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Sufficient conditions of boundedness of L-index
and analog of Hayman’s Theorem for analytic
functions in a ball

Andriy Bandura and Oleh Skaskiv

Abstract. We generalize some criteria of boundedness of L-index in joint variables
for analytic in an unit ball functions. Our propositions give an estimate maximum
modulus of the analytic function on a skeleton in polydisc with the larger radii
by maximum modulus on a skeleton in the polydisc with the lesser radii. An
analog of Hayman’s Theorem for the functions is obtained. Also we established
a connection between class of analytic in ball functions of bounded l;-index in
every direction 1;, j € {1,...,n} and class of analytic in ball of functions of
bounded L-index in joint variables, where L(z) = (I1(2),...,In(2)), l; : B® = Ry
is continuous function, 1; = (0,...,0, 1 ,0,...,0) e R}, z € C™.
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j—th place
Mathematics Subject Classification (2010): 32A05, 32A10, 32A30, 32A40, 30H99.

Keywords: Analytic function, unit ball, bounded L-index in joint variables, max-
imum modulus, partial derivative, bounded L-index in direction.

1. Introduction

Recently, there was introduced a concept of analytic function in a ball in C"
of bounded L-index in joint variables [8]. We also obtained criterion of boundedness
of L-index in joint variables which describes a local behavior of partial derivatives
on a skeleton in the polydisc and established other important properties of analytic
functions in a ball of bounded L-index in joint variables. Those investigations used
an idea of exhaustion of a ball in C™ by polydiscs.

The presented paper is a continuation of our investigations from [8]. We set the
goal to prove new analogues of criteria of boundedness of L-index in joint variables for
analytic in a ball functions. Particular, we prove an estimate of maximum modulus on
a greater polydisc by maximum modulus on a lesser polydisc (Theorems 3.1, 3.2) and
obtain an analog of Hayman’s Theorem for analytic functions in a ball of bounded
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L-index in joint variables (Theorems 4.1 and 4.2). For entire functions similar propo-
sitions were obtained by A. I. Bandura, M. T. Bordulyak, O. B. Skaskiv [4, 5] in a case
L(z) = (I1(2),...,ln(2)), z € C™. Also A. I. Bandura, N.V. Petrechko, O. B. Skaskiv
[6, 7] deduced same results for analytic in a polydisc functions. Hayman’s Theorem and
its generalizations for different classes of analytic functions [1, 3, 5, 7, 12, 15, 20, 21]
are very important in theory of functions of bounded index. The criterion is helpful
[1, 9] to investigate boundedness of index of entire solutions of ordinary or partial
differential equations.

Note that the corresponding theorems for entire functions of bounded [-index
and of bounded L-index in direction were also applied to investigate infinite products
(see bibliography in [21, 1]). Thus, those generalizations for analytic in a ball functions
are necessary to study L-index in joint variables of analytic solutions of PDE’s, its
systems and multidimensional counterparts of Blaschke products. At the end of the
paper, we present a scheme of application of Hayman’s Theorem to study properties
of analytic solutions in the unit ball.

2. Main definitions and notations

We need some standard notations. Denote
Ry =(0,400), 0=(0,...,0), 1 =(1,...,1),
1, =(0,...,0, 1 ,0,...,0) e RY,
j—th place
R=(r1,...,tn) €ERY, 2= (21,...,2,) €C", 2| = ,/Z;lzl |22

For A = (a1,...,a,) € R", B = (by,...,b,) € R" we will use formal notations
without violation of the existence of these expressions
AB = (Clel, o ,anbn), A/B = (al/bl, e ,an/bn),

AB =ababz . calr A = a1 4+ an,
and the notation A < B means that a; < b;, j € {1,...,n}; the relation A < B
is defined similarly. For K = (ki,...,k,) € Z' denote K! = k;i!-...-k,!. The

polydisc {z € C": |z; — 29| <, j=1,...,n} is denoted by D"(2°, R), its skeleton
{zeC: [z =29 =75 j=1,...,n} is denoted by T"(2%, R), and the closed
polydisc {z € C" : |z; — 2j| < rj, j = 1,...,n} is denoted by D"[z% R]. The
open ball {z € C": |z — 2% < r} is denoted by B"(2°,7), its boundary is a sphere
S"(2%r) = {z € C": |2 —2° =}, the closed ball {z € C" : |z —2° < r} is denoted
by B[z, r], B* =B"(0,1),D=B! = {z € C: |2| < 1}.

