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On Lupaş-Jain operators
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Abstract. In this paper, linear positive Lupaş-Jain operators are constructed and
a recurrence formula for the moments is given. For the sequence of these oper-
ators; the weighted uniform approximation, also, monotonicity under convexity
are obtained. Moreover, a preservation property of each Lupaş-Jain operator is
presented.
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1. Introduction

In [13], Jain generalized the well known Százs-Mirakjan operators by construct-
ing the linear positive operators given by

Sβn (f) (x) =

∞∑
k=0

nx (nx+ kβ)
k−1

k!
e−(nx+kβ)f

(
k

n

)
, (1.1)

where f : [0,∞) → R, n ∈ N, x > 0 and 0 ≤ β < 1, with β may depend only on
n. For some interesting works related to Jain’s operators we refer to [2], [1], [5], [8],
[17], [18] and references cited therein.

In [3], Agratini studied some approximation properties of the following linear
positive operators

Ln (f) (x) = 2−nx
∞∑
k=0

(nx)k
2kk!

f

(
k

n

)
(1.2)

for n ∈ N, x ≥ 0 and some suitable f : [0,∞) → R that the operator Ln (f) makes
sense. These operators are special form of the well-known operators defined by Lupaş
in [15] and resemble the familiar Százs-Mirakjan operators. In the paper [3], the
author obtained some estimates for the order of approximation on a finite interval
as well as proved a Voronovskaya type theorem. Moreover, Agratini also considered
the Kantorovich extension of Ln (f) for f belonging to the class of local integrable



526 Gülen Başcanbaz-Tunca, Murat Bodur and Dilek Söylemez

functions on [0,∞) and studied the degree of approximation [4]. Some approximation
results and basic history concerning Lupaş operators can be found in [9], [10], [7].

Recently, Patel and Mishra extended the Lupaş operators given by (1.2) as

Lβn (f) (x) =

∞∑
k=0

(nx+ kβ)k
2kk!

2−(nx+kβ)f

(
k

n

)
(1.3)

for real valued functions f on [0,∞), where they assumed that

(nx+ kβ)0 = 1, (nx+ kβ)1 = nx

and

(nx+ kβ)k = nx (nx+ kβ) (nx+ kβ + 1) ... (nx+ kβ + k − 1) , k ≥ 2

[19]. Here, the authors studied direct approximation results and gave Kantorovich
and Durrmeyer types modifications of (1.3).

In this work, we also construct a generalization of the Lupaş operators Ln in the
sense of Jain in [13]. Here, we point out that our expression is different from Lβn given
by (1.3) in such a way that in the construction, we take the negative subscript “−1”
of the Pochhammer symbol into consideration, in which case the calculations become
simpler in a remarkable degree. By using analogous Abel and Jensen combinatorial
formulas for factorial powers (see, e.g., [20]), we show the monotonicity property of
these operators for n under the convexity of f . We investigate that the Lupaş-Jain
operator can retain the properties of the modulus of continuity function. Moreover, we
study the weighted uniform approximation of functions from the polynomial weighted
space given in [11].

In what follows, let α and β be real parameters such that 0 < α < ∞ and 0 ≤
β < 1. Then, as in [13], Taking into account of the Lagrange inversion formula

φ (z) = φ (0) +

∞∑
k=1

1

k!

[
dk−1

dzk−1
(f (z))

k
φ′ (z)

]
z=0

(
z

f (z)

)k
for

φ (z) =
1

(1− z)α
and f (z) =

1

(1− z)β
, |z| < 1,

we obtain

1

(1− z)α
= 1 +

∞∑
k=1

α (α+ 1 + kβ)k−1
k!

zk (1− z)kβ , (1.4)

where

(a)n =

{
a (a+ 1) ... (a+ n− 1) n ∈ N
1 n = 0, a 6= 0,

is the well-known Pochhammer symbol, from which we have

(a)−n =
1

(a− 1) (a− 2) ... (a− n)
=

1

(a− n)n
=

(−1)
n

(1− a)n
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for negative subscripts when a 6= 1, 2, ..., n (see, e.g., p.5 of [12]). Hence, we immedi-
ately get that (α+ 1)−1 = 1

(α)1
= 1

α . Now, we have

1 =

∞∑
k=0

α (α+ 1 + kβ)k−1
2kk!

