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Abstract. In this paper, we establish sufficient conditions for the existence and
stability of solutions for a class of nonlocal initial value problems for differential
equations with Hilfer’s fractional derivative, The arguments are based upon the
Banach contraction principle. Two examples are included to show the applicabil-
ity of our results.
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1. Introduction

In our paper, we study the following nonlocal initial value problem

Dα,β
0+ y(t) = f(t, y(t), Dα,β

0+ y(t)), for every t ∈ (0, T ], T > 0, (1.1)

I1−γ0+ y(0+) =

m∑
i=1

λiy(τi), τi ∈ (0, T ], (1.2)

where 0 < α < 1, 0 ≤ β ≤ 1, γ = α+β−αβ, f : (0, T ]×R×R −→ R, τi, i = 1, 2, . . . ,m
are pre-fixed points satisfying 0 < τ1 ≤ · · · ≤ τm < T, λi are real numbers and

m∑
i=1

λiτ
γ−1
i 6= Γ(γ),

Dα,β
0+ denotes the generalized Riemann-Liouville derivative operator introduced by

Hilfer in [7].
In the recent years, fractional calculus has gained much interest mainly thanks

to the increasing presence of research works in the applied sciences considering models
based on fractional operators see for example [1, 2, 6, 9, 12, 16, 17, 21]. Beside that, the
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mathematical study of fractional calculus has proceeded, leading to intersections with
other mathematical fields such as probability and the study of stochastic processes.
In the literature, several different definitions of fractional integrals and derivatives
are present. Some of them such as the Riemann-Liouville integral, the Caputo and
the Riemann-Liouville derivatives are thoroughly studied and actually used in applied
models. Hilfer has introduced a generalized form of the Riemann-Liouville fractional

derivative [7]. In short, Hilfer fractional derivative Dα,β
0+ is an interpolation between

the Riemann-Liouville and Caputo fractional derivatives, see [10, 13, 17, 19]. It has
many applications in fractional evolutions equations [8], and physical problems [15].
Also in the theoretical simulation of dielectric relaxation in glass forming materials.
In [4], Furati et al. considered an initial value problem for a class of nonlinear frac-
tional differential equations involving Hilfer fractional derivative. In [3], the authors
consider the Ulam stability for nonlinear implicit fractional differential equations with
Hadamard derivative. In [18], the solution of a fractional diffusion equation with a
Hilfer time fractional derivative was obtained in terms of Mittag-Leffler functions
and Fox’s H-function. To the best of our knowledge, there has no results about the
stability of differential equations with Hilfer fractional derivative.

Motivated by the works [3, 19], we prove in this paper the existence, uniqueness
and stability for the non-linear nonlocal problem (1.1)-(1.2) in a weighted space of
continuous functions. The present work is organized as follows. In Section 2, some
notations are introduced and we recall some concepts of preliminaries about fractional
calculus and auxiliary results. The proof for the main results is presented in Section
3 by applying the Banach fixed point theorem. In Section 4, the Ulam stability of our
problem will be study. Finally, in the last section, we give two examples to illustrate
the applicability of our main results.

2. Preliminaries

In this section, we recall some basic definitions and results concerning the frac-
tional calculus, that we will use in the next sections .

Let J := [0, T ]. By C(J), AC(J) and Cn(J) we denote the spaces of contin-
uous, absolutely continuous and n times continuously differentiable functions on J ,
respectively. We denote by Lp(J), p ≥ 0, the space of Lebesgue integrable functions
on J .

We consider the weighted spaces of continuous functions

Cγ(J) = {y : (0, T ]→ R : tγy(t) ∈ C(J)}, 0 ≤ γ < 1,

Cnγ (J) = {y ∈ Cn−1(J) : y(n) ∈ Cγ(J)}, n ∈ N,

C0
γ(J) = Cγ(J),

with the norms

‖y‖Cγ = ‖tγy(t)‖∞ = sup
t∈J
|tγy(t)|
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and

‖y‖Cnγ =

n−1∑
k=0

‖y(k)‖∞ + ‖y(n)‖Cγ .

These spaces satisfy the following properties.

• C0(J) = C(J).
• Cnγ (J) ⊂ ACn(J).
• Cγ1(J) ⊂ Cγ2(J), 0 ≤ γ1 < γ2 < 1.