For K = (ki,...,k,) € Z and the partial derivatives of an analytic in B"

function F(z) = F(z1,...,2,) we use the notation
151l kit dkn
F(K)(z)za - :8k —.
0z 0z ... 0z
Let L(z) = (l1(2),...,l.(2)), where [;(z) : B® — R, is a continuous function such
that

(V2 €B"): 1;(2) > B/(1—|2]), j €{1,...,n}, (2.1)
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where 8 > /n is a some constant. For a polydisc A.I. Bandura, N.V. Petrechko and
O.B. Skaskiv [6, 7] imposed the restriction (Vz € D™(0,1)): 1;(z) > B/(1—|zl),
j€{1l,...,n}. A similar condition is used in one-dimensional case by S.N. Strochyk,
M.M. Sheremeta, V.O. Kushnir [22, 14, 21].
Note that if R € R?, |R| < 8, 2° € B" and 2z € D"[2°, R/L(2°)] then z € B"
(see Remark 1 in [8]).
An analytic function F': B* — C is said to be of bounded L-index (in joint
variables), if there exists ng € Z such that for all z € B" and for all J € Z7}
FO(z FE) (4
|J!LJ((Z))| < max { |K!LK((Z)) s KelZl, |K|| < no} . (2.2)
The least such integer ng is called the L-index in joint variables of the function F
and is denoted by N(F,L,B") (see [8]). Entire and analytic in polydisc functions of
bounded L-index in joint variables are considered in [4, 5, 6, 7, 10, 13, 19, 18, 16, 17].
By Q(B™) we denote the class of functions L, which satisfy (2.1) and the following
condition

(VReRY,|R| < B, je{l,...,n}): 0<A;(R) < A j(R) < o0, (2.3)
where A1 j(R) = inf inf {I;(2)/1;(=") : 2 € D" [*, R/L(=")] }.
A2 ;(R) = j‘éﬁ.?n sup {1;(2)/1;(2%) : z € D" [2°, R/L(z°)] } .
A(R)=(A11(R), ..., Ain(R)), A2(R) = (A21(R), ..., A2 n(R)).

We need the following results.

Theorem 2.1 ([8]). Let L € Q(B™). An analytic in B" function F has bounded L-index
in joint variables if and only if for each R € R}, |R| < B3, there exist ng € Zy, po > 0
such that for every z° € B" there exists K° € 27, |K°| < ng, and

|F(K)(z)\. "o 0 |F(K°)(zO)|
max{mmzylf(léno, 2 €D [ R/LED] ¢ < po g oy

(2.4)
Denote L(z) = (I3(2), . .., 1n(2)). The notation L =< L means that there exist
91 = (Ql,j, ey Ql’n) S Ri, 92 = (927j, e 792,n) S Ri
such that Vz € B™ 917jl~j(z) <lj(z) < 92,jl~j(z) for each j € {1,...,n}.

Theorem 2.2 ([8]). Let L € Q(B"), L < L, 3|01| > \/n. An analytic in B™ function F

has bounded L-index in joint variables if and only if F' has bounded L-index in joint
variables.

3. Local behaviour of maximum modulus of analytic in ball function

For an analytic in B™ function F' we put

M(r,2°, F) = max{|F(2)|: z € T"(2°,7)},
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where 2° € B", r € R?. Then M(R,2° F) = max{|F(z)|: z € D"[2°, R]}, because
the maximum modulus for an analytic function in a closed polydisc is attained on its
skeleton.

The following proposition uses an idea about the possibility of replacing universal
quantifier by existential quantifier in sufficient conditions of index boundedness [2]. To
prove an analog of Hayman’s Theorem we need this theorem which has an independent
interest.

Theorem 3.1. Let L € Q™, F : B® — C be analytic function. If there exist R/,
R"eRY, R < R",|R"| < and p; = p1(R', R") > 1 such that for every z° € C"

M(LZ/) 20 F) <M (IJ(}ZO),ZO,F> (3.1)

then F' is of bounded L-index in joint variables.

Proof. At first, we assume that 0 < R’ <1 < R".
Let z° € B™ be an arbitrary point. We expand a function F in power series

z) = Z br(z — zO)K = Z bry .k (21 — Z?)kl o (2n — Zg,)k"a (3.2)

K=>0 k1, kn 20

() (0
where b = by, ..k, = K$ )'

Let (R, 2", F) = max{|bg|RX: K > 0} be a maximal term of power series (3.2)
and

v(R) =v(R,2°,F) = (W(R),...,v2(R))
be a set of indices such that

(R, 2%, F) = |b, )[RV,

R =" v;(R) = max{|K||: K > 0, [bxe| RS = p(R, 2, F)}.

In view of inequality (3.8) we obtain for any |R| < 1 — [2°],
w(R,2°, F) < M(R,2°, F).

Then for given R’ and R” with 0 < |R'| < 1 < |R"| < 8 we conclude

M(R'R,2°,F) <> |be[(R'R)* <> u(R,2°, F)(R)*
k>0 k>0
= u(R,2°, F) Y (R = uw(R, 2%, F).

