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On Lupas-Jain operators
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Abstract. In this paper, linear positive Lupas-Jain operators are constructed and
a recurrence formula for the moments is given. For the sequence of these oper-
ators; the weighted uniform approximation, also, monotonicity under convexity
are obtained. Moreover, a preservation property of each Lupag-Jain operator is
presented.
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1. Introduction

In [13], Jain generalized the well known Szdzs-Mirakjan operators by construct-
ing the linear positive operators given by

00 k-1
SE(f) @)=Y Mef(nwﬂcﬁ)f <k) , (1.1)

k! n
k=0
where f : [0,00) > R, n € N, 2 > 0 and 0 < 8 < 1, with 8 may depend only on
n. For some interesting works related to Jain’s operators we refer to [2], [1], [5], [8],
[17], [18] and references cited therein.

In [3], Agratini studied some approximation properties of the following linear
positive operators

=, (nx) k
_ o—nx k n
L@ =23 Gk () (12
for n € N, > 0 and some suitable f : [0,00) — R that the operator L,, (f) makes
sense. These operators are special form of the well-known operators defined by Lupag
in [15] and resemble the familiar Szdzs-Mirakjan operators. In the paper [3], the
author obtained some estimates for the order of approximation on a finite interval
as well as proved a Voronovskaya type theorem. Moreover, Agratini also considered
the Kantorovich extension of L, (f) for f belonging to the class of local integrable
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functions on [0, 00) and studied the degree of approximation [4]. Some approximation
results and basic history concerning Lupag operators can be found in [9], [10], [7].
Recently, Patel and Mishra extended the Lupag operators given by (1.2) as

L) =30 P g (£) (1.3

pre 2k ! n
for real valued functions f on [0, 00), where they assumed that
(nx+kB)y =1, (nx+kB), =nx
and
(nz +kB), =nx(nx+kB) (ne+kB+1)...(ne+kB+k—-1), k>2

[19]. Here, the authors studied direct approximation results and gave Kantorovich
and Durrmeyer types modifications of (1.3).

In this work, we also construct a generalization of the Lupas operators L,, in the
sense of Jain in [13]. Here, we point out that our expression is different from L2 given
by (1.3) in such a way that in the construction, we take the negative subscript “—1”"
of the Pochhammer symbol into consideration, in which case the calculations become
simpler in a remarkable degree. By using analogous Abel and Jensen combinatorial
formulas for factorial powers (see, e.g., [20]), we show the monotonicity property of
these operators for n under the convexity of f. We investigate that the Lupas-Jain
operator can retain the properties of the modulus of continuity function. Moreover, we
study the weighted uniform approximation of functions from the polynomial weighted
space given in [11].

In what follows, let @ and § be real parameters such that 0 < a < co and 0 <
B < 1. Then, as in [13], Taking into account of the Lagrange inversion formula

b (2 )+ Z ]il [j;k 11 &) (Z)} 2=0 (f?@)k

for
6(2) = and (z) = — . |2 <1
(1_Z)oz (1_2:)57 )
we obtain
ala+1+ kﬂ) A
(1_2 ~ Z koL k(1 = 2) (1.4)
where
(a). = a(a+1)...(a+n—1) neN
n 1 n=0, a#0,
is the well-known Pochhammer symbol, from which we have

@ = 1 1 (="
7 (a—1)(a=2)..(a=n) (a—n), (1-a)

n
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for negative subscripts when a # 1,2, ...,n (see, e.g., p.5 of [12]). Hence, we immedi-

ately get that (o +1)_; = (al) = i Now, we have

oo
=y
k=

ala+1+Ekp), o
2kK!

1
a+kp) (1.5)
0
for 0 < a < oo and 0 < 8 < 1. So, denoting

L0009 =3 Sy (1.6)

k=0
it readily follows from (1.5) that

aL(0,a,0) = 1. (1.7)
Hence, we present the following recurrence formula.
Lemma 1.1. Let0 < a < oo, 0< <1, reN and

o~ (@ + T+ k),

L(r,a,p)=> ] g~ (atkB), (1.8)
k=0 ’

Then we have

0o 6+1 k
L(r,a,ﬁ)zz<2) (a+r—14+kB)L(r—1,a+kB,5).
k

=0
Proof. Taking the fact
(a+1+kB)py 1 =(a+14+kB),, o(a+r—1+k(B+1))

into consideration, then one finds

LironB)= (ot r =D Lir—Laf)+ T Lnat5.0).

Recursive application of the last formula gives the result. O

For the calculation of moments of the operators, we can use the well-known
property of the geometric series given below (see, e.g., [21]).

