = A ⊕ B. We claim that A is B-ejective. Since each Mi is fully
invariant, we can obtain that Mi = (A∩Mi)⊕ (B∩Mi) for all i = 1, 2, . . . , n by [2]. It

follows that A =
n⊕

i=1

(A∩Mi) and B =
n⊕

i=1

(B∩Mi). Since Mi is Goldie ADS, (A∩Mi)

is (B ∩Mi)-ejective. Since Mi is Mj-ejective then (A ∩Mi) is (B ∩Mj)-ejective for
all i, j = 1, 2, . . . , n by Lemma 3.11(2). It follows that A ∩Mi is B-ejective for all
i = 1, 2, . . . , n by Lemma 3.11(1). Thus A is B-ejective by Lemma 3.11(3). �

E(−) denotes the injective hull for a module.

Theorem 3.13. The following conditions are equivalent for a module M :

1. M is Goldie ADS.
2. For every decomposition M = A⊕B, for all f ∈ Hom(E(B), E(A)), there exists
D ≤M such that M = A⊕D and DβX, where X = {b+f(b)| b ∈ B, f(b) ∈ A}.

Proof. (1) ⇒ (2) We show that X = {b + f(b)|b ∈ B, f(b) ∈ A} is a complement of
A in M . First, we note that that A ∩X = 0. Let L be a submodule of M such that
L ∩A = 0 and X ≤ L. Consider the the natural projections πA and πB of M onto A
and B, respectively.

Claim: πA(x) = fπB(x) for all x ∈ L. Assume that there exists x ∈ L such that (πA−
fπB)(x) 6= 0. Since A ≤e E(A), there exists r ∈ R such that 0 6= (πA−fπB)(xr) ∈ A.
But πA(xr)−fπB(xr) = xr− (πB(xr)+fπB(xr)) ∈ A∩L = 0, a contradiction. Thus
πA(x) = fπB(x) for all x ∈ L.

Now, let x ∈ L. Hence x = a+ b, where a ∈ A and b ∈ B. Then πA(x) = a. By
the claim, we can obtain πA(x) = a = fπB(x) for all x ∈ L. Therefore, x = a + b =
fπB(x) + b ∈ X. It follows that L = X. The rest is clear from the definition of Goldie
ADS.
(2)⇒ (1) Let M = A⊕B, and T be a complement of A in M .
Then T = {k+f(k)| k ∈ K} for some K ≤ B and f ∈ Hom(E(B), E(A)). In fact, let
πB : A⊕B → B be the canonical projection. There exists f : E(B)→ E(A) such that
fπB(t) = t−πB(t) for all t ∈ T . Thus T = {k+f(k)| k ∈ πB(T )}. By (2), there exists
D ≤ M such that M = A ⊕ D and DβX, where X = {b + f(b)| b ∈ B, f(b) ∈ A}.
Note that f(πB(T )) ≤ A and so D ∩ T ≤e T . Now we show that T ∩ D ≤e D. Let
d ∈ D, d 6= 0. Assume T ∩ dR = 0. If (T ⊕ dR) ∩ A 6= 0, write a = c + dr 6= 0 for
some a ∈ A, c ∈ T and r ∈ R. We have c 6= 0 and obtain that there exists r′ ∈ R
such that cr′ ∈ T ∩ D and cr′ 6= 0. Therefore ar′ = cr′ + drr′ ∈ A ∩ D = 0, which
implies cr′ + drr′ = 0. It follows that cr′ = −drr′ ∈ T ∩ dR = 0 hence cr′ = 0, a
contradiction. Thus (T ⊕ dR) ∩ A = 0 and then T = T ⊕ dR by the maximality of
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T . It follows that d = 0, again a contradiction. Thus we get T ∩ dR 6= 0. Hence there
exists y ∈ R such that dy ∈ T ∩D and dy 6= 0. So D ∩ T ≤e D. �

4. Goldie ADS rings

A ring R is called a right Goldie ADS ring if RR is a Goldie ADS module.
We start this section with the following ring extension.

Theorem 4.1. Let M be a S −R-bimodule. Assume that

T =

(
S M
0 R

)
is right Goldie ADS. Then

1. R is right Goldie ADS
2. MR is Goldie ADS.

Proof. (1) Let RR = A⊕B, I ≤ A and f : I → B an R-homomorphism. Let

Ā =

(
0 0
0 A

)
, B̄ =

(
0 0
0 B

)
and Ī =

(
0 0
0 I

)
.