L1
k>0 j=1
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Besides,

1% 124 1
In (R, 2", F) = In{|b,(r)|R (B} = hl{bu(R)KRR") (R)(R,,),,(R)}

. 1
= bl (RE Y 10 { |

<Inu(R"R,2°,F) — |[v(R)|In min 7/

1<j<n

This implies that

< 1" 0 _ 0
B < o (b (B R F) — (R, 20, )

(1—-7})M(R'R,2°, F))

1

<—r——— | InM(R'R,2°, F) — In(
Inmini<;<p 77 ;

=.

1

1 " In(1 -7
<————— (WM(R"R,2°,F)~In M(R'R,2°, F)) — Z]‘l—(ﬁ)
lnmlnlgjgn T’j ming <;<n Tj
1 G M@ERRF) e (- 7) (3.3)
Cominigi<, ) M(R'R2%F)  mingi<nry '

Put R = ﬁ Now let N(F, 2% L) be the L-index of the function F in joint variables
at point z° i. e. it is the least integer for which inequality (2.2) holds at point 2°.

Clearly that

N(F,2°,L) <v < ,zO,F) =v(R,2°, F). (3.4)

1
L(z%)
But

M (R"/L(2°),2°, F) < p1(R',R")M (R'/L(z°),2°, F) . (3.5)
Therefore, from (3.3), (3.4), (3.5) we obtain that Vz° € B®

—Yo_ n(1—=7})  py (R, R")

N(F,2°,L) < _ . :
(F.25 1) < In min{ry{,rY In min{r{, Y

This means that I’ has bounded L-index in joint variables, if 0 < R’ < 1 < R”,
|R"| < .

Now we will prove the theorem for any 0 < R’ < R”, |R"| < f. From (3.1) with
0 < R; < Rs it follows that

1/ / 1
max{|F(z)|:z€T”<zo 2R R+ R )}

"R+ R 2L(29)
2R R+ R’
"R+ R" 2L(20)

< Py max {|F(z)| rzeT" <zo
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2L(z)
R'+R'

max{F(z)| rzeT" (zo, 2R//~> }
(R'+ R")L(z°)

< Py max {|F(z)| tze T (ZO, 2R”~> } )
(R + RL()

<1l< R, - R,,. Taking into account the first part of the proof, we

Denoting L(z) = we obtain

where 0 < R, 5 R,,

conclude that the function F has bounded L-index in joint variables. By Theorem
2.2, the function F' is of bounded L-index in joint variables. O

Also the corresponding necessary conditions are valid.

Theorem 3.2. Let L € Q(B"). If an analytic in B™ function F' has bounded L-index
in joint variables then for any R', R" € R", R’ < R", |R"| < j3, there exists a number
p1 = p1(R', R") > 1 such that for every z° € B" inequality (3.1) holds.

Proof. Let N(F,L) = N < +oc0. Suppose that inequality (3.1) does not hold i.e. there
exist R, R”, 0 < |R'| < |R"| < 3, such that for each p, > 1 and for some 2° = 2%(p,.)

R// R/
M JF M2 F). :
(2= ) = r-0 (g F) (30
By Theorem 2.1, there exists a number py = po(R"”) > 1 such that for every 20 € B"
and some K" € Z", |[K°|| < N, (i.e. ng = N, see proof of necessity of Theorem 2.1
in [8]) one has
R 0 0
M, 2% FED ) < po| FED(20)]. 3.7
(i F7) < mlF S0 (37)
We put

n N . N
e N —j)! rirl .ol
by = po ||A§Yj(R”) (NhHnt § ((,, _) ( 12 ,) ,
i ..

bz—ﬁo(HA (R") ) N!)"—Q(.

o
M=
L
—
==
S~—
T,
=
~_
7N\
3|3
SRS
=
ER RS
~__
Z
—
—
—
»—j\
S~— =
Z
—

N . " N\ N
— N (pt (N —j)! "n-1"n 1
bue1 =P (RONY| D5 (4%) maX{le ’

j:l n—1 1 n
N . N
(N = ) r! 1
b, = o (e L
o E CATEN ANV SRR

and
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Let 2% = 29(p,) be a point for which inequality (3.6) holds and K° be such that (3.7)
holds and

,r,I/

/
M= 0 F) = |F(). M —— 20 FD ) = | p(D)
(g F) =W M (g FO )
for every J € Z, ||J|| < N. We apply Cauchy’s inequality