Remark 1.2. ([21]) Consider the geometric series
hn(x):zz:k”x’C —-1l<z<l1l neN
k=0

and

1 — k
ho (z) zzl—x:Zx . (1.9)
k=0
Term-wise differentiation gives that
(@) = Dok,

k=1



528 Giilen Bagcanbaz-Tunca, Murat Bodur and Dilek S&ylemez

which satisfies the following

o0
zh! (z) = E K"t lah = by (2).
k=1
From this recurrence, one has

T o0
() = —m—=) kz*, (1.10)
(1-x)* kz_:l
22+ =
hy (z) = =) k% (1.11)
(1—-2)° ;
Lemma 1.3. For the auziliary function L (r,«, 8) defined by (1.8), one has
2
L (17 aaﬁ) - 1 _ /87
22 1) 22 1
L@ag = 2@F) 20D

1-p°* @-87°

Proof. Since 0 < 8 < 1, then (1.9), (1.10) and (1.11), with z = %, give that
0 k
,;0 (6;1) T ’ B’
o0 k 9 1
,;k(6;1> - <1(ﬂ+ﬁ>2)’
> F 2(B2+48+3
;k2<5;1> _ (5(;_;; )

Combining these results with (1.6), (1.7) and (1.8), it readily follows that

00 k
ras) = 3 (550) @rro)L.a+ks5)

k=0
_ 13 . (1.12)
Also, L (2, a, () is obtained as

e’} B‘i’l k
k=0

2+ ) & B+1\" 28 & /B+1)"

T 1-p ];( 2 > +1—5];)k<2)

_ 4(a+1)+4ﬂ(5+1). (1.13)

1-8?2 @1-5°
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2. Construction of the operators

Taking a = nz, n € N, > 0 in (1.5), we consider the following linear positive
operators

Lﬁ () (@) = i nx (nx —1-2:]:'— kB)y_1 27(nx+k5)f <z) , xe(0,00) (2.1)
k=0 ’

and L2 (f)(0) = f(0) for real valued bounded functions f on [0,00), where 0 <
B < 1, depending only on n. We call the operators L as Lupas-Jain. Obviously,
Lupag-Jain operators reduce to Lupag operators in [3] when 8 = 0.

Lemma 2.1. Let e; (t) :=t', i =0,1,2. For the Lupas-Jain operators, one has

LY (eo) (1) = 1.
Lien@) = =5

T 2x
Q87 n@-pF

Proof. Tt is clear from (1.5) that L2 (eg) (x) = 1. By taking f = e; in (2.1) and using
(1.12) in the result, we easily get

o0

L) = Y ety e (1)

2kE! n

xi (nz +B+1+kB), o~ (nz+B+kp)
- 2k+1L|

By taking f = ey and using (1.12) and (1.13) we find

oo 2

2k k! n

x oo (nx+/8—|—1+k5)k —(na+B+kB)
= 52 SFFIT 2 (k+1)

_ z{ZL(27nx+2ﬁ,ﬁ)+ ;L(Lnx—i—ﬂ,ﬂ)}

2

o (nr+1+28) B(B+1) 1

Tl a-s? a-p i ﬁ}
x2 2x

G YT
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3. Weighted approximation

In this section, we deal with the weighted uniform approximation result of the
sequence of the Lupas-Jain operators L? by using Gadjiev’s theorem in [11], for which
we have the following settings:

We take ¢ () = 1+ 22 as the suitable weight function and, for simplicity, denote
R* := [0, 0). Related to ¢, we take the space

B,(RT) ={ f:RT = R|[f(2)] < Msp(z), z € R* },
where M is a constant depending on f. B,(R™) is a normed space with the norm

L @)
I£1, = sup 2

zeRT
Moreover, we denote, as usual, by C,(R"), C’];(R*) the following subspaces of
B, (RY)
Co(RT) :+ {f € B,(R"): fis continuous},
lim &) :kf},

respectively, where k is a constant depending on f. We have the following two results
due to Gadjiev in [11]:

CERY) = {fe@(ﬂ@)

Lemma 3.1. The linear positive operators T,,, n € N, act from C,(R") to B,(R") if
and only if

T () ()] < Kp(),

where K is a positive constant.

Theorem 3.2. Let {Tn}neN be a sequence of linear positive operators mapping
Cy,(RT) into B,(R™) and satisfying the conditions

nlglgo HTH (61) - ei”gp =0, fO’/‘i =0,1,2.
Then for any f € CE(RT) one has
Tim 1T, () fIl, = 0.

