On Lupaş-Jain operators

Gülen Başcanbaz-Tunca, Murat Bodur and Dilek Söylemez

Abstract

In this paper, linear positive Lupaş-Jain operators are constructed and a recurrence formula for the moments is given. For the sequence of these operators; the weighted uniform approximation, also, monotonicity under convexity are obtained. Moreover, a preservation property of each Lupaş-Jain operator is presented.

Mathematics Subject Classification (2010): 41A36, 41A25.
Keywords: Lupaş operator, Jain operator, convexity, weighted uniform approximation, modulus of continuity function.

1. Introduction

In [13], Jain generalized the well known Százs-Mirakjan operators by constructing the linear positive operators given by

$$
\begin{equation*}
S_{n}^{\beta}(f)(x)=\sum_{k=0}^{\infty} \frac{n x(n x+k \beta)^{k-1}}{k!} e^{-(n x+k \beta)} f\left(\frac{k}{n}\right) \tag{1.1}
\end{equation*}
$$

where $f:[0, \infty) \rightarrow \mathbb{R}, n \in \mathbb{N}, x>0$ and $0 \leq \beta<1$, with β may depend only on n. For some interesting works related to Jain's operators we refer to [2], [1], [5], [8], [17], [18] and references cited therein.

In [3], Agratini studied some approximation properties of the following linear positive operators

$$
\begin{equation*}
L_{n}(f)(x)=2^{-n x} \sum_{k=0}^{\infty} \frac{(n x)_{k}}{2^{k} k!} f\left(\frac{k}{n}\right) \tag{1.2}
\end{equation*}
$$

for $n \in \mathbb{N}, x \geq 0$ and some suitable $f:[0, \infty) \rightarrow \mathbb{R}$ that the operator $L_{n}(f)$ makes sense. These operators are special form of the well-known operators defined by Lupas in [15] and resemble the familiar Százs-Mirakjan operators. In the paper [3], the author obtained some estimates for the order of approximation on a finite interval as well as proved a Voronovskaya type theorem. Moreover, Agratini also considered the Kantorovich extension of $L_{n}(f)$ for f belonging to the class of local integrable
functions on $[0, \infty)$ and studied the degree of approximation [4]. Some approximation results and basic history concerning Lupaş operators can be found in [9], [10], [7].

Recently, Patel and Mishra extended the Lupaş operators given by (1.2) as

$$
\begin{equation*}
L_{n}^{\beta}(f)(x)=\sum_{k=0}^{\infty} \frac{(n x+k \beta)_{k}}{2^{k} k!} 2^{-(n x+k \beta)} f\left(\frac{k}{n}\right) \tag{1.3}
\end{equation*}
$$

for real valued functions f on $[0, \infty)$, where they assumed that

$$
(n x+k \beta)_{0}=1,(n x+k \beta)_{1}=n x
$$

and

$$
(n x+k \beta)_{k}=n x(n x+k \beta)(n x+k \beta+1) \ldots(n x+k \beta+k-1), k \geq 2
$$

[19]. Here, the authors studied direct approximation results and gave Kantorovich and Durrmeyer types modifications of (1.3).

In this work, we also construct a generalization of the Lupaş operators L_{n} in the sense of Jain in [13]. Here, we point out that our expression is different from L_{n}^{β} given by (1.3) in such a way that in the construction, we take the negative subscript " -1 " of the Pochhammer symbol into consideration, in which case the calculations become simpler in a remarkable degree. By using analogous Abel and Jensen combinatorial formulas for factorial powers (see, e.g., [20]), we show the monotonicity property of these operators for n under the convexity of f. We investigate that the Lupaş-Jain operator can retain the properties of the modulus of continuity function. Moreover, we study the weighted uniform approximation of functions from the polynomial weighted space given in [11].

In what follows, let α and β be real parameters such that $0<\alpha<\infty$ and $0 \leq$ $\beta<1$. Then, as in [13], Taking into account of the Lagrange inversion formula

$$
\phi(z)=\phi(0)+\sum_{k=1}^{\infty} \frac{1}{k!}\left[\frac{d^{k-1}}{d z^{k-1}}(f(z))^{k} \phi^{\prime}(z)\right]_{z=0}\left(\frac{z}{f(z)}\right)^{k}
$$

for

$$
\phi(z)=\frac{1}{(1-z)^{\alpha}} \text { and } f(z)=\frac{1}{(1-z)^{\beta}},|z|<1
$$

we obtain

$$
\begin{equation*}
\frac{1}{(1-z)^{\alpha}}=1+\sum_{k=1}^{\infty} \frac{\alpha(\alpha+1+k \beta)_{k-1}}{k!} z^{k}(1-z)^{k \beta} \tag{1.4}
\end{equation*}
$$

where

$$
(a)_{n}= \begin{cases}a(a+1) \ldots(a+n-1) & n \in \mathbb{N} \\ 1 & n=0, a \neq 0\end{cases}
$$