2−(α+kβ) (1.5)

for 0 < α <∞ and 0 ≤ β < 1. So, denoting

L (0, α, β) :=

∞∑
k=0

(α+ 1 + kβ)k−1
2kk!

2−(α+kβ) (1.6)

it readily follows from (1.5) that

αL (0, α, β) = 1. (1.7)

Hence, we present the following recurrence formula.

Lemma 1.1. Let 0 < α <∞, 0 ≤ β < 1, r ∈ N and

L (r, α, β) :=

∞∑
k=0

(α+ 1 + kβ)k+r−1
2kk!

2−(α+kβ). (1.8)

Then we have

L (r, α, β) =

∞∑
k=0

(
β + 1

2

)k
(α+ r − 1 + kβ)L (r − 1, α+ kβ, β) .

Proof. Taking the fact

(α+ 1 + kβ)k+r−1 = (α+ 1 + kβ)k+r−2 (α+ r − 1 + k (β + 1))

into consideration, then one finds

L (r, α, β) = (α+ r − 1)L (r − 1, α, β) +
β + 1

2
L (r, α+ β, β) .

Recursive application of the last formula gives the result. �

For the calculation of moments of the operators, we can use the well-known
property of the geometric series given below (see, e.g., [21]).

Remark 1.2. ([21]) Consider the geometric series

hn (x) :=

∞∑
k=0

knxk − 1 < x < 1, n ∈ N

and

h0 (x) :=
1

1− x
=

∞∑
k=0

xk. (1.9)

Term-wise differentiation gives that

h′n (x) =

∞∑
k=1

kn+1xk−1,
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which satisfies the following

xh′n (x) =

∞∑
k=1

kn+1xk = hn+1 (x) .

From this recurrence, one has

h1 (x) =
x

(1− x)
2 =

∞∑
k=1

kxk, (1.10)

h2 (x) =
x2 + x

(1− x)
3 =

∞∑
k=1

k2xk. (1.11)

Lemma 1.3. For the auxiliary function L (r, α, β) defined by (1.8), one has

L (1, α, β) =
2

1− β
,

L (2, α, β) =
22 (α+ 1)

(1− β)
2 +

22β (β + 1)

(1− β)
3 .

Proof. Since 0 ≤ β < 1, then (1.9), (1.10) and (1.11), with x = β+1
2 , give that

∞∑
k=0

(
β + 1

2

)k
=

2

1− β
,

∞∑
k=1

k

(
β + 1

2

)k
=

2 (β + 1)

(1− β)
2 ,

∞∑
k=1

k2
(
β + 1

2

)k
=

2
(
β2 + 4β + 3

)
(1− β)

3 .

Combining these results with (1.6), (1.7) and (1.8), it readily follows that

L (1, α, β) =

∞∑
k=0

(
β + 1

2

)k
(α+ kβ)L (0, α+ kβ, β)

=
2

1− β
. (1.12)

Also, L (2, α, β) is obtained as

L (2, α, β) =

∞∑
k=0

(
β + 1

2

)k
(α+ 1 + kβ)L (1, α+ kβ, β)

=
2 (α+ 1)

1− β

∞∑
k=0

(
β + 1

2

)k
+

2β

1− β

∞∑
k=0

k

(
β + 1

2

)k
=

4 (α+ 1)

(1− β)
2 +

4β (β + 1)

(1− β)
3 . (1.13)

�
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2. Construction of the operators

Taking α = nx, n ∈ N, x > 0 in (1.5), we consider the following linear positive
operators

Lβn (f) (x) =

∞∑
k=0

nx (nx+ 1 + kβ)k−1
2kk!

2−(nx+kβ)f

(
k

n

)
, x ∈ (0,∞) (2.1)

and Lβn (f) (0) = f (0) for real valued bounded functions f on [0,∞), where 0 ≤
β < 1, depending only on n. We call the operators Lβn as Lupaş-Jain. Obviously,
Lupaş-Jain operators reduce to Lupaş operators in [3] when β = 0.