Now, we treat weighted uniform approximation for Lupag-Jain operators
L? acting on C,(R™). In order to get an approximation result, as in [13], we need
to make an adjustment to the parameter 8 by taking it as a sequence such that
B = Bn, 0§6n<1andnll{réoﬁn:0

Theorem 3.3. Let {f,},, oy be a sequence such that 0 < 8, <1 and lim B, = 0. Then
n—oo

Jor each f € CE(RT) we have

lim [|L3" (f) = f]|, = 0.

n—oo
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Proof. According to Lemmas 2.1 and 3.1 we get that the operators L2» act from
Cy(RT) to B,(RT). Now, it only remains to show the sufficient conditions of the
Theorem 3.2 for L. Using Lemma 2.1 and the hypothesis on j3,,, we obtain that

lim |5 (eo) — eof|, =0

and that

|2 e = el < 25
which gives
lim ||Lﬁ" (e1) — 61Hw =0.

n—oo

Finally, since 2z < 1+ 22, we get
| Ly (e2) — es]

Bn _
HLn (e2) — 62||<,p - SGHRH 14+ 22
1 x? N 2z 9
= sup = —T
ser+ |[1+22 \ (1= 5,02 n(l-p,)°
2 2B, — B2 2x 1
= s | 5+t 3
zer+ |1 +2% (1 - 6,) I+2%n(1-2,)
25n 71872L 1

7 T 3
(1—58n) n(l—pBy)
which clearly gives that
lim HLQ" (e2) — egHw = 0.

n—oo

This completes the proof. O

4. The monotonicity of the sequence of Lupasg-Jain operators

Recall that a continuous function f is said to be convex in D C R, if

n n

f (Z Om%) <> aif (t)

i=1 ;

for every ti,ta,...,t, € D and for every nonnegative numbers i, as, ...,y such that
a1 t+ag+ ... +a, =1.

For the proof of the main result of this section, we need the corresponding
definition of the well-known Jensen and Abel combinatorial formulas for factorial
powers. Below, we reproduce these formulas from the work of Stancu and Occorsio
(pp.175-176 of [20]) for the increment —1, respectively.

(u+v)(u+v+1+mp),,

— Z(TZ)“(“JrlJrkﬁ)k_lv(WflJr(mk)ﬂ)m_k_l (4.1)

k=0
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and
m

m
(u+v+mp),, = Z <k> (ut+kB)vw+14+m—Fk)B),, - (4.2)
k=0
Note that the monotonicity of Szazs-Mirakjan operators of convex function was
proved by Cheney and Sharma [6]. On the other hand, the same result for the Lupas
operators was obtained by Erengin et al. [7]. Now, we present the monotonicity of
each Lupas-Jain operator LZ (f) for n, when f is a convex function.

Theorem 4.1. Let f be a convex function defined on [0,00). Then, for alln, L2 (f) is
non-increasing in n.

Proof. For x = 0, the result is obvious. So, for z > 0, we can write

N z(x+1+kB), kg
2= ok k! 2
k=0

by (1.5) with a = z. Using this formula we can write
L (1) @) = Ly () (@)
_ e i nx (nCL‘ + 1+ kﬁ)k71 2_[(n+1)x+kﬁ]f E
n

2k k!
k=0
=+ Da(n+ i) »”'U T14+kB) o-[(n+1)a+ks] 1 < k )
P 2K k! n+1
(@ +1+18), 1 5=z (ne+1+kB), [t D)a+ks] [ K
- ; 2l Z 2k k! 2 / <”>
_i (n+ l)x((n+1)x+1+k5)k—1 9—l(n+D)e+kp) ¢ ko
2k ! n+1
k=0
_ i$($+1+lﬁ)l 1618
21!
1=0
y f: nx(nx+1+(k—=1)8),__4 o-l(n+D)a+(k-0)8] ¢ k—1
2 21 (] — 1) n
- i (- Da(m+ Do+ 14k 1y (orvernary (_F Y
o 2k k! n+1

Changing the order of the above summations, we obtain that

LE(f) () = L 1y (f) (@)

R (@+1+108),_yne(nx+ 1+ k=08 o1 (nrnyesns o (¥ =1
=> > | % (k — )] i f(ﬂ)

i n+a((n+)ae+1+k8),_, 9= l(n+D)a+kB] ¢ L
> 2k | ntl

k=0 1=0

k=0
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> (Eneme+1+18),_x@+1+k=0B)y.[1
:ZZ l — klf<>

%

k=0 \1=0 g 28 (k= 1) "
(m+Da((n+1l)z+1+kB), k —[(n+1)z+kB]

B 2k k! f(n+1>}2 (4.3)

Now, denote

o = (k) ne(ne+1+18), 2 (@+ 14Kk -1)65)
=1y m+Daz((n+1l)ac+1+k6),_,

>0

and

Taking u = nz, v =z and m = k in (4.1) one has

n+Daz((n+)z+1+k8),_,
k

— Z (I;> na(ne +14+18),_yz(@+1+ k=1 5)p__y,

=0

which clearly gives that

k
Z a;=1.
=0

On the other hand, taking u = nx+ f+ 1, v =2 and m =k — 1 in (4.2), it follows
that
(n+Dz+1+kB),_4