is the well-known Pochhammer symbol, from which we have

$$
(a)_{-n}=\frac{1}{(a-1)(a-2) \ldots(a-n)}=\frac{1}{(a-n)_{n}}=\frac{(-1)^{n}}{(1-a)_{n}}
$$

for negative subscripts when $a \neq 1,2, \ldots, n$ (see, e.g., p. 5 of [12]). Hence, we immediately get that $(\alpha+1)_{-1}=\frac{1}{(\alpha)_{1}}=\frac{1}{\alpha}$. Now, we have

$$
\begin{equation*}
1=\sum_{k=0}^{\infty} \frac{\alpha(\alpha+1+k \beta)_{k-1}}{2^{k} k!} 2^{-(\alpha+k \beta)} \tag{1.5}
\end{equation*}
$$

for $0<\alpha<\infty$ and $0 \leq \beta<1$. So, denoting

$$
\begin{equation*}
L(0, \alpha, \beta):=\sum_{k=0}^{\infty} \frac{(\alpha+1+k \beta)_{k-1}}{2^{k} k!} 2^{-(\alpha+k \beta)} \tag{1.6}
\end{equation*}
$$

it readily follows from (1.5) that

$$
\begin{equation*}
\alpha L(0, \alpha, \beta)=1 \tag{1.7}
\end{equation*}
$$

Hence, we present the following recurrence formula.
Lemma 1.1. Let $0<\alpha<\infty, 0 \leq \beta<1, r \in \mathbb{N}$ and

$$
\begin{equation*}
L(r, \alpha, \beta):=\sum_{k=0}^{\infty} \frac{(\alpha+1+k \beta)_{k+r-1}}{2^{k} k!} 2^{-(\alpha+k \beta)} \tag{1.8}
\end{equation*}
$$

Then we have

$$
L(r, \alpha, \beta)=\sum_{k=0}^{\infty}\left(\frac{\beta+1}{2}\right)^{k}(\alpha+r-1+k \beta) L(r-1, \alpha+k \beta, \beta)
$$

Proof. Taking the fact

$$
(\alpha+1+k \beta)_{k+r-1}=(\alpha+1+k \beta)_{k+r-2}(\alpha+r-1+k(\beta+1))
$$

into consideration, then one finds

$$
L(r, \alpha, \beta)=(\alpha+r-1) L(r-1, \alpha, \beta)+\frac{\beta+1}{2} L(r, \alpha+\beta, \beta) .
$$

Recursive application of the last formula gives the result.
For the calculation of moments of the operators, we can use the well-known property of the geometric series given below (see, e.g., [21]).
Remark 1.2. ([21]) Consider the geometric series

$$
h_{n}(x):=\sum_{k=0}^{\infty} k^{n} x^{k} \quad-1<x<1, n \in \mathbb{N}
$$

and

$$
\begin{equation*}
h_{0}(x):=\frac{1}{1-x}=\sum_{k=0}^{\infty} x^{k} . \tag{1.9}
\end{equation*}
$$

Term-wise differentiation gives that

$$
h_{n}^{\prime}(x)=\sum_{k=1}^{\infty} k^{n+1} x^{k-1}
$$

which satisfies the following

$$
x h_{n}^{\prime}(x)=\sum_{k=1}^{\infty} k^{n+1} x^{k}=h_{n+1}(x) .
$$

From this recurrence, one has

$$
\begin{align*}
& h_{1}(x)=\frac{x}{(1-x)^{2}}=\sum_{k=1}^{\infty} k x^{k} \tag{1.10}\\
& h_{2}(x)=\frac{x^{2}+x}{(1-x)^{3}}=\sum_{k=1}^{\infty} k^{2} x^{k} . \tag{1.11}
\end{align*}
$$

Lemma 1.3. For the auxiliary function $L(r, \alpha, \beta)$ defined by (1.8), one has

$$
\begin{aligned}
L(1, \alpha, \beta) & =\frac{2}{1-\beta} \\
L(2, \alpha, \beta) & =\frac{2^{2}(\alpha+1)}{(1-\beta)^{2}}+\frac{2^{2} \beta(\beta+1)}{(1-\beta)^{3}}
\end{aligned}
$$

Proof. Since $0 \leq \beta<1$, then (1.9), (1.10) and (1.11), with $x=\frac{\beta+1}{2}$, give that

$$
\begin{aligned}
\sum_{k=0}^{\infty}\left(\frac{\beta+1}{2}\right)^{k} & =\frac{2}{1-\beta} \\
\sum_{k=1}^{\infty} k\left(\frac{\beta+1}{2}\right)^{k} & =\frac{2(\beta+1)}{(1-\beta)^{2}} \\
\sum_{k=1}^{\infty} k^{2}\left(\frac{\beta+1}{2}\right)^{k} & =\frac{2\left(\beta^{2}+4 \beta+3\right)}{(1-\beta)^{3}} .
\end{aligned}
$$

Combining these results with (1.6), (1.7) and (1.8), it readily follows that

$$
\begin{align*}
L(1, \alpha, \beta) & =\sum_{k=0}^{\infty}\left(\frac{\beta+1}{2}\right)^{k}(\alpha+k \beta) L(0, \alpha+k \beta, \beta) \\
& =\frac{2}{1-\beta} \tag{1.12}
\end{align*}
$$