Lemma 2.1. Let ei (t) := ti, i = 0, 1, 2. For the Lupaş-Jain operators, one has

Lβn (e0) (x) = 1,

Lβn (e1) (x) =
x

1− β
,

Lβn (e2) (x) =
x2

(1− β)
2 +

2x

n (1− β)
3 .

Proof. It is clear from (1.5) that Lβn (e0) (x) = 1. By taking f = e1 in (2.1) and using
(1.12) in the result, we easily get

Lβn (e1) (x) =

∞∑
k=1

nx (nx+ 1 + kβ)k−1
2kk!

2−(nx+kβ)
(
k

n

)

= x

∞∑
k=0

(nx+ β + 1 + kβ)k
2k+1k!

2−(nx+β+kβ)

=
x

2
L (1, nx+ β, β)

=
x

1− β
.

By taking f = e2 and using (1.12) and (1.13) we find

Lβn (e2) (x) =

∞∑
k=1

nx (nx+ 1 + kβ)k−1
2kk!

2−(nx+kβ)
(
k

n

)2

=
x

n

∞∑
k=0

(nx+ β + 1 + kβ)k
2k+1k!

2−(nx+β+kβ) (k + 1)

=
x

n

{
1

22
L (2, nx+ 2β, β) +

1

2
L (1, nx+ β, β)

}
=

x

n

{
(nx+ 1 + 2β)

(1− β)
2 +

β (β + 1)

(1− β)
3 +

1

1− β

}

=
x2

(1− β)
2 +

2x

n (1− β)
3 .

�
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3. Weighted approximation

In this section, we deal with the weighted uniform approximation result of the
sequence of the Lupaş-Jain operators Lβn by using Gadjiev’s theorem in [11], for which
we have the following settings:

We take ϕ (x) = 1+x2 as the suitable weight function and, for simplicity, denote
R+ := [0,∞). Related to ϕ, we take the space

Bϕ(R+) =
{
f : R+ → R

∣∣|f(x)| ≤Mfϕ (x) , x ∈ R+
}
,

where Mf is a constant depending on f. Bϕ(R+) is a normed space with the norm

‖f‖ϕ = sup
x∈R+

|f(x)|
ϕ (x)

.

Moreover, we denote, as usual, by Cϕ(R+), Ckϕ(R+) the following subspaces of

Bϕ(R+)

Cϕ(R+) :
{
f ∈ Bϕ(R+) : f is continuous

}
,

Ckϕ(R+) =

{
f ∈ Cϕ(R+)

∣∣∣∣ lim
x→∞

f(x)

ϕ(x)
= kf

}
,

respectively, where kf is a constant depending on f . We have the following two results
due to Gadjiev in [11]:

Lemma 3.1. The linear positive operators Tn, n ∈ N, act from Cϕ(R+) to Bϕ(R+) if
and only if

|Tn (ϕ) (x)| ≤ Kϕ(x),

where K is a positive constant.

Theorem 3.2. Let {Tn}n∈N be a sequence of linear positive operators mapping
Cϕ(R+) into Bϕ(R+) and satisfying the conditions

lim
n→∞

‖Tn (ei)− ei‖ϕ = 0, for i = 0, 1, 2.

Then for any f ∈ Ckϕ(R+) one has

lim
n→∞

‖Tn (f)− f‖ϕ = 0.

Now, we treat weighted uniform approximation for Lupaş-Jain operators
Lβn acting on Cϕ(R+). In order to get an approximation result, as in [13], we need
to make an adjustment to the parameter β by taking it as a sequence such that
β = βn, 0 ≤ βn < 1 and lim

n→∞
βn = 0.

Theorem 3.3. Let {βn}n∈N be a sequence such that 0 ≤ βn < 1 and lim
n→∞

βn = 0. Then

for each f ∈ Ckϕ(R+) we have

lim
n→∞

∥∥Lβn
n (f)− f

∥∥
ϕ

= 0.
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Proof. According to Lemmas 2.1 and 3.1 we get that the operators Lβn
n act from

Cϕ(R+) to Bϕ(R+). Now, it only remains to show the sufficient conditions of the
Theorem 3.2 for Lβn

n . Using Lemma 2.1 and the hypothesis on βn, we obtain that

lim
n→∞

∥∥Lβn
n (e0)− e0

∥∥
ϕ

= 0

and that ∥∥Lβn
n (e1)− e1

∥∥
ϕ
≤ βn

1− βn
,

which gives

lim
n→∞

∥∥Lβn
n (e1)− e1

∥∥
ϕ

= 0.