PO < 71 (ng) (") (33)

for estimate the difference

|F(J)(Z},lv 232’ ] Zj',n) - F(I)(Z(lJv 2327 ) Z},n)|

25 Sl
/ (€ 22 25 )dE

Jitlg Jo Jn
o 02" 027 ... 0%

ollI+1 g . !
- 32{”’18252 .0z Z(lerl’jz""’j")) li(29) (3.9)
Taking into account (29, Zh9ys2y,) €D7 20, LZ;)], forall k € {1,...,n},
0 T 0 11 0
|Z},k - Zkl = M7 lk(zhz}% .- '7Z§,n) < )‘2,k<R )lk(z )
and (3.8) with J = K°, by Theorem 2.1 we have
|F(J) (Z?a Z§,2a R Z?},n)|
< JU (21, Zyor-- Z;n) HZ=2 I (29, Zyor-- Zjn) FE®) (,0
< L ol P )
n j 0
< J!LJ(ZO) [Tz )‘%]fk(RH) K01 L(z2%) K iy
= KOILKY(20) pofCH = ) IFGED
o'W () TTiop M (RY)
- S22 P ), (3.10)
()
From inequalities (3.9) and (3.10) it follows that
ollI+1 g

*
82{1+18252 az%n Z(j1+17j27~»-»jn,))

ll(zo) * * *
T {IF(J)(ZJ)| - ‘F(J)(Z?’ZJ,% e '7ZJ,n)|}

1
l JILG1+Ld2,000n) (50 no \E (R
> B ) - 2 ) it MR oy,
™ r{(R’)
Then
11(2°) allKOHflf

— 1!
St

*

V4

6219971821@3 azkg( (k?*l’kg,m,k%))
1 52 ...0zn
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po(kf — DURSL. . KOILK" (O [T, M5 (RY)
T/1/<R/>KO | (Z )l

B0 | o2y
> 0 0 (Z 0 Y 0 )
()2 |9M129.k8 | g kT Rek)

. kg!LK° (=9) Ty A5 (R

CIRCIL e
polk — DKL KL GO T, A500)
- T’I'(R’)KO |F(2")]
I (0) | Q11K g
= 1\ k9 ( (o, kg"“’k?z))
(rf)* 8z22...8zn
Do 7 0 O o (k? —J1)!
(R’)KO H)‘QZ R") | ky!.. 2317(7"’1’)3'1 |[F(z9)]...
J1=

NUACDYSED

= 0 )

T2

ONE =Ky —ks £

é)zkg 8zk$‘ (Z?O,O,kg,...,k%))
3% ... 0z
k9 0 n k9 .
17 (2°)po LOAS- ok ) "y ) k2 0 (k3 — j2)!
AP lR kg!. . k! == F(2Y)]
(r ”)ko(R’ H 2, 3 v = (riy)3z
(0]
Po k0 oy [TT AR o ) 101 01 o (kY — 1) «
7(R,)K0L (Z ) HAQ,i(R ) k2....k". (,rlll)jl |F(Z )|
i=2

j1=1

> (B2D) 1r el - PG L

(3.11)
where in view of the inequalities Ay ;(R"”) > 1 and R”

by =

k9 0o
L (HAﬁ")’fS' g ys Bt

L(ZO) e R K - K 0 0 _.71
= R R’ Po HAQTi(R ) | Kt k! Z
=2

L)\
// ]1 R bl’
J1=1

(R,) (HAQZ R”) (H)kﬁmz (kg—jg)g(L(zO))Kob%

by =

2 )
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7 Po KO/ _0yy ko 7 k?z'
bp_1 = L A (R
1 (R/)KO (Z ) Z,n( )(Ti/)k(ll o (r;{—2)k272 X
k’?L*l . K°
(kgfl _Jnfl)! L(ZO)
<2 e <URr) e
n—1—

K . KO
~ Po 0 1 “ k,ol — Jn)! L(z°
bn = oy LK (20) —— = Z( b (,,) by

(R") (PR ()R = (r1)an R

Thus, (3.11) implies that

. ZO K° Z* n
|F(K)(z}o)|Z(LJ(%,,)> |F(2*)] IF( °)|—ij

But in view of (3.6) and a choice of p, we have

AEE *>Zb

Thus, (3.7) and (3.8) imply

0
LZO K . n
| (2 |2( 1(%// ) F(2)| 4 pe— D> b
j=1

0

J 0 KO
R” = KOIT, ( )
( N L ><zKo>|
(nt)™
Hence, we have p, < po( /“ r, )N "+ Z -, b;, but this contradicts the choice of
P O

4. Analogue of Theorem of Hayman for analytic in a ball function of
bounded L-index in joint variables

Theorem 4.1. Let L € Q(B™). An analytic function F in B™ has bounded L-index in
joint variables if and only if there exist p € Z4 and ¢ € Ry such that for each z € B™

(1) (5 (K) (4
mac [ B =pa <eoma [ BN g <p) )