Also, $L(2, \alpha, \beta)$ is obtained as

$$
\begin{align*}
L(2, \alpha, \beta) & =\sum_{k=0}^{\infty}\left(\frac{\beta+1}{2}\right)^{k}(\alpha+1+k \beta) L(1, \alpha+k \beta, \beta) \\
& =\frac{2(\alpha+1)}{1-\beta} \sum_{k=0}^{\infty}\left(\frac{\beta+1}{2}\right)^{k}+\frac{2 \beta}{1-\beta} \sum_{k=0}^{\infty} k\left(\frac{\beta+1}{2}\right)^{k} \\
& =\frac{4(\alpha+1)}{(1-\beta)^{2}}+\frac{4 \beta(\beta+1)}{(1-\beta)^{3}} \tag{1.13}
\end{align*}
$$

2. Construction of the operators

Taking $\alpha=n x, n \in \mathbb{N}, x>0$ in (1.5), we consider the following linear positive operators

$$
\begin{equation*}
L_{n}^{\beta}(f)(x)=\sum_{k=0}^{\infty} \frac{n x(n x+1+k \beta)_{k-1}}{2^{k} k!} 2^{-(n x+k \beta)} f\left(\frac{k}{n}\right), \quad x \in(0, \infty) \tag{2.1}
\end{equation*}
$$

and $L_{n}^{\beta}(f)(0)=f(0)$ for real valued bounded functions f on $[0, \infty)$, where $0 \leq$ $\beta<1$, depending only on n. We call the operators L_{n}^{β} as Lupaş-Jain. Obviously, Lupaş-Jain operators reduce to Lupaş operators in [3] when $\beta=0$.

Lemma 2.1. Let $e_{i}(t):=t^{i}, i=0,1,2$. For the Lupaş-Jain operators, one has

$$
\begin{aligned}
L_{n}^{\beta}\left(e_{0}\right)(x) & =1 \\
L_{n}^{\beta}\left(e_{1}\right)(x) & =\frac{x}{1-\beta} \\
L_{n}^{\beta}\left(e_{2}\right)(x) & =\frac{x^{2}}{(1-\beta)^{2}}+\frac{2 x}{n(1-\beta)^{3}}
\end{aligned}
$$

Proof. It is clear from (1.5) that $L_{n}^{\beta}\left(e_{0}\right)(x)=1$. By taking $f=e_{1}$ in (2.1) and using (1.12) in the result, we easily get

$$
\begin{aligned}
L_{n}^{\beta}\left(e_{1}\right)(x) & =\sum_{k=1}^{\infty} \frac{n x(n x+1+k \beta)_{k-1}}{2^{k} k!} 2^{-(n x+k \beta)}\left(\frac{k}{n}\right) \\
& =x \sum_{k=0}^{\infty} \frac{(n x+\beta+1+k \beta)_{k}}{2^{k+1} k!} 2^{-(n x+\beta+k \beta)} \\
& =\frac{x}{2} L(1, n x+\beta, \beta) \\
& =\frac{x}{1-\beta} .
\end{aligned}
$$

By taking $f=e_{2}$ and using (1.12) and (1.13) we find

$$
\begin{aligned}
L_{n}^{\beta}\left(e_{2}\right)(x) & =\sum_{k=1}^{\infty} \frac{n x(n x+1+k \beta)_{k-1}}{2^{k} k!} 2^{-(n x+k \beta)}\left(\frac{k}{n}\right)^{2} \\
& =\frac{x}{n} \sum_{k=0}^{\infty} \frac{(n x+\beta+1+k \beta)_{k}}{2^{k+1} k!} 2^{-(n x+\beta+k \beta)}(k+1) \\
& =\frac{x}{n}\left\{\frac{1}{2^{2}} L(2, n x+2 \beta, \beta)+\frac{1}{2} L(1, n x+\beta, \beta)\right\} \\
& =\frac{x}{n}\left\{\frac{(n x+1+2 \beta)}{(1-\beta)^{2}}+\frac{\beta(\beta+1)}{(1-\beta)^{3}}+\frac{1}{1-\beta}\right\} \\
& =\frac{x^{2}}{(1-\beta)^{2}}+\frac{2 x}{n(1-\beta)^{3}}
\end{aligned}
$$

3. Weighted approximation

In this section, we deal with the weighted uniform approximation result of the sequence of the Lupaş-Jain operators L_{n}^{β} by using Gadjiev's theorem in [11], for which we have the following settings:

We take $\varphi(x)=1+x^{2}$ as the suitable weight function and, for simplicity, denote $\mathbb{R}^{+}:=[0, \infty)$. Related to φ, we take the space

$$
B_{\varphi}\left(\mathbb{R}^{+}\right)=\left\{f: \mathbb{R}^{+} \rightarrow \mathbb{R}| | f(x) \mid \leq M_{f} \varphi(x), x \in \mathbb{R}^{+}\right\}
$$

where M_{f} is a constant depending on $f . B_{\varphi}\left(\mathbb{R}^{+}\right)$is a normed space with the norm

$$
\|f\|_{\varphi}=\sup _{x \in \mathbb{R}^{+}} \frac{|f(x)|}{\varphi(x)}
$$

Moreover, we denote, as usual, by $C_{\varphi}\left(\mathbb{R}^{+}\right), C_{\varphi}^{k}\left(\mathbb{R}^{+}\right)$the following subspaces of $B_{\varphi}\left(\mathbb{R}^{+}\right)$

$$
\begin{aligned}
& C_{\varphi}\left(\mathbb{R}^{+}\right):\left\{f \in B_{\varphi}\left(\mathbb{R}^{+}\right): f \text { is continuous }\right\} \\
& C_{\varphi}^{k}\left(\mathbb{R}^{+}\right)=\left\{f \in C_{\varphi}\left(\mathbb{R}^{+}\right) \left\lvert\, \lim _{x \rightarrow \infty} \frac{f(x)}{\varphi(x)}=k_{f}\right.\right\},
\end{aligned}
$$

respectively, where k_{f} is a constant depending on f. We have the following two results due to Gadjiev in [11]:

Lemma 3.1. The linear positive operators $T_{n}, n \in \mathbb{N}$, act from $C_{\varphi}\left(\mathbb{R}^{+}\right)$to $B_{\varphi}\left(\mathbb{R}^{+}\right)$if and only if

$$
\left|T_{n}(\varphi)(x)\right| \leq K \varphi(x)
$$

where K is a positive constant.
Theorem 3.2. Let $\left\{T_{n}\right\}_{n \in \mathbb{N}}$ be a sequence of linear positive operators mapping $C_{\varphi}\left(\mathbb{R}^{+}\right)$into $B_{\varphi}\left(\mathbb{R}^{+}\right)$and satisfying the conditions

$$
\lim _{n \rightarrow \infty}\left\|T_{n}\left(e_{i}\right)-e_{i}\right\|_{\varphi}=0, \quad \text { for } i=0,1,2 .
$$

Then for any $f \in C_{\varphi}^{k}\left(\mathbb{R}^{+}\right)$one has

$$
\lim _{n \rightarrow \infty}\left\|T_{n}(f)-f\right\|_{\varphi}=0
$$

Now, we treat weighted uniform approximation for Lupaş-Jain operators L_{n}^{β} acting on $C_{\varphi}\left(\mathbb{R}^{+}\right)$. In order to get an approximation result, as in [13], we need to make an adjustment to the parameter β by taking it as a sequence such that $\beta=\beta_{n}, 0 \leq \beta_{n}<1$ and $\lim _{n \rightarrow \infty} \beta_{n}=0$.

Theorem 3.3. Let $\left\{\beta_{n}\right\}_{n \in \mathbb{N}}$ be a sequence such that $0 \leq \beta_{n}<1$ and $\lim _{n \rightarrow \infty} \beta_{n}=0$. Then for each $f \in C_{\varphi}^{k}\left(\mathbb{R}^{+}\right)$we have

$$
\lim _{n \rightarrow \infty}\left\|L_{n}^{\beta_{n}}(f)-f\right\|_{\varphi}=0
$$

Proof. According to Lemmas 2.1 and 3.1 we get that the operators $L_{n}^{\beta_{n}}$ act from $C_{\varphi}\left(\mathbb{R}^{+}\right)$to $B_{\varphi}\left(\mathbb{R}^{+}\right)$. Now, it only remains to show the sufficient conditions of the Theorem 3.2 for $L_{n}^{\beta_{n}}$. Using Lemma 2.1 and the hypothesis on β_{n}, we obtain that

$$
\lim _{n \rightarrow \infty}\left\|L_{n}^{\beta_{n}}\left(e_{0}\right)-e_{0}\right\|_{\varphi}=0
$$

and that

$$
\left\|L_{n}^{\beta_{n}}\left(e_{1}\right)-e_{1}\right\|_{\varphi} \leq \frac{\beta_{n}}{1-\beta_{n}}
$$

which gives

$$
\lim _{n \rightarrow \infty}\left\|L_{n}^{\beta_{n}}\left(e_{1}\right)-e_{1}\right\|_{\varphi}=0
$$

Finally, since $2 x \leq 1+x^{2}$, we get

$$
\begin{aligned}
\left\|L_{n}^{\beta_{n}}\left(e_{2}\right)-e_{2}\right\|_{\varphi} & =\sup _{x \in \mathbb{R}^{+}} \frac{\left|L_{n}^{\beta_{n}}\left(e_{2}\right)-e_{2}\right|}{1+x^{2}} \\
& =\sup _{x \in \mathbb{R}^{+}}\left|\frac{1}{1+x^{2}}\left(\frac{x^{2}}{\left(1-\beta_{n}\right)^{2}}+\frac{2 x}{n\left(1-\beta_{n}\right)^{3}}-x^{2}\right)\right| \\
& =\sup _{x \in \mathbb{R}^{+}}\left|\frac{x^{2}}{1+x^{2}} \frac{2 \beta_{n}-\beta_{n}^{2}}{\left(1-\beta_{n}\right)^{2}}+\frac{2 x}{1+x^{2}} \frac{1}{n\left(1-\beta_{n}\right)^{3}}\right| \\
& \leq \frac{2 \beta_{n}-\beta_{n}^{2}}{\left(1-\beta_{n}\right)^{2}}+\frac{1}{n\left(1-\beta_{n}\right)^{3}},
\end{aligned}
$$

which clearly gives that

$$
\lim _{n \rightarrow \infty}\left\|L_{n}^{\beta_{n}}\left(e_{2}\right)-e_{2}\right\|_{\varphi}=0
$$