Finally, since 2x ≤ 1 + x2, we get∥∥Lβn
n (e2)− e2

∥∥
ϕ

= sup
x∈R+

∣∣Lβn
n (e2)− e2

∣∣
1 + x2

= sup
x∈R+

∣∣∣∣∣ 1

1 + x2

(
x2

(1− βn)
2 +

2x

n (1− βn)
3 − x

2

)∣∣∣∣∣
= sup

x∈R+

∣∣∣∣∣ x2

1 + x2
2βn − β2

n

(1− βn)
2 +

2x

1 + x2
1

n (1− βn)
3

∣∣∣∣∣
≤ 2βn − β2

n

(1− βn)
2 +

1

n (1− βn)
3 ,

which clearly gives that

lim
n→∞

∥∥Lβn
n (e2)− e2

∥∥
ϕ

= 0.

This completes the proof. �

4. The monotonicity of the sequence of Lupaş-Jain operators

Recall that a continuous function f is said to be convex in D ⊆ R, if

f

(
n∑
i=1

αiti

)
≤

n∑
i=1

αif (ti)

for every t1, t2, ..., tn ∈ D and for every nonnegative numbers α1, α2, ..., αn such that
α1 + α2 + ...+ αn = 1.

For the proof of the main result of this section, we need the corresponding
definition of the well-known Jensen and Abel combinatorial formulas for factorial
powers. Below, we reproduce these formulas from the work of Stancu and Occorsio
(pp.175-176 of [20]) for the increment −1, respectively.

(u+ v) (u+ v + 1 +mβ)m−1

=

m∑
k=0

(
m

k

)
u (u+ 1 + kβ)k−1 v (v + 1 + (m− k)β)m−k−1 (4.1)
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and

(u+ v +mβ)m =

m∑
k=0

(
m

k

)
(u+ kβ)k v (v + 1 + (m− k)β)m−k−1 . (4.2)

Note that the monotonicity of Százs-Mirakjan operators of convex function was
proved by Cheney and Sharma [6]. On the other hand, the same result for the Lupaş
operators was obtained by Erençin et al. [7]. Now, we present the monotonicity of
each Lupaş-Jain operator Lβn (f) for n, when f is a convex function.

Theorem 4.1. Let f be a convex function defined on [0,∞). Then, for all n, Lβn (f) is
non-increasing in n.

Proof. For x = 0, the result is obvious. So, for x > 0, we can write

2x =

∞∑
k=0

x (x+ 1 + kβ)k−1
2kk!

2−kβ

by (1.5) with α = x. Using this formula we can write

Lβn (f) (x)− Lβn+1 (f) (x)

= 2x
∞∑
k=0

nx (nx+ 1 + kβ)k−1
2kk!

2−[(n+1)x+kβ]f

(
k

n

)

−
∞∑
k=0

(n+ 1)x ((n+ 1)x+ 1 + kβ)k−1
2kk!

2−[(n+1)x+kβ]f

(
k

n+ 1

)

=

∞∑
l=0

x (x+ 1 + lβ)l−1
2ll!

2−lβ
∞∑
k=0

nx (nx+ 1 + kβ)k−1
2kk!

2−[(n+1)x+kβ]f

(
k

n

)

−
∞∑
k=0

(n+ 1)x ((n+ 1)x+ 1 + kβ)k−1
2kk!

2−[(n+1)x+kβ]f

(
k

n+ 1

)

=

∞∑
l=0

x (x+ 1 + lβ)l−1
2ll!

2−lβ

×
∞∑
k=l

nx (nx+ 1 + (k − l)β)k−l−1
2k−l (k − l)!

2−[(n+1)x+(k−l)β]f

(
k − l
n

)

−
∞∑
k=0

(n+ 1)x ((n+ 1)x+ 1 + kβ)k−1
2kk!