Definition 2.1. ([10, 13]). The fractional (arbitrary) order integral of the function
h ∈ L1([0, T ],R+) of order α ∈ R+ called the left-sided Riemann-Liouville integral of
the function h is defined by

(Iα0+h)(t) =
1

Γ(α)

∫ t

0

(t− s)α−1h(s)ds,

where Γ is the Euler gamma function defined by Γ(α) =

∫ ∞
0

tα−1e−tdt, α > 0.

The following lemmas provide some mapping properties of Iα0+ . The proofs can be
found in [11].

Lemma 2.2. For α > 0, Iα0+ maps C(J) into C(J).

Lemma 2.3. Let α > 0 and 0 ≤ γ < 1. Then, Iα0+ is bounded from Cγ(J) into Cγ(J)

Lemma 2.4. Let α > 0 and 0 ≤ γ < 1. If γ ≤ α, then Iα0+ is bounded from Cγ(J) into
C(J).

Lemma 2.5. [4] Let 0 ≤ γ < 1 and y ∈ Cγ(J). Then

Iα0+y(0) := lim
t→0+

Iα0+y(t) = 0, 0 ≤ γ < α.

Definition 2.6. [5] The Riemann-Liouville left-sided fractional derivative Dα
0+ of order

α is defined by

(Dα
0+y)(t) = D(I1−α0+ y)(t),

(
t > 0, 0 < α < 1, D =

d

dt

)
,

that is

(Dα
0+y)(t) =

1

Γ(1− α)

d

dt

∫ t

0

(t− s)αy(s)ds,

when α = 1 we have (Dα
0+y) = Dy. In particular, when α = 0, (D0

0+y) = y.

Lemma 2.7. [4] For t > 0, we have

[Iα0+t
β−1](t) =

Γ(β)

Γ(α+ β)
tβ+α−1, α ≥ 0, β > 0.

[Dα
0+t

α−1](t) = 0, 0 < α < 1.

The following lemmas follows by direct calculations using Dirichlet formula
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Lemma 2.8. Let α > 0, β > 0 and y ∈ L1(J). Then

Iα0+I
β
0+y(t) = Iα+β0+ y(t), a.e. t ∈ J.

In particular, if y ∈ Cγ(J) or y ∈ C(J), then equality holds at every t ∈ (0, T ] or
t ∈ [0, T ], respectively.

Lemma 2.9. Let α > 0, 0 ≤ γ < 1 and y ∈ Cγ(J). Then

Dα
0+I

α
0+y(t) = y(t), for all t ∈ (0, T ].

Lemma 2.10. [17] Let 0 < α < 1, 0 ≤ γ < 1. If y ∈ Cγ(J) and I1−α0+ y ∈ C1
γ(J), then

Iα0+D
α
0+y(t) = y(t)−

I1−α0+ y(0)

Γ(α)
tα−1, for all t ∈ (0, T ].

Let α ∈ (0, 1), β ∈ [0, 1] and y ∈ L1(J,Rn). We say that the function y possesses
the left-sided generalized Riemann-Liouville derivative (so called Hilfer derivative)

Dα,β
0+ of order α and type β, if the function I

(1−α)(1−β)
0+ y is absolutely continuous on

J and then

(Dα,β
0+ y)(t) :=

(
I
β(1−α)
0+ DI

(1−α)(1−β)
0+ y

)
(t), a.e. t ∈ J. (2.1)

The operator Dα,β
0+ y, given by (2.1), was introduced by Hilfer in [7].

Remark 2.11. [4]

1. The Hilfer derivative Dα,β
0+ y can be written as

(Dα,β
0+ y)(t) :=

(
I
β(1−α)
0+ DI

(1−γ)
0+ y

)
(t) = (I

β(1−α)
0+ Dγ

0+y)(t) = (Iγ−α0+ Dγ
0+y)(t)

for a.e. t ∈ J, where γ = α+ β − αβ.
2. The Dα,β

0+ y derivative is considered as an interpolator between the Riemann-
Liouville and Caputo derivative since

Dα,β
0+ y =

{
Dα

0+y, β = 0
CDα

0+y, β = 1.
(2.2)

3. The parameter γ satisfies

0 < γ ≤ 1, γ ≥ α, γ > β, 1− γ < 1− β(1− α).