This completes the proof.

4. The monotonicity of the sequence of Lupaş-Jain operators

Recall that a continuous function f is said to be convex in $D \subseteq \mathbb{R}$, if

$$
f\left(\sum_{i=1}^{n} \alpha_{i} t_{i}\right) \leq \sum_{i=1}^{n} \alpha_{i} f\left(t_{i}\right)
$$

for every $t_{1}, t_{2}, \ldots, t_{n} \in D$ and for every nonnegative numbers $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ such that $\alpha_{1}+\alpha_{2}+\ldots+\alpha_{n}=1$.

For the proof of the main result of this section, we need the corresponding definition of the well-known Jensen and Abel combinatorial formulas for factorial powers. Below, we reproduce these formulas from the work of Stancu and Occorsio (pp.175-176 of [20]) for the increment -1 , respectively.

$$
\begin{align*}
& (u+v)(u+v+1+m \beta)_{m-1} \\
= & \sum_{k=0}^{m}\binom{m}{k} u(u+1+k \beta)_{k-1} v(v+1+(m-k) \beta)_{m-k-1} \tag{4.1}
\end{align*}
$$

and

$$
\begin{equation*}
(u+v+m \beta)_{m}=\sum_{k=0}^{m}\binom{m}{k}(u+k \beta)_{k} v(v+1+(m-k) \beta)_{m-k-1} \tag{4.2}
\end{equation*}
$$

Note that the monotonicity of Százs-Mirakjan operators of convex function was proved by Cheney and Sharma [6]. On the other hand, the same result for the Lupaş operators was obtained by Erençin et al. [7]. Now, we present the monotonicity of each Lupaş-Jain operator $L_{n}^{\beta}(f)$ for n, when f is a convex function.
Theorem 4.1. Let f be a convex function defined on $[0, \infty)$. Then, for all $n, L_{n}^{\beta}(f)$ is non-increasing in n.
Proof. For $x=0$, the result is obvious. So, for $x>0$, we can write

$$
2^{x}=\sum_{k=0}^{\infty} \frac{x(x+1+k \beta)_{k-1}}{2^{k} k!} 2^{-k \beta}
$$

by (1.5) with $\alpha=x$. Using this formula we can write

$$
\begin{aligned}
& L_{n}^{\beta}(f)(x)-L_{n+1}^{\beta}(f)(x) \\
= & 2^{x} \sum_{k=0}^{\infty} \frac{n x(n x+1+k \beta)_{k-1}}{2^{k} k!} 2^{-[(n+1) x+k \beta]} f\left(\frac{k}{n}\right) \\
& -\sum_{k=0}^{\infty} \frac{(n+1) x((n+1) x+1+k \beta)_{k-1}}{2^{k} k!} 2^{-[(n+1) x+k \beta]} f\left(\frac{k}{n+1}\right) \\
= & \sum_{l=0}^{\infty} \frac{x(x+1+l \beta)_{l-1}}{2^{l} l!} 2^{-l \beta} \sum_{k=0}^{\infty} \frac{n x(n x+1+k \beta)_{k-1}}{2^{k} k!} 2^{-[(n+1) x+k \beta]} f\left(\frac{k}{n}\right) \\
& -\sum_{k=0}^{\infty} \frac{(n+1) x((n+1) x+1+k \beta)_{k-1}}{2^{k} k!} 2^{-[(n+1) x+k \beta]} f\left(\frac{k}{n+1}\right) \\
= & \sum_{l=0}^{\infty} \frac{x(x+1+l \beta)_{l-1}}{2^{l} l!} 2^{-l \beta} \\
& \times \sum_{k=l}^{\infty} \frac{n x(n x+1+(k-l) \beta)_{k-l-1}}{2^{k-l}(k-l)!} 2^{-[(n+1) x+(k-l) \beta]} f\left(\frac{k-l}{n}\right) \\
& -\sum_{k=0}^{\infty} \frac{(n+1) x((n+1) x+1+k \beta)_{k-1}}{2^{k} k!} 2^{-[(n+1) x+k \beta]} f\left(\frac{k}{n+1}\right) .
\end{aligned}
$$