2−[(n+1)x+kβ]f

(
k

n+ 1

)
.

Changing the order of the above summations, we obtain that

Lβn (f) (x)− Lβn+1 (f) (x)

=

∞∑
k=0

k∑
l=0

x (x+ 1 + lβ)l−1
l!

nx (nx+ 1 + (k − l)β)k−l−1
2k (k − l)!

2−[(n+1)x+kβ]f

(
k − l
n

)

−
∞∑
k=0

(n+ 1)x ((n+ 1)x+ 1 + kβ)k−1
2kk!

2−[(n+1)x+kβ]f

(
k

n+ 1

)
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=

∞∑
k=0

{
k∑
l=0

nx (nx+ 1 + lβ)l−1
l!

x (x+ 1 + (k − l)β)k−l−1
2k (k − l)!

f

(
l

n

)

−
(n+ 1)x ((n+ 1)x+ 1 + kβ)k−1

2kk!
f

(
k

n+ 1

)}
2−[(n+1)x+kβ] (4.3)

Now, denote

αl :=

(
k

l

)
nx (nx+ 1 + lβ)l−1 x (x+ 1 + (k − l)β)k−l−1

(n+ 1)x ((n+ 1)x+ 1 + kβ)k−1
> 0

and

tl :=
l

n
.

Taking u = nx, v = x and m = k in (4.1) one has

(n+ 1)x ((n+ 1)x+ 1 + kβ)k−1

=

k∑
l=0

(
k

l

)
nx (nx+ 1 + lβ)l−1 x (x+ 1 + (k − l)β)k−l−1 ,

which clearly gives that
k∑
l=0

αl = 1.

On the other hand, taking u = nx + β + 1, v = x and m = k − 1 in (4.2), it follows
that

((n+ 1)x+ 1 + kβ)k−1
= (nx+ β + 1 + x+ (k − 1)β)k−1

=

k−1∑
l=0

(
k − 1

l

)
(nx+ β + 1 + lβ)l x (x+ 1 + (k − 1− l)β)k−l−2 .

Taking into account of the above fact, it follows that

k∑
l=0

αltl =

k∑
l=1

(
k
l

)
nx (nx+ 1 + lβ)l−1 x (x+ 1 + (k − l)β)k−l−1

(
l
n

)
(n+ 1)x ((n+ 1)x+ 1 + kβ)k−1

=

k
k−1∑
l=0

(
k−1
l

)
nx (nx+ β + 1 + lβ)l x (x+ 1 + (k − 1− l)β)k−l−2

n (n+ 1)x ((n+ 1)x+ 1 + kβ)k−1

=
k

n+ 1

k−1∑
l=0

(
k−1
l

)
(nx+ β + 1 + lβ)l x (x+ 1 + (k − 1− l)β)k−l−2

((n+ 1)x+ 1 + kβ)k−1

=
k

n+ 1
.
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Hence, making use of the convexity of f, (4.3) gives that

Lβn (f) (x) ≥ Lβn+1 (f) (x)

for all n ∈ N, which completes the proof. �

5. A preservation property

We recall the following definition for the subsequent result.

Definition 5.1. A continuous, and non-negative function ω defined on [0,∞) is called
a function of modulus of continuity, if each of the following conditions is satisfied:

i) ω(u+ v) ≤ ω(u) + ω(v) for u, v ∈ [0,∞), i.e., ω is subadditive,
ii) ω(u) ≥ ω(v) for u ≥ v, i.e., ω is non-decreasing,
iii) limu→0+ ω(u) = ω(0) = 0 ([16]).

In [14], Li noticed a new preservation property that the Bernstein polynomials
Bn, n ∈ N satisfy. Li proved that if ω(x) is a modulus of continuity function, then
for each n ∈ N, Bn(ω;x) is also a modulus of continuity function. The same result for
the Lupaş operators was obtained in [7]. Below, we show that this result is satisfied
by the Lupaş-Jain operators as well.

Theorem 5.2. Let ω be a modulus of continuity function. Then, for all n, Lβn (ω) is
also a modulus of continuity function.