We introduce the spaces

Cα,β1−γ(J) = {y ∈ C1−γ(J), Dα,β
0+ y ∈ C1−γ(J)},

and

Cγ1−γ(J) = {y ∈ C1−γ(J), Dγ
0+y ∈ C1−γ(J)}.

Since Dα,β
0+ y = I

β(1−α)
0+ Dγ

0+y, it follows from Lemma 2.3 that

Cγ1−γ(J) ⊂ Cα,β1−γ(J) ⊂ C1−γ(J)

The following lemma follows directly from semigroup property in Lemma 2.8.
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Lemma 2.12. Let 0 < α < 1, 0 ≤ β ≤ 1, and γ = α+ β − αβ. If y ∈ Cγ1−γ(J), then

Iγ0+D
γ
0+y = Iα0+D

α,β
0+ y,

and

Dγ
0+I

α
0+y = D

β(1−α)
0+ y.

For the proof of the following lemmas, we can see [4].

Lemma 2.13. Let y ∈ L1(J). If D
β(1−α)
0+ y exists and in L1(J) then

Dα,β
0+ Iα0+y = I

β(1−α)
0+ D

β(1−α)
0+ y.

Lemma 2.14. Let 0 < α < 1, 0 ≤ β ≤ 1, and γ = α + β − αβ. If y ∈ C1−γ(J) and

I
1−β(1−α)
0+ y ∈ C1

1−γ(J) then Dα,β
0+ Iα0+y exists in (0, T ] and

Dα,β
0+ Iα0+y(t) = y(t), t ∈ (0, T ].

Lemma 2.15. ([20]) Let υ : [0, T ] −→ [0,+∞) be a real function and ω(·) is a non-
negative, locally integrable function on [0, T ]. Assume that there are constants a > 0
and 0 < α ≤ 1 such that

υ(t) ≤ ω(t) + a

∫ t

0

(t− s)−αυ(s)ds,

then, there exists a constant K = K(α) such that

υ(t) ≤ ω(t) +Ka

∫ t

0

(t− s)−αω(s)ds, for every t ∈ [0, T ].

For the implicit fractional-order differential equation (1.1), we adopt the definition
in Rus ([14]) for Ulam-Hyers stability, generalized Ulam-Hyers stability, Ulam-Hyers-
Rassias stability and generalized Ulam-Hyers-Rassias stability.

Definition 2.16. The equation (1.1) is Ulam-Hyers stable if there exists a real number
cf > 0 such that for each ε > 0 and for each solution z ∈ Cγ1−γ(J), of the inequality

|Dα,β
0+ z(t)− f(t, z(t), Dα,β

0+ z(t))| ≤ ε, t ∈ (0, T ],

there exists a solution y ∈ Cγ1−γ(J) of equation (1.1) with

|z(t)− y(t)| ≤ cf ε, t ∈ (0, T ].

Definition 2.17. The equation (1.1) is generalized Ulam-Hyers stable if there exists
ψf ∈ C(R+,R+), ψf (0) = 0, such that for each solution z ∈ Cγ1−γ(J) of the inequality

|Dα,β
0+ z(t)− f(t, z(t), Dα,β

0+ z(t))| ≤ ε, t ∈ (0, T ],

there exists a solution y ∈ Cγ1−γ(J) of the equation (1.1) with

|z(t)− y(t)| ≤ ψf (ε), t ∈ (0, T ].



452 Mouffak Benchohra, Soufyane Bouriah and Juan J. Nieto

Definition 2.18. The equation (1.1) is Ulam-Hyers-Rassias stable with respect to ϕ ∈
C(J,R+) if there exists a real number cf > 0 such that for each ε > 0 and for each
solution z ∈ Cγ1−γ(J) of the inequality

|Dα,β
0+ z(t)− f(t, z(t), Dα,β

0+ z(t))| ≤ εϕ(t), t ∈ (0, T ],

there exists a solution y ∈ Cγ1−γ(J) of equation (1.1) with

|z(t)− y(t)| ≤ cf εϕ(t), t ∈ (0, T ].