Proof. Let N = N(F,L,B") < +o00o. The definition of the boundedness of L-index in
joint variables yields the necessity with p = N and ¢ = ((N + 1)1)".
We prove the sufficiency. For F' = 0 theorem is obvious. Thus, we suppose that

F#£0. DenoteﬂZ(%,---7%)~
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Assume that (4.1) holds, 20 € B", z € D"[2%, 2] Forall J € Z2, || J|| < p+1,

L(29)
one has
[FD G| _ gy FP )] J [FUO)]
T MO gy 3o MO St 1K <)
F(K)
< ¢ AJ(B) max {AIK(2)M K< p} < BG(z), (4.2)
where B = ¢- max{A¥(B): |K| =p+ 1} max{A;75(8): ||K| < p}, and
F(E)
G(z) = max{|LK(Z(OZ)) - IK| <p}.
We choose L
(1) —(,M (1) ne0 L+
2 =(z",.. ., 2,))eT(2 ’25\/HL(ZO))
and
22 = (z%z)7 2P e (20, L(Izo))
such that F(z(M) # 0 and
2)y] — B o
|[F(z"9)| = M (L(zo)’z ,F> # 0. (4.3)

These points exist, otherwise if F'(z) = 0 on skeleton

™ (2 ) T (o)

then by the uniqueness theorem F = 0 in B". We connect the points z(!) and 2z(?
with plane

29 = koz1 + g,
23 = k3z1 + c3,

o=
Zn = knz1 + ¢,
where
. Zi(z) _ 21(1) . Zz'(l)ZEQ) _ 22(2)251) y .
TP T T e T

It is easy to check that 2V € o and 2@ € a. Let G(21) = G(z)|a be a restriction of
the function G onto a.

For every K € Z% the function F (K) (z)‘a is analytic function of variable z;
and é(zgl)) = G(z(l))‘a # 0 because F(z(1)) # 0. Hence, all zeros of the function
FE)(z) |a are isolated as zeros of a function of one variable. Thus, zeros of the function

G(z1) are isolated too. Therefore, we can choose piecewise analytic curve v onto « as
following

z2=2(t) = (21(t), kaz1(t) + c2, ..., knz1(t) + ¢cp), t € [0, 1],
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which connect the points (1), 2(2) and such that G(z(t)) # 0 and

o 26
| o < s

1)

For a construction of the curve we connect z,"’ and z; (2) by a line

A0 =7 2+ 4", teo 1],
The curve « can cross points z; at which the function G (21) = 0. The number of such
points m = m(z(M), 2(?)) is finite. Let (27 ) be a sequence of these points in ascending

order of the value |z§1) =27l k€ {1,2,...,m}. We choose

282 -1
S/ ()
Now we construct circles with centers at the points 27, and corresponding radii
r;c < g7 such that é(zl) # 0 for all z; on the circles. It is possible, because F' # 0.
Every such circle is divided onto two semicircles by the line 2§ (¢). The required

piecewise-analytic curve consists with arcs of the constructed semicircles and segments
of line 23 (t), which connect the arcs in series between themselves or with the points

zil), zi ). The length of 2z1(t) in C (but not z(¢) in C™!) is lesser than

Bivn 1 28
h(z%)  2v/nph(2°) ~ Vil (2%)

| — 2" 28
t =
/‘Z )Id |k|/|zl Nt < 2@ _ 0| Vol (20)

S 28+1 2vmBL(2) 28 2B(28°+1)
T 2nPls(2°) 282 -1 Vnli(2°) T (282 - 1)v/nls(2°)’

Hence,
2B(28% +1)y/n
dt < ——————~—=285. 4.4
/ (1) s (44)
Since the function z = z(t) is piece-wise analytic on [0, 1], then for arbitrary K € Z7,
JeZ, |K| < p, either

(1 2
r< 1<]£nm {2tk = 21kl 1211 — )| |21,m — 21 )|7

Then

s€{2,...,n}.

FUO ()] _ [PU)ED)
L) -~ L) (42

or the equality

[FES )] _ [FYD(=(t)
LE(20) —  L7(29)
holds only for a finite set of points ¢ € [0;1].

(4.6)

(2
Then for function G(z(t)) as maximum of such expressions % by all
I|.7]] < p two cases are possible:
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In some interval of analyticity of the curve 7 the function G(z(t)) identically
equals simultaneously to some derivatives, that is (4.5) holds. It means that
G(z(t)) = w(&%?)l for some J, ||.J|| < p. Clearly, the function F(/)(2(t)) is
analytic. Then |F()(z(t))| is continuously differentiable function on the in-
terval of analyticity except points where this partial derivative equals zero
|F1:92) (21 (t), 22())| = 0. However, there are not the points, because in the
opposite case G(z(t)) = 0. But it contradicts the construction of the curve ~.