Proof. Let x, y ∈ [0,∞) and x ≤ y. Then from the definition of Lβn, we have

Lβn (ω) (y) =

∞∑
k=0

ny (ny + 1 + kβ)k−1
2kk!

2−(ny+kβ)ω

(
k

n

)
.

Taking nx and n (y − x) in place of u and v, respectively in (4.1), we obtain

ny (ny + 1 +mβ)m−1 (5.1)

=

k∑
i=0

(
k

i

)
nx (nx+ 1 + iβ)i−1 n (y − x) (n (y − x) + 1 + (k − i)β)

k−i−1

which implies

Lβn (ω) (y)

=

∞∑
k=0

k∑
i=0

ω

(
k

n

)(
k

i

)
nx (nx+ 1 + iβ)i−1

2kk!
2−(ny+kβ)

×n (y − x) (n (y − x) + 1 + (k − i)β)
k−i−1

.

Interchanging the order of the above summations gives that

Lβn (ω) (y)

=

∞∑
i=0

∞∑
k=i

ω

(
k

n

)
1

i! (k − i)!
nx (nx+ 1 + iβ)i−1

2−(ny+kβ)

2k
(5.2)

n (y − x) (n (y − x) + 1 + (k − i)β)
k−i−1

.
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Taking k − i = l, (5.2) reduces to

Lβn (ω) (y)

=

∞∑
i=0

∞∑
l=0

ω

(
i+ l

n

)
nx (nx+ 1 + iβ)i−1

2−(ny+(i+l)β)

2i+li!l!
(5.3)

×n (y − x) (n (y − x) + 1 + lβ)
l−1

.

On the other hand, Lβn (ω) (x) can be written as

Lβn (ω) (x) =

∞∑
i=0

ω

(
i

n

)
nx (nx+ 1 + iβ)i−1

2−(nx+iβ)

2ii!
(5.4)

=

∞∑
i=0

ω

(
i

n

)
nx (nx+ 1 + iβ)i−1

2−(ny+iβ)2n(y−x)

2ii!
.

Since

2n(y−x) =

∞∑
l=0

n (y − x) (n (y − x) + 1 + lβ)l−1
2−lβ

2ll!

then, one may write

Lβn (ω) (x) =

∞∑
i=0

∞∑
l=0

ω

(
i

n

)
nx (nx+ 1 + iβ)i−1

2−(ny+(i+l)β)

2i+li!l!
(5.5)

×n (y − x) (n (y − x) + 1 + lβ)l−1 .

Subtracting (5.5) from (5.3)

Lβn (ω) (y)− Lβn (ω) (x) (5.6)

=

∞∑
i=0

∞∑
l=0

[
ω

(
i+ l

n

)
− ω

(
i

n

)]
nx (nx+ 1 + iβ)i−1

2−(ny+(i+l)β)

2i+li!l!

×n (y − x) (n (y − x) + 1 + lβ)l−1

and using the hypothesis that ω is a modulus of continuity function, one obtains

≤
∞∑
i=0

∞∑
l=0

ω

(
l

n

)
nx (nx+ 1 + iβ)i−1

2−(ny+(i+l)β)

2i+li!l!

×n (y − x) (n (y − x) + 1 + lβ)l−1

=

∞∑
i=0

nx (nx+ 1 + iβ)i−1
2−iβ

2ii!

×
∞∑
l=0

ω

(
l

n

)
n (y − x) (n (y − x) + 1 + lβ)l−1

2−(ny+lβ)

2ll!

=

∞∑
l=0

ω

(
l

n

)
n (y − x) (n (y − x) + 1 + lβ)l−1

2−(n(y−x)+lβ)

2ll!

= Lβn (ω) (y − x)) . (5.7)
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This shows that Lβn (ω) satisfies the subadditivity property. Since ω is non-decreasing,
then (5.6) provides that Lβn (ω) (y) ≥ Lβn (ω) (x) when y ≥ x, namely, Lβn (ω) is non-
decreasing. From the definition of Lβn it is obvious that limx→0 L

β
n (ω;x) = Lβn (ω; 0) =

ω(0) = 0. Therefore, Lβn (ω) is a function of modulus of continuity. �
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