= (me+B+1+az+(k—-1)5),_,
k—1

- Z(k;1> (nz+B+1+1F)z(@+1+(k=1-0)8),_ ;-

=0

Taking into account of the above fact, it follows that

. lzf:l (’;)nx (nz+1+18),_z(x+1+(k—-08)_,_, (%)
;altl = (n+Da((n+)a+1+k3), ,

£ (Tne(na+ B4+ 14 18) 0 @+ 1+ (k=1 - D) B),
=0

nn+Dz((n+1)z+1+kB),_,

k—1
) l;) Yz +B+1+18)x(@+14+(k—-1-01)B) s
T ont1 (n+ Dz +1+kB),_,
k

n+1



534 Giilen Bagcanbaz-Tunca, Murat Bodur and Dilek S&ylemez

Hence, making use of the convexity of f, (4.3) gives that

Ly (f) (x) = Ly oy (f) ()
for all n € N, which completes the proof. O

5. A preservation property
We recall the following definition for the subsequent result.

Definition 5.1. A continuous, and non-negative function w defined on [0, 00) is called
a function of modulus of continuity, if each of the following conditions is satisfied:

) wu+v) <w(u) 4+ w(v) for u,v € [0,00), i.e., w is subadditive,

i) w(u) > w(v) for u > v, i.e., w is non-decreasing,

i) lim, - w(u) = w(0) = 0 ([16]).

In [14], Li noticed a new preservation property that the Bernstein polynomials
B, n € N satisfy. Li proved that if w(z) is a modulus of continuity function, then
for each n € N, By, (w; x) is also a modulus of continuity function. The same result for
the Lupag operators was obtained in [7]. Below, we show that this result is satisfied
by the Lupag-Jain operators as well.

Theorem 5.2. Let w be a modulus of continuity function. Then, for all n, LZ (w) is
also a modulus of continuity function.

Proof. Let x,y € [0,00) and x < y. Then from the definition of L?, we have

n?

Ly (w) (y) = Z ny (ny L RB)x1 ks, (k) .

2k k! n
k=0

Taking na and n (y — ) in place of u and v, respectively in (4.1), we obtain

ny (ny +14+mpB),, (5.1)
k

= Z <];>nx (nx+1+iB),_ny—z)(n(y—z)+1+(k—149)5), .,
i=0
which implies

L (w

oo k .

ZZW< ) < )nx(nx—l—1+z/8)i12_(7Ly+kﬁ)
2k k!

=0
xn(y—=z)(nly—x)+1+(k-0)p),

Interchanging the order of the above summations gives that

LB( )(y)
—(ny+kp)
=0 k=1

n(y—fﬂ)(n(y—x)+1+(k—i)ﬁ)k,,i,l~
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Taking k —i =, (5.2) reduces to

Lﬁ () (y)
) 9—(ny+(i+1)8)
=0 1=0
xn(y—=z)(n(y *$)+1+ZB)H
On the other hand, L? (w) (z) can be written as
> ; —(nxz+iB)
B — K i3). 27 4
LY (w) (z) iz:;w (n) nx (nx +141i8),_, 5071 (5.4)
© ; 9—(ny+iB)on(y—x)
= Zw(z> nx (ne+14+1i6), —
pre n 2¢4!
Since
00 9—18
211(2/—1) = Zn (y — .13) (n (y - ],‘) + 1+ Z/B)lfl W
1=0

then, one may write
e 1 9~ (ny+(i+1)B)
L8 (w Z w ( > nx (nx +141if),_ T T T (5.5)
i=0

=
n(y—x)(n(y —z) +1+15), 4

OM%%

X

Subtracting (5.5) from (5.3)

L) ) = 1) (@) 69

Xn(y —z)(n(y—z)+1+18),_,

and using the hypothesis that w is a modulus of continuity function, one obtains

2*(”y+(i+l)5)
1=0 =0
xn(y—=z)(n(y—x)+1+18),_,
0o ‘ Q*Zﬁ
= ZOTLZL’(HI+1+’L,8)I_IQT'

s l 9—(ny+1p)
S () nt=a) 0ty - )+ 1400),, T
1=0 ’

= l o—(n(y—x)+1p)
= So(s) - Dm0+, gy
0 |

n
=

= Lj(w)(y—2). (5.7)
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This shows that L? (w) satisfies the subadditivity property. Since w is non-decreasing,
then (5.6) provides that L? (w) (y) > L? (w) (¥) when y > z, namely, L2 (w) is non-
decreasing. From the definition of L? it is obvious that lim, o L? (w;z) = L? (w;0) =
w(0) = 0. Therefore, L? (w) is a function of modulus of continuity. O
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