Definition 2.19. The equation (1.1) is generalized Ulam-Hyers-Rassias stable with
respect to ϕ ∈ C(J,R+) if there exists a real number cf,ϕ > 0 such that for each
solution z ∈ Cγ1−γ(J) of the inequality

|Dα,β
0+ z(t)− f(t, z(t), Dα,β

0+ z(t))| ≤ ϕ(t), t ∈ (0, T ],

there exists a solution y ∈ Cγ1−γ(J) of equation (1.1) with

|z(t)− y(t)| ≤ cf,ϕϕ(t), t ∈ (0, T ].

Remark 2.20. A function z ∈ Cγ1−γ(J) is a solution of the inequality

|Dα,β
0+ z(t)− f(t, z(t), Dα,β

0+ z(t))| ≤ ε, t ∈ (0, T ],

if and only if there exists a function φ ∈ Cγ1−γ(J) (which depends on solution y) such
that

i). |φ(t)| ≤ ε, t ∈ (0, T ].

ii). Dα,β
0+ z(t) = f(t, z(t), Dα,β

0+ z(t)) + φ(t), t ∈ (0, T ].

Remark 2.21. Clearly,

i). Definition (2.6)⇒ Definition (2.7)
ii). Definition (2.8)⇒ Definition (2.9).

Remark 2.22. A solution of the implicit differential inequality

|Dα,β
0+ z(t)− f(t, z(t), Dα,β

0+ z(t))| ≤ ε, t ∈ (0, T ],

with fractional order is called an fractional ε− solution of the implicit fractional
differential equation (1.1).

3. Existence of solutions

Let γ = α+ β − αβ where 0 < α < 1 and 0 ≤ β ≤ 1, let f : (0, T ]× R× R→ R
be a function such that f(·, y(·), u(·)) ∈ C1−γ(J) for any y, u ∈ C1−γ(J) and let the
operator N : C1−γ(J)→ C1−γ(J) defined by

Ny(t) = w(t) +
1

Γ(α)

∫ t

0

(t− s)α−1g(s)ds, t ∈ (0, T ], (3.1)

where

w(t) =
tγ−1

Γ(α)

(
Γ(γ)−

m∑
i=1

λiτ
γ−1
i

) m∑
i=1

λi

∫ τi

0

(τi − s)α−1g(s)ds
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and g : (0, T ]→ R be a function satisfies the functional equation

g(t) = f(t, y(t), g(t)).

Clearly, w ∈ C1−γ(J) and g ∈ C1−γ(J). Also, by Lemma 2.3, Ny ∈ C1−γ(J).

Theorem 3.1. If y ∈ Cγ1−γ(J), then y satisfies the problem (1.1)− (1.2) if and only if
y is the fixed point of operator N .

Proof. First, we prove the necessity. Let y ∈ Cγ1−γ(J) be a solution of problem (1.1)−
(1.2). We want to prove that y is a fixed point of N. By the definition of Cγ1−γ(J),
Lemma 2.4 and Definition 2.6, we have

I1−γ0+ y ∈ C(J) and Dγ
0+y = D(I1−γ0+ y) ∈ C1−γ(J).

Thus, we have
I1−γ0+ y ∈ C1

1−γ(J).

Now, applying Lemma 2.10 to obtain

Iγ0+D
γ
0+y(t) = y(t)−

I1−γ0+ y(0+)

Γ(γ)
tγ−1, t ∈ (0, T ]. (3.2)

Since Dγ
0+y ∈ C1−γ(J), Lemma 2.12 yields(

Iγ0+D
γ
0+y
)

(t) =
(
Iα0+D

α,β
0+ y

)
(t) = Iα0+g(t), t ∈ (0, T ] (3.3)

From (3.2) and (3.3), we obtain

y(t) =
I1−γ0+ y(0+)

Γ(γ)
tγ−1 +

1

Γ(α)

∫ t

0

(t− s)α−1g(s)ds, t ∈ (0, T ]. (3.4)

Next, we substitute t = τi into the above equation

y(τi) =
I1−γ0+ y(0+)

Γ(γ)
τγ−1i +

1

Γ(α)

∫ τi

0

(τi − s)α−1g(s)ds, t ∈ (0, T ], (3.5)

by multiplying λi to both sides of (3.5), we can write

λiy(τi) =
I1−γ0+ y(0+)

Γ(γ)
λiτ

γ−1
i +

λi
Γ(α)

∫ τi

0

(τi − s)α−1g(s)ds.