Changing the order of the above summations, we obtain that

$$
\begin{gathered}
L_{n}^{\beta}(f)(x)-L_{n+1}^{\beta}(f)(x) \\
=\sum_{k=0}^{\infty} \sum_{l=0}^{k} \frac{x(x+1+l \beta)_{l-1}}{l!} \frac{n x(n x+1+(k-l) \beta)_{k-l-1}}{2^{k}(k-l)!} 2^{-[(n+1) x+k \beta]} f\left(\frac{k-l}{n}\right) \\
\quad-\sum_{k=0}^{\infty} \frac{(n+1) x((n+1) x+1+k \beta)_{k-1}}{2^{k} k!} 2^{-[(n+1) x+k \beta]} f\left(\frac{k}{n+1}\right)
\end{gathered}
$$

$$
\begin{align*}
= & \sum_{k=0}^{\infty}\left\{\sum_{l=0}^{k} \frac{n x(n x+1+l \beta)_{l-1}}{l!} \frac{x(x+1+(k-l) \beta)_{k-l-1}}{2^{k}(k-l)!} f\left(\frac{l}{n}\right)\right. \\
& \left.-\frac{(n+1) x((n+1) x+1+k \beta)_{k-1}}{2^{k} k!} f\left(\frac{k}{n+1}\right)\right\} 2^{-[(n+1) x+k \beta]} \tag{4.3}
\end{align*}
$$

Now, denote

$$
\alpha_{l}:=\binom{k}{l} \frac{n x(n x+1+l \beta)_{l-1} x(x+1+(k-l) \beta)_{k-l-1}}{(n+1) x((n+1) x+1+k \beta)_{k-1}}>0
$$

and

$$
t_{l}:=\frac{l}{n} .
$$

Taking $u=n x, v=x$ and $m=k$ in (4.1) one has

$$
\begin{aligned}
& (n+1) x((n+1) x+1+k \beta)_{k-1} \\
= & \sum_{l=0}^{k}\binom{k}{l} n x(n x+1+l \beta)_{l-1} x(x+1+(k-l) \beta)_{k-l-1},
\end{aligned}
$$

which clearly gives that

$$
\sum_{l=0}^{k} \alpha_{l}=1
$$

On the other hand, taking $u=n x+\beta+1, v=x$ and $m=k-1$ in (4.2), it follows that

$$
\begin{aligned}
& ((n+1) x+1+k \beta)_{k-1} \\
= & (n x+\beta+1+x+(k-1) \beta)_{k-1} \\
= & \sum_{l=0}^{k-1}\binom{k-1}{l}(n x+\beta+1+l \beta)_{l} x(x+1+(k-1-l) \beta)_{k-l-2} .
\end{aligned}
$$

Taking into account of the above fact, it follows that

$$
\begin{aligned}
\sum_{l=0}^{k} \alpha_{l} t_{l} & =\frac{\sum_{l=1}^{k}\binom{k}{l} n x(n x+1+l \beta)_{l-1} x(x+1+(k-l) \beta)_{k-l-1}\left(\frac{l}{n}\right)}{(n+1) x((n+1) x+1+k \beta)_{k-1}} \\
& =\frac{k \sum_{l=0}^{k-1}\binom{k-1}{l} n x(n x+\beta+1+l \beta)_{l} x(x+1+(k-1-l) \beta)_{k-l-2}}{n(n+1) x((n+1) x+1+k \beta)_{k-1}} \\
& =\frac{k}{n+1} \frac{\sum_{l=0}^{k-1}\binom{k-1}{l}(n x+\beta+1+l \beta)_{l} x(x+1+(k-1-l) \beta)_{k-l-2}}{((n+1) x+1+k \beta)_{k-1}} \\
& =\frac{k}{n+1} .
\end{aligned}
$$

Hence, making use of the convexity of $f,(4.3)$ gives that

$$
L_{n}^{\beta}(f)(x) \geq L_{n+1}^{\beta}(f)(x)
$$

for all $n \in \mathbb{N}$, which completes the proof.

5. A preservation property

We recall the following definition for the subsequent result.
Definition 5.1. A continuous, and non-negative function ω defined on $[0, \infty)$ is called a function of modulus of continuity, if each of the following conditions is satisfied:
i) $\omega(u+v) \leq \omega(u)+\omega(v)$ for $u, v \in[0, \infty)$, i.e., ω is subadditive,
ii) $\omega(u) \geq \omega(v)$ for $u \geq v$, i.e., ω is non-decreasing,
iii) $\lim _{u \rightarrow 0^{+}} \omega(u)=\omega(0)=0$ ([16]).