In some interval of analyticity of the curve v the function G(z(t)) equals si-
multaneously to some derivatives at a finite number of points ¢z, that is (4.6)
holds. Then the points ¢ divide interval of analyticity onto a finite number of
segments, in which of them G(z(t)) equals to one from the partial derivatives,

i.e G(z(t) = W&%ﬁ”‘ for some J, ||J|| < p. As above, in each from these
segments the functions |F(/)(z(t))|, and G(z(t)) are continuously differentiable
except the points ty.

The inequality

o= |0

holds for complex-valued functions of real argument outside a countable set of points.
In view of this fact and (4.2) we have

GEC0) < max { o | TPO )] 191 <)

oV E 24(1)
= maX{Z‘azm 0 oa (2(1)) Li(20) - 7] Sp}

ol F 15 (2%) |2 (1)) ,
= max{z‘azh FERENr T (Z(t))’zﬁ( 0 ()

o).
171 < v} < (}:z 240 max { L <)

Therefore, (4.4) yields

@) !
‘ln%‘:‘/oe(zl@)) dt’<B/ "($)|dt < S - B.

Using (4.3), we deduce
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Since z(M) € T (29, W), the Cauchy inequality holds

F) (5D 1
|L‘]((ZO))| < J1(28vn)l7 I (W,ZO,F> :

for all J € Z'; . Therefore, for ||J|| < p we obtain

Gl) < ()" 0VAPM (5 2 F).

B 0 5B 1 0
M F)< N™(2 PM| ———— F.
(L(zo)vz s =€ (p) ( /B\/ﬁ) 25\/5:[‘(20),2 s
Hence, by Theorem 3.1 the function F' has bounded L-index in joint variables. 0

The following result was also obtained for other classes of holomorphic functions
in [21, 11, 7).

Theorem 4.2. Let L € Q(B™). An analytic function F in B™ has bounded L-index in
joint variables if and only if there exist ¢ € (0;+00) and N € N such that for each
z € B™ the inequality

N

FE) (4 s FK) (4
2 K'LK(())|Z > e (@7
[ K]|=0 |K||=N+1

Proof. Let é <6, <1, je{l,....n}, © = (01,...,60,). If the function F has
bounded L-index in joint variables then by Theorem 2.2 F' has bounded L-index
in joint variables, where L = (I(2),...,ln(2)), | i(z) = 0;li(2), j € {1,...,n}. Let
N = N(F,L,B"). Therefore,

P (3)| OIFIE)| |

o { o) ||K||<N} K,LK() ||K||<N}
- F)(2) e SEDE g FO)
1;[ {K'LK() } 1;[ iVJ'LJ 5:1_[195 JIL7(z)

for all J > 0 and
— [FY(z)| |F(K)( )\ = N
[lJI=N+1 \|J\|71\7+1
Os \ () | |F5)(2)
< <
2o { gy 0l = M) < [T 2% P

K =0

Hence, we obtain (4.7) with N = N and

n 95
:H1—95'

i=1
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On the contrary, inequality (4.7) implies

HMXPFUN@LHJ|N+1}§ 53 FS) ()] _ 1 §:|an@|

1L/ 1K = IT,K
JILY(2) K=+ KILK(z) ~— ¢ 12 KILE(2)
[FH )]
Z i 1maX{K'LK( ) K SN
and by Theorem 4.1 F' is of bounded L-index in joint variables. 0

5. Some application for PDE: a scheme

Here we present a scheme of application of Hayman’s Theorem to PDE. This is
also appilcable in a more general situation.
Let us consider the following system of partial differential equations:

F20)(21, 20) = 272y tan(mzy 20) F10) (21, 25),
FO2)(21, 25) = 272 tan(mz120) FO (21, 29).

Differentiate in variables z; and 25 we deduce

FGO (2, 29) = %F(l’o)(m, 29) + 2m2g tan(mzy 22) F(30) (21, 25),

F(271)(z1, ) = 27rtan(7rzlzg)F(1’0)(21, ) + 2722 25 F(l,O)(zl’ 29)+

cos?(mwz122)

+27 29 tan(ﬁzlzg)F(l’l) (21, 22),

F12) (21,22) = 27Ttan(7T2122)F(0’1)(21, z9) + _2m’zz0  po(1, 0)(21, z9)+

cos?(rz122)

(5.1)

4272y tan(mzy 20) FWY (21, 20),

F(O’g)(zl, 29) = %F(LO)(Q, z9) + 272z tan(wzlzg)F(2’0)(zl, 22),

cos?(mz122)