Thus, we have

I1−γ0+ y(0+) =

m∑
i=1

λiy(τi)

=
I1−γ0+ y(0+)

Γ(γ)

m∑
i=1

λiτ
γ−1
i +

1

Γ(α)

m∑
i=1

λi

∫ τi

0

(τi − s)α−1g(s)ds,

which implies

I1−γ0+ y(0+) =
Γ(γ)

Γ(α)

(
Γ(γ)−

m∑
i=1

λiτ
γ−1
i

) m∑
i=1

λi

∫ τi

0

(τi − s)α−1g(s)ds. (3.6)
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Submitting (3.6) to (3.4), we get for each t ∈ (0, T ]

y(t) = w(t) +
1

Γ(α)

∫ t

0

(t− s)α−1g(s)ds, (3.7)

which is the fixed point of N . Now, we prove the sufficiency. Let y ∈ Cγ1−γ(J) the

fixed point of operator N , which can be written as (3.7). Applying the operator Dγ
0+

to both sides of (3.7), it follows from Lemmas 2.12 and 2.7 that

Dγ
0+y = D

β(1−α)
0+ g. (3.8)

From (3.8), Definition 2.6 and Dγ
0+y ∈ C1−γ(J), we have

DI
1−β(1−α)
0+ g = D

β(1−α)
0+ g ∈ C1−γ(J). (3.9)

Also, since g ∈ C1−γ(J), by Lemma 2.4, we have

I
1−β(1−α)
0+ g ∈ C(J). (3.10)

It follows from (3.9), (3.10) that

I
1−β(1−α)
0+ g ∈ C1

1−γ(J).

Thus, g and I
1−β(1−α)
0+ g satisfy the conditions of Lemma 2.10.

Now, applying I
β(1−α)
0+ to both sides of (3.8) and using Remark 2.11 and Lemma 2.10,

we can write

Dα,β
0+ y(t) = g(t)−

[
I
1−β(1−α)
0+ g

]
(0)

Γ(β(1− α))
tβ(1−α)−1. (3.11)

Since 1− γ < 1− β(1− α), Lemma 2.5 implies that[
I
1−β(1−α)
0+ g

]
(0) = 0.

Hence, the relation (3.11) reduces to

Dα,β
0+ y(t) = g(t), t ∈ (0, T ].

Now, we show that the initial condition (1.2) also holds.

We apply I1−γ0+ to both sides of (3.7), we have

I1−γ0+ y(t) =
I1−γ0+ tγ−1

Γ(α)

(
Γ(γ)−

m∑
i=1

λiτ
γ−1
i

) m∑
i=1

λi

∫ τi

0

(τi − s)α−1g(s)ds+ I1−γ0+ Iα0+g(t),

using the Lemmas 2.10 and 2.11,

I1−γ0+ y(t) =
Γ(γ)

Γ(α)

(
Γ(γ)−

m∑
i=1

λiτ
γ−1
i

) m∑
i=1

λi

∫ τi

0

(τi − s)α−1g(s)ds+ I
1−β(1−α)
0+ g(t).
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Since 1− γ < 1− β(1− α), Lemma 2.5 can be used when taking the limit as t→ 0,

I1−γ0+ y(0) =
Γ(γ)

Γ(α)

(
Γ(γ)−

m∑
i=1

λiτ
γ−1
i

) m∑
i=1

λi

∫ τi

0

(τi − s)α−1g(s)ds. (3.12)

Substituting t = τi into (3.7), we have

y(τi) =
τγ−1i

Γ(α)

(
Γ(γ)−

m∑
i=1

λiτ
γ−1
i

) m∑
i=1

λi

∫ τi

0

(τi − s)α−1g(s)ds

+
1

Γ(α)

∫ τi

0

(τi − s)α−1g(s)ds.