In [14], Li noticed a new preservation property that the Bernstein polynomials $B_{n}, n \in \mathbb{N}$ satisfy. Li proved that if $\omega(x)$ is a modulus of continuity function, then for each $n \in \mathbb{N}, B_{n}(\omega ; x)$ is also a modulus of continuity function. The same result for the Lupaş operators was obtained in [7]. Below, we show that this result is satisfied by the Lupaş-Jain operators as well.
Theorem 5.2. Let ω be a modulus of continuity function. Then, for all $n, L_{n}^{\beta}(\omega)$ is also a modulus of continuity function.
Proof. Let $x, y \in[0, \infty)$ and $x \leq y$. Then from the definition of L_{n}^{β}, we have

$$
L_{n}^{\beta}(\omega)(y)=\sum_{k=0}^{\infty} \frac{n y(n y+1+k \beta)_{k-1}}{2^{k} k!} 2^{-(n y+k \beta)} \omega\left(\frac{k}{n}\right)
$$

Taking $n x$ and $n(y-x)$ in place of u and v, respectively in (4.1), we obtain

$$
\begin{align*}
& n y(n y+1+m \beta)_{m-1} \tag{5.1}\\
= & \sum_{i=0}^{k}\binom{k}{i} n x(n x+1+i \beta)_{i-1} n(y-x)(n(y-x)+1+(k-i) \beta)_{k-i-1}
\end{align*}
$$

which implies

$$
\begin{aligned}
& L_{n}^{\beta}(\omega)(y) \\
= & \sum_{k=0}^{\infty} \sum_{i=0}^{k} \omega\left(\frac{k}{n}\right)\binom{k}{i} \frac{n x(n x+1+i \beta)_{i-1}}{2^{k} k!} 2^{-(n y+k \beta)} \\
& \times n(y-x)(n(y-x)+1+(k-i) \beta)_{k-i-1} .
\end{aligned}
$$

Interchanging the order of the above summations gives that

$$
\begin{align*}
& L_{n}^{\beta}(\omega)(y) \\
= & \sum_{i=0}^{\infty} \sum_{k=i}^{\infty} \omega\left(\frac{k}{n}\right) \frac{1}{i!(k-i)!} n x(n x+1+i \beta)_{i-1} \frac{2^{-(n y+k \beta)}}{2^{k}} \tag{5.2}\\
& n(y-x)(n(y-x)+1+(k-i) \beta)_{k-i-1} .
\end{align*}
$$

Taking $k-i=l$, (5.2) reduces to

$$
\begin{align*}
& L_{n}^{\beta}(\omega)(y) \\
= & \sum_{i=0}^{\infty} \sum_{l=0}^{\infty} \omega\left(\frac{i+l}{n}\right) n x(n x+1+i \beta)_{i-1} \frac{2^{-(n y+(i+l) \beta)}}{2^{i+l} i!l!} \tag{5.3}\\
& \times n(y-x)(n(y-x)+1+l \beta)_{l-1} .
\end{align*}
$$

On the other hand, $L_{n}^{\beta}(\omega)(x)$ can be written as

$$
\begin{align*}
L_{n}^{\beta}(\omega)(x) & =\sum_{i=0}^{\infty} \omega\left(\frac{i}{n}\right) n x(n x+1+i \beta)_{i-1} \frac{2^{-(n x+i \beta)}}{2^{i} i!} \tag{5.4}\\
& =\sum_{i=0}^{\infty} \omega\left(\frac{i}{n}\right) n x(n x+1+i \beta)_{i-1} \frac{2^{-(n y+i \beta)} 2^{n(y-x)}}{2^{i} i!}
\end{align*}
$$

Since

$$
2^{n(y-x)}=\sum_{l=0}^{\infty} n(y-x)(n(y-x)+1+l \beta)_{l-1} \frac{2^{-l \beta}}{2^{l} l!}
$$

then, one may write

$$
\begin{align*}
L_{n}^{\beta}(\omega)(x)= & \sum_{i=0}^{\infty} \sum_{l=0}^{\infty} \omega\left(\frac{i}{n}\right) n x(n x+1+i \beta)_{i-1} \frac{2^{-(n y+(i+l) \beta)}}{2^{i+l} i!l!} \tag{5.5}\\
& \times n(y-x)(n(y-x)+1+l \beta)_{l-1} .
\end{align*}
$$

Subtracting (5.5) from (5.3)

$$
\begin{align*}
& L_{n}^{\beta}(\omega)(y)-L_{n}^{\beta}(\omega)(x) \tag{5.6}\\
= & \sum_{i=0}^{\infty} \sum_{l=0}^{\infty}\left[\omega\left(\frac{i+l}{n}\right)-\omega\left(\frac{i}{n}\right)\right] n x(n x+1+i \beta)_{i-1} \frac{2^{-(n y+(i+l) \beta)}}{2^{i+l} i!!!} \\
& \times n(y-x)(n(y-x)+1+l \beta)_{l-1}
\end{align*}
$$

and using the hypothesis that ω is a modulus of continuity function, one obtains

$$
\begin{align*}
\leq & \sum_{i=0}^{\infty} \sum_{l=0}^{\infty} \omega\left(\frac{l}{n}\right) n x(n x+1+i \beta)_{i-1} \frac{2^{-(n y+(i+l) \beta)}}{2^{i+l} i!l!} \\
& \times n(y-x)(n(y-x)+1+l \beta)_{l-1} \\
= & \sum_{i=0}^{\infty} n x(n x+1+i \beta)_{i-1} \frac{2^{-i \beta}}{2^{i} i!} \\
& \times \sum_{l=0}^{\infty} \omega\left(\frac{l}{n}\right) n(y-x)(n(y-x)+1+l \beta)_{l-1} \frac{2^{-(n y+l \beta)}}{2^{l} l!} \\
= & \sum_{l=0}^{\infty} \omega\left(\frac{l}{n}\right) n(y-x)(n(y-x)+1+l \beta)_{l-1} \frac{2^{-(n(y-x)+l \beta)}}{2^{l} l!} \\
= & \left.L_{n}^{\beta}(\omega)(y-x)\right) . \tag{5.7}
\end{align*}
$$