It is easy to see that Ā⊕ B̄ is a direct summand of TT . We define θ : Ī → B̄ via

θ

((
0 0
0 r

))
=

(
0 0
0 f(r)

)
.

Then θ is a T -homomorphism. By the hypothesis, there exists a T -homomorphism
φ : Ā→ B̄ and J̄ ≤e Ī such that φ(j̄) = θ(j̄) for every j̄ ∈ J̄ , where

J̄ =

(
0 0
0 J

)
.

It is clear that φ is an R-homomorphism. Let ι : A→ Ā via

ι(a) =

(
0 0
0 a

)
and π : B̄ → B via

π

((
0 0
0 b

))
= b.

Then ι and π are R-homomorphisms. Since J̄ ≤e Ī then J ≤e I. Let say f̄ := πφι. So

f̄(j) = πφι(j) = πφ

((
0 0
0 j

))
= πθ

((
0 0
0 j

))
= π

((
0 0
0 f(j)

))
= f(j)

for every j ∈ J so we are done by Lemma 3.6.
(2) Assume that that MR = M1 ⊕ M2, N ≤ M1 and f : N → M2 is an R-
homomorphism. Let

M̄1 =

(
S M1

0 0

)
, M̄2 =

(
0 M2

0 R

)
and N̄ =

(
0 N
0 0

)
.
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It is easy to see that TT = M̄1 ⊕ M̄2. We define θ : N̄ → M̄2 via

θ

((
0 n
0 0

))
=

(
0 f(n)
0 0

)
.

Then θ is a T -homomorphism. By the hypothesis, there exists a T -homomorphism
φ : M̄1 → M̄2 and J̄ ≤e N̄ such that φ(j̄) = θ(j̄) for all j̄ ∈ J̄ . Then φ is an
R-homomorphism. Let ι : M1 → M̄1 via

ι(m) =

(
0 m
0 0

)
and π : M̄2 →M2 via

π

((
0 m
0 r

))
= m.

Then ι and π are R-homomorphisms. Since J̄ ≤e N̄ then J ≤e N . Say f̄ := πφι so
f̄(j) = f(j). �

We recall the following useful lemma proved in [5, Lemma 5].

Lemma 4.2. Let M be a right R-module, and let L be a submodule of M , where
R = ReR for some e2 = e ∈ R and S = eRe. Then:

1. L is essential in M if and only if Le is essential in (Me)S;
2. L is a complement in M if and only if Le is a complement in (Me)S;
3. L is a direct summand of M if and only if Le is a direct summand of (Me)S.

Proposition 4.3. Let M be a right R-module, where R = ReR for some e2 = e ∈ R
and S = eRe. Then:

1. (Me)S is a Goldie ADS module if and only if MR is a Goldie ADS module.
2. (Re)S is a Goldie ADS if and only if RR is Goldie ADS.

Proof. (1) Assume that (Me)S is a Goldie ADS module. Let MR = X ⊕ Y and Z
be a submodule of M with Z ∩ X = 0. Then Me = Xe ⊕ Y e and, by Lemma 4.2,
Ze ∩Xe = 0. Since (Me)S is a Goldie ADS module, there exists a submodule D of
Me such that Ze ∩ D is essential in Ze and Me = Xe ⊕ D. Hence MR = X ⊕ DR
and Z ∩ DR is essential in Z. They imply that X is Y -ejective by Lemma 3.5, and
hence MR is a Goldie ADS module by Lemma 3.6.

Assume that MR is a Goldie ADS module. Let Me = D ⊕ T and K be a
submodule of (Me)S with K ∩ D = 0. Then M = DR ⊕ TR and, by Lemma 4.2,
KR∩DR = 0. Since MR is a Goldie ADS module, there exists a submodule X of M
such that KR ∩X is essential in KR and M = DR ⊕X. Hence Me = (DR)e⊕XS
and (KR)e ∩ XeR ≤ XS. Now DRe = DeRe = D and KRe = KeRe = K. This
implies that Me = D ⊕XS and K ∩XS is essential in K. Thus D is T -ejective by
Lemma 3.5, and hence (Me)S is a Goldie ADS module by Lemma 3.6.
(2) It is a direct consequence of (1). �

Theorem 4.4. Mn(R) is Goldie ADS if and only if (⊕n
i=1Ri)R is Goldie ADS, where

each Ri = R.
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Proof. It is easy to obtain that Mn(R) = Mn(R)eMn(R), where e is the matrix unit
with 1 in the (1, 1)th position and zero elsewhere. The rest is follows by Proposition
4.3. �
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