Let

L(21, 22) = (l1(21, 22), l2(21, 22)) = <(

|Z2| +1 ‘Zl| +1 >
1—[z)|3 = z1z2]” (1 = [2])]5 — 2122
where z = (21, 22), |2| = V/|#1]? + |22|%. Now we will estimate all third order partial

derivatives of the funct1on F(z1, z2) by its first and second order partial derivatives.
From the first equation of system (5.1) we have for all z € B? :

[FCO(1,29)| 2|20 (21, 22)

| [F20) (21, 20)]
I3(21,22) — |cos?(mz122)|3 (21, 22)

1§(21, 22)
< ( i 27r2|22|z N 27|29 tan(wzlzg)|) - |F(j"0)(zl,22)|
| cos?(mz122) |17 (21, 22) (21, 22) je{1,2} 1 (21, 22)

<<%xrﬁaﬂ;—a@2 )

| cos?(mz122)]

+ 27|29 tan(mzy 22)

1
+ 27| tan(mwz1 22) (1 — |2]) ’2 — 2129
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(:0)
xmax{w je {1,2}}
1

1 21,2'2)

1— 2?2 — wz122)? . T2122
(USSRl a1 ey B
|sin”(§ — m2122)] |sin(F — mz120))|

(4,0
><rnax{|F‘(21’22)| s {1,2}}<Cmax{|F(zl’Z2)| 1j€ {1,2}}.

l{(zlv 22) l{('zlv ZQ)
Similarly, the second equation of system (5.1) yields
|F2D (21, 20)] < ( 27| tan(mzq29)] 212 |21 22| )
l%(21,22)12(21722) - ll(Zl,Zg)lg(Zl,ZQ) |COS2(’/T2122)|11(21,22)12(2’1,22)
|FLO0) (21, 20)|  2m|zatan(mzy20)|  |[FOD (21, 22)]

l1(21, 22) li(z1, 22) (21, 22)l2(21, 22)
< 2m|sin(mz122)|(1 — [2])2|% — 2122/
- | cos(mzy22)]
2m2(1 — |2])?|5 — 2’122|2 2m|sin(mz122)|(1 — |2])|3 — 2122]
| cos?(mz122)] | cos(mz122)]

li(z1, 22) 13 (21, 22)

FOa(
xmax{ | 21’22” :jG{O,l}}
2

2))%|5 — 2122 | 2(1— |2

2
< ( 7| sin(7z1 22

I —
|sin(%

— 72122)| | sin?(

+2\ sin(7rzlz.2)|5T — 2|5 — 7r2122|) max{ |F(1J)(z.1,z2)| e, 1}}
[sin(3 — rz172)] (o1, o) (21, 22)
F(1.5)
<Cmax{ | (Zjl’zzﬂ jE{O,l}}.
l1(z1, 22) 3 (21, 22)

By analogy, we can prove similar estimates for the third and the fourth equation of
system (5.1). Combining all estimates, one has

F(k,37k)
max{ k' 321’22)' :ke{0,1,2,3}}
17 (21, 22) 157" (21, 22)

\F(M)(Zh 2

lk(zl, Zg)l (2:1, 22)

<Cmax{ :O<k—|—j<2}.

Hence, by Theorem 4.1 every analytic solution in B? of system (5.1) has bounded
L-index in joint variables with

|Z2|—|—1 |21|+1
LZlsz - < 9
Cr2) =\ T = sl A= oDk = 2172
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Particularly, the function F'(z1,22) = tan(mz;22) has the bounded L-index in joint
variables. Indeed, it is easy to see that the function F is analytic solution in B2 of
system (5.1).

6. Boundedness of /;-index in every direction 1,

This section shows another application of Theorem 3.1. The boundedness of ;-
index of a function F' in every variable z;, generally speaking, does not imply the
boundedness of L-index in joint variables (see example in [4]). But, if F' has bounded
lj-index in every direction 1;, j € {1,...,n}, then F is a function of bounded L-index
in joint variables.

Let b = (b1,...,b,) € C"\ {0} be a given direction, L : B" — Ry be a
continuous function such that for all z € B" L(z) > l[il—tl’z“, 8>1

For n € [0, 5], z € B™, we define

)\b(z n, L) =inf{L(z+tb)/L(z) : |t| < ﬁ},

AP(n, L) = inf{A\P(z,n,L) : » € B"},
A3 (z,m, L) = sup{L(z + tb)/L(2) : |t| < 755},
Ab(n, L)=sup{A\b(z,n, L) : = € B"}.
By Qb,g (IB") we denote the class of all functions L satisfying Vn € [0, 3],

0 < AP(n, L) < A3(n, L) < +oo0.