Then, we derive
m∑
i=1

λiy(τi) =
1

Γ(α)

(
Γ(γ)−

m∑
i=1

λiτ
γ−1
i

) m∑
i=1

λi

∫ τi

0

(τi − s)α−1g(s)ds

m∑
i=1

λiτ
γ−1
i

+
1

Γ(α)

m∑
i=1

λi

∫ τi

0

(τi − s)α−1g(s)ds

=
1

Γ(α)

m∑
i=1

λi

∫ τi

0

(τi − s)α−1g(s)ds


m∑
i=1

λiτ
γ−1
i

Γ(γ)−
m∑
i=1

λiτ
γ−1
i

+ 1

 .

Thus
m∑
i=1

λiy(τi) =
Γ(γ)

Γ(α)

(
Γ(γ)−

m∑
i=1

λiτ
γ−1
i

) m∑
i=1

λi

∫ τi

0

(τi − s)α−1g(s)ds. (3.13)

It follows (3.12) and (3.13) that

I1−γ0+ y(0) =

m∑
i=1

λiy(τi). �

Theorem 3.2. Let the hypotheses

(H1). The function f : (0, T ]× R× R→ R such that

f(·, u(·), v(·)) ∈ Cβ(1−α)1−γ for any u, v ∈ C1−γ(J)

(H2). There exist constants K > 0 and 0 < K < 1 such that

|f(t, u, v)− f(t, u, v)| ≤ K|u− u|+K|v − v| for any u, v, u, v ∈ R and t ∈ (0, T ].
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If

KΓ(γ)

(1−K)Γ(α+ γ)


m∑
i=1

λiτ
α+γ−1
i∣∣∣∣∣Γ(γ)−
m∑
i=1

λiτ
γ−1
i

∣∣∣∣∣
+ Tα

 < 1, (3.14)

then, there exists a unique solution for the Cauchy-type problem (1.1) − (1.2) in the
space Cγ1−γ(J).

Proof. The proof will be given in two steps.
Step 1. We show that the operator N defined in (3.1) has a unique fixed point y∗ in
C1−γ(J). Let y, u ∈ C1−γ(J) and t ∈ (0, T ], then, we have

|Ny(t)−Nu(t)| ≤ tγ−1

Γ(α)

∣∣∣∣∣Γ(γ)−
m∑
i=1

λiτ
γ−1
i

∣∣∣∣∣
m∑
i=1

λi

∫ τi

0

(τi − s)α−1|g(s)− h(s)|ds

+
1

Γ(α)

∫ t

0

(t− s)α−1|g(s)− h(s)|ds,

where g, h ∈ C1−γ(J) such that

g(t) = f(t, y(t), g(t)).

h(t) = f(t, u(t), h(t)).

By (H2), we have

|g(t)− h(t)| = |f(t, y(t), g(t))− f(t, u(t), h(t))|
≤ K|y(t)− u(t)|+K|g(t)− h(t)|.

Then

|g(t)− h(t)| ≤ K

1−K
|y(t)− u(t)|.

Therefore, for each t ∈ (0, T ]

|Ny(t)−Nu(t)|≤ Ktγ−1

(1−K)Γ(α)

∣∣∣∣∣Γ(γ)−
m∑
i=1

λiτ
γ−1
i

∣∣∣∣∣
m∑
i=1

λi

∫ τi

0

(τi−s)α−1|y(s)−u(s)|ds

+
K

(1−K)Γ(α)

∫ t

0

(t− s)α−1|y(s)− u(s)|ds

=
Ktγ−1

(1−K)Γ(α)

∣∣∣∣∣Γ(γ)−
m∑
i=1

λiτ
γ−1
i

∣∣∣∣∣
m∑
i=1

λi

∫ τi

0

(τi − s)α−1sγ−1|s1−γ [y(s)− u(s)] |ds

+
K

(1−K)Γ(α)

∫ t

0

(t− s)α−1sγ−1|s1−γ [y(s)− u(s)] |ds
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≤
Ktγ−1‖y − u‖C1−γ

(1−K)

∣∣∣∣∣Γ(γ)−
m∑
i=1

λiτ
γ−1
i

∣∣∣∣∣
m∑
i=1

λiI
α
0+(τγ−1i ) +

K‖y − u‖C1−γ

1−K
Iα0+(tγ−1).