This shows that $L_{n}^{\beta}(\omega)$ satisfies the subadditivity property. Since ω is non-decreasing, then (5.6) provides that $L_{n}^{\beta}(\omega)(y) \geq L_{n}^{\beta}(\omega)(x)$ when $y \geq x$, namely, $L_{n}^{\beta}(\omega)$ is nondecreasing. From the definition of L_{n}^{β} it is obvious that $\lim _{x \rightarrow 0} L_{n}^{\beta}(\omega ; x)=L_{n}^{\beta}(\omega ; 0)=$ $\omega(0)=0$. Therefore, $L_{n}^{\beta}(\omega)$ is a function of modulus of continuity.

References

[1] Abel, U., Agratini, O., Asymptotic behaviour of Jain operators, Numer. Algorithms, 71(2016), 553-565.
[2] Abel, U., Ivan, M., On a generalization of an approximation operator defined by A. Lupaş, Gen. Math., 15(2007), no. 1, 21-34.
[3] Agratini, O., On a sequence of linear positive operators, Facta Univ. Ser. Math. Inform., 14(1999), 41-48.
[4] Agratini, O., On the rate of convergence of a positive approximation process, Nihonkai Math. J., 11(2000), 47-56.
[5] Agratini, O., Approximation properties of a class of linear operators, Math. Methods Appl. Sci., 36(2013), no. 17, 2353-2358.
[6] Cheney, E.W., Charma, A., Bernstein power series, Canad. J. Math., 16(1964), 241-252.
[7] Erençin, A., Başcanbaz-Tunca, G., Taşdelen, F., Some properties of the operators defined by Lupaş, Rev. Anal. Numér. Théor. Approx., 43(2014), no. 2, 168-174.
[8] Farcaş, A., An asymptotic formula for Jain's operators, Stud. Univ. Babeş-Bolyai Math., 57(2012), no. 4, 511-517.
[9] Finta, Z., Pointwise approximation by generalized Szász-Mirakjan operators, Stud. Univ. Babeş-Bolyai Math., 46(2001), no. 4, 61-67.
[10] Finta, Z., Quantitative estimates for some linear and positive operators, Stud. Univ. Babeş-Bolyai Math., 47(2002), no. 3, 71-84.
[11] Gadzhiev, A.D., Theorems of the type of P.P. Korovkin's type theorems, Mat. Zametki, 20(1976), no. 5, 781-786.
[12] Gasper, G., Rahman, M., Basic Hypergeometric Series, Cambridge University Press, 2004.
[13] Jain, G.C., Approximation of functions by a new class of linear operators, J. Aust. Math. Soc., 13(1972), no. 3, 271-276.
[14] Li, Z., Bernstein polynomials and modulus of continuity, J. Approx. Theory, 102(2000), no.1, 171-174.
[15] Lupaş, A., The approximation by some positive linear operators, In: Proceedings of the International Dortmund Meeting on Approximation Theory (M.W. Muller et al., eds.), Mathematical Research, Akademie Verlag, Berlin, 86(1995), 201-229.
[16] Mhaskar, H.N., Pai, D.V., Fundamentals of approximation theory, CRC Press, Boca Raton, FL, Narosa Publishing House, New Delhi, 2000.
[17] Olgun, A., Taşdelen F., Erençin, A., A generalization of Jain's operators, Appl. Math. Comput., 266(2015), 6-11.
[18] Özarslan, M.A., Approximation Properties of Jain-Stancu Operators, Filomat, 30(2016), no. 4, 1081-1088.
[19] Patel, P., Mishra, V.N., On new class of linear and positive operators, Boll. Unione Mat. Ital., 8(2015), no. 2, 81-96.
[20] Stancu, D.D., Occorsio, M.R., On approximation by binomial operators of Tiberiu Popoviciu type, Rev. Anal. Numér. Théor. Approx., 27(1998), 167-181.
[21] Velleman, D.J., Call, G.S., Permutation and combination locks, Math. Mag., 68(1995), no. 4, 243-253.

Gülen Başcanbaz-Tunca
Ankara University, Faculty of Science
Department of Mathematics
06100 Tandogan-Ankara, Turkey
e-mail: tunca@science.ankara.edu.tr
Murat Bodur
Ankara University, Faculty of Science
Department of Mathematics
06100 Tandogan-Ankara, Turkey
e-mail: bodur@ankara.edu.tr
Dilek Söylemez
Ankara University, Elmadag Vocational School
06780, Elmadag-Ankara, Turkey
e-mail: dsoylemez@ankara.edu.tr