Analytic in B™ function F(z) is called a function of bounded L-index in the
direction b, if there exists mg € Z4 that for every m € Z, and for every z € B" the
following inequality is valid

1 O™F(z) 1 OFF(2)
< 0<k < .
miLm(z) | apm | =1 { RIFG) | bk | 0Sksmoy, (6.1)
where
8F(z) ak F(z) 0 (9 1F(z)
— _— > 2.
e = Fe)” g az] by B i = g (g ) K22

The least such integer myg is called the L-indezx in the direction b of the analytic

function F' and is denoted by Ny, (F,L) = mg. Inthecasen=1,b=1and L =1 we

obtain a definition of analytic in an unit disc function of bounded I-index [22, 21].
We need the following theorem.

Theorem 6.1 ([3]). Let 8 > 1, L € Qug(B"). Analytic in B" function F(z) is of
bounded L-indez in the direction b € C™ if and only if for any r1 and any ro with
0 <r <rg <P, there exists number Py = Py(r1,72) > 1 such that for each 20 B

max{|F(zO+tb)\:|t|: gleax{|F(zo+tb)|: It = L } (6.2)

79 }
L(z9) L(z)
It is easy to see that if L(z) = (I1(2),...,l,(2)) and L € Q(B"™), then
lj € Qlj,ﬂ/\/ﬁ(Bn)a JE {1a s 7n}'
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Theorem 6.2. Let L(z) = (I1(2),...,l,(2)), L € Q(B™). If an analytic in B™ function
F has bounded lj-index in the direction 1; for every j € {1,...,n}, then F is of
bounded L-index in joint variables.

Proof. Let F' be an analytic in B" function of bounded [/;-index in every direction 1;.
Then by Theorem 6.1 for every j € {1,...,n} and arbitrary 0 <77 <1 <7/ < %
there exists a number p; = p;(r’,7”) such that for every

(Zl,...,Zj_l,Z?,Zj+1,...,Zn)EB”,
max } |[F(2)]: |z; —ZO| = 7“9/ < p; (7’/ T”)
J J lj(Zl,...,ijl,Z?,Zj+1,...,Zn) IR A
r
x max { |[F(2)|: |z — 2] = - . (6.3)
7 Li(21, -+ 2521529, Zjg15 -+ 5 2n)

Obviously, if for every j € {1,...,n} [, € Q1j7ﬁ/\/ﬁ(Bn) then L € Q(B"). Let 2° be
an arbitrary point in B", and a point z* € T"(z°, %) is such that

M(LZ/) 20 F> = |F(2")].

We choose R” and R’ such that 1 < R” < (%,,%) and R' < A;(R"). Then

inequality (6.3) implies that

R// 0 k% * 0 rl
M , 20, F ) <max<q|F(z1,25,25,...,25)]|: |zl—z|:l

L(29) 1(20
=max {|F(21, P | F P2 o = e Z;{ g 11(2’?7;’%;6.). L 20) }
< max {|F(zl,z§, ) = 20 = ll(;élz;(f?)zn)}
<o DR [P, 2 ) o = ) = )
= p1(r1, 77 A2,1(R"))

X max{|F(zl,z§‘,...,sz)|: |21 — 29| = llz,iO) ll(z?’l;;f).)',zz)}

/
< / //)\ R// F , o). _ 0 = 7'—1
7p1(7'17’)"1 271( ))max{| (Zl 29, azn)| |Zl Zl' AI,I(RH) 1(20)

l
= p1(r, Ao L (RO)IF (217, 23, -, 20) ] < pa(rh, ri Azn (R7)

7,//
><max{|F(zf*,22,z§,...,z:)|: |2y — 29| = lz(io)} =p1(r}, " A2,1(R"))

TIQI ZQ(ZT*728,...7Z:)
)

xmax{w(zl, e oo = 2l = -

oy, 29, ..., 2%) lo(20
1" 7
oo (R")
< "\ (R F(** _ 0 T2 A2,
_p1(7“177°1 2,1( ))max{l (21 ) 225 ) n)l |22 Z2| ZQ(ZT*,Z87~-~,/Z;§)
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2
< [T pi(r. i ra i (R")
j=1

7,,/
F — zy| = ’
xmax{| (2%, 22, 2| |22 — 23] = lz(ZT*,Zgy-~-aZ:§)}
2 0 T/Q
, 1 ). =
H (rj,ri A2 (R ))maux{|F(z1 22,20 |Z2_Z2|_>\1,2(H’)l2(20)}

2 n
H (5, X g (RV) | F (27,257 25, 20| < gH (rh, 7 X2 5(R"))

r _
xmax{|F(zl,22,...,zn): |ZJ - Z?| = W}])l(zo),j S {17,71,}}
»J J

/ /! R/
:Hpj J’ J)\ZJ(R )M (Al(R”)L(ZO)’ZO’F>'

Hence, by Theorem 3.1 the function F is of bounded L-index in joint variables. [
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