By Lemma 2.7, we have

|Ny(t)−Nu(t)| ≤
KΓ(γ)tγ−1‖y − u‖C1−γ

Γ(α+ γ)(1−K)

∣∣∣∣∣Γ(γ)−
m∑
i=1

λiτ
γ−1
i

∣∣∣∣∣
m∑
i=1

λiτ
α+γ−1
i

+
KΓ(γ)tα+γ−1

(1−K)Γ(α+ γ)
‖y − u‖C1−γ ,

hence

|t1−γ(Ny(t)−Nu(t))| ≤ KΓ(γ)

(1−K)Γ(α+ γ)


m∑
i=1

λiτ
α+γ−1
i∣∣∣∣∣Γ(γ)−
m∑
i=1

λiτ
γ−1
i

∣∣∣∣∣
+ tα

 ‖y − u‖C1−γ

≤ KΓ(γ)

(1−K)Γ(α+ γ)


m∑
i=1

λiτ
α+γ−1
i∣∣∣∣∣Γ(γ)−
m∑
i=1

λiτ
γ−1
i

∣∣∣∣∣
+ Tα

 ‖y − u‖C1−γ ,

which implies that

‖Ny −Nu‖C1−γ ≤
KΓ(γ)

(1−K)Γ(α+ γ)


m∑
i=1

λiτ
α+γ−1
i∣∣∣∣∣Γ(γ)−
m∑
i=1

λiτ
γ−1
i

∣∣∣∣∣
+ Tα

 ‖y − u‖C1−γ .

By (3.14), the operator N is a contraction. Hence, by Banach’s contraction principle,
N has a unique fixed point y∗ ∈ C1−γ(J).

Step 2. We show that such a fixed point y∗ ∈ C1−γ(J) is actually in Cγ1−γ(J).

Since y∗ is the unique fixed point of operator N in C1−γ(J), then, for each t ∈ (0, T ],
we have

y∗(t) = w(t) + Iα0+g(t)

=
tγ−1

Γ(α)

(
Γ(γ)−

m∑
i=1

λiτ
γ−1
i

) m∑
i=1

λi

∫ τi

0

(τi − s)α−1f(s, y∗(s), g(s))ds

+ Iα0+f(t, y∗(t), g(t)).



458 Mouffak Benchohra, Soufyane Bouriah and Juan J. Nieto

Applying Dγ
0+ to both sides and by Lemma 2.7, we have

Dγ
0+y
∗(t) = Dγ

0+

[
Iα0+f(t, y∗(t), g(t))

]
= Dγ−α

0+ f(t, y∗(t), g(t))

= D
β(1−α)
0+ f(t, y∗(t), g(t)).

Since γ ≥ α, by (H1), the right hand side is in C1−γ(J) and thus Dγ
0+y
∗ ∈ C1−γ(J)

which implies that y∗ ∈ Cγ1−γ(J). As a consequence of Step 1 and 2 together with

Theorem 3.1, we can conclude that the problem (1.1)-(1.2) has a unique solution in
Cγ1−γ(J). �

4. Ulam-Hyers-Rassias stability

Theorem 4.1. Assume that (H1), (H2) and (3.14) are satisfied, then the problem (1.1)-
(1.2) is Ulam-Hyers stable.

Proof. Let ε > 0 and let z ∈ Cγ1−γ(J) be a function which satisfies the inequality:

|Dα,β
0+ z(t)− f(t, z(t), Dα,β

0+ z(t))| ≤ ε for any t ∈ (0, T ] (4.1)

and let y ∈ Cγ1−γ(J) be the unique solution of the following Cauchy problem

Dα,β
0+ y(t) = f(t, y(t), Dα,β

0+ y(t)), for every t ∈ (0, T ], T > 0,

I1−γ0+ y(0+) = I1−γ0+ z(0+) =

m∑
i=1

λiy(τi).

Using Theorem 3.1, we obtain

y(t) =
I1−γ0+ y(0+)

Γ(γ)
tγ−1 +

1

Γ(α)

∫ t

0

(t− s)α−1g(s)ds, t ∈ (0, T ],

where g : (0, T ]→ R be a function satisfies the functional equation

g(t) = f(t, y(t), g(t)).

Now, applying Iα0+ to both sides of the inequality (4.1), we obtain∣∣∣∣Iα0+Dα,β
0+ z(t)− 1

Γ(α)

∫ t

0

(t− s)α−1h(s)ds

∣∣∣∣ ≤ εtα

Γ(α+ 1)
≤ εTα

Γ(α+ 1)
, (4.2)

where h : (0, T ]→ R be a function satisfies the functional equation

h(t) = f(t, z(t), h(t)).

By the definition of Cγ1−γ(J), Lemma 2.4 and Definition 2.6, we have

I1−γ0+ z ∈ C(J) and Dγ
0+z = D(I1−γ0+ z) ∈ C1−γ(J).

Thus, we have

I1−γ0+ z ∈ C1
1−γ(J).
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Now, applying Lemma 2.10 to obtain

Iγ0+D
γ
0+z(t) = z(t)−

I1−γ0+ z(0+)

Γ(γ)
tγ−1, t ∈ (0, T ]. (4.3)

Since Dγ
0+z ∈ C1−γ(J), Lemma 2.12 yields(

Iγ0+D
γ
0+z
)

(t) =
(
Iα0+D

α,β
0+ z

)
(t), t ∈ (0, T ]. (4.4)

From (4.3) and (4.4), we get(
Iα0+D

α,β
0+ z

)
(t) = z(t)−

I1−γ0+ z(0+)

Γ(γ)
tγ−1, t ∈ (0, T ] (4.5)

By replacing (4.5) in (4.2), we have∣∣∣∣∣z(t)− I1−γ0+ z(0+)

Γ(γ)
tγ−1 − 1

Γ(α)

∫ t

0

(t− s)α−1h(s)ds

∣∣∣∣∣ ≤ εTα

Γ(α+ 1)
.

We have for any t ∈ (0, T ]

|z(t)− y(t)| =

∣∣∣∣∣z(t)− I1−γ0+ y(0+)

Γ(γ)
tγ−1 − 1

Γ(α)

∫ t

0

(t− s)α−1h(s)ds

+
1

Γ(α)

∫ t

0

(t− s)α−1(h(s)− g(s))ds

∣∣∣∣
≤

∣∣∣∣∣z(t)− I1−γ0+ z(0+)

Γ(γ)
tγ−1 − 1

Γ(α)

∫ t

0

(t− s)α−1h(s)ds

∣∣∣∣∣
+

1

Γ(α)

∫ t

0

(t− s)α−1|h(s)− g(s)|ds.

Thus

|z(t)− y(t)| ≤ εTα

Γ(α+ 1)
+

1

Γ(α)

∫ t

0

(t− s)α−1|h(s)− g(s)|ds, t ∈ (0, T ]. (4.6)

By (H2), we have for each t ∈ (0, T ]

|h(t)− g(t)| = |f(t, z(t), h(t))− f(t, y(t), g(t))|
≤ K|z(t)− y(t)|+K|h(t)− g(t)|.

Then

|h(t)− g(t)| ≤ K

1−K
|z(t)− y(t)|. (4.7)

Using (4.6) and (4.7), we obtain

|z(t)− y(t)| ≤ εTα

Γ(α+ 1)
+

K

(1−K)Γ(α)

∫ t

0

(t− s)α−1|z(s)− y(s)|ds, t ∈ (0, T ].

By Lemma 2.15, we have

|z(t)− y(t)| ≤ εTα

Γ(α+ 1)

[
1 +

δKTα

(1−K)Γ(α+ 1)

]
:= cε
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where δ = δ(α) a constant, which completes the proof of the theorem. Moreover, if
we set ψ(ε) = cε;ψ(0) = 0, then the problem (1.1)-(1.2) is generalized Ulam-Hyers
stable. �

Theorem 4.2. Assume that (H1), (H2), (3.14) and
(H3) there exists an increasing function ϕ ∈ C(J,R+) and there exists λϕ > 0 such
that for any t ∈ (0, T ]

Iα0+ϕ(t) ≤ λϕϕ(t)

are satisfied, then, the problem (1.1)-(1.2) is Ulam-Hyers-Rassias stable.

Proof. Let z ∈ Cγ1−γ(J) be a function which satisfies the inequality:

|Dα,β
0+ z(t)− f(t, z(t), Dα,β

0+ z(t))| ≤ εϕ(t) for any t ∈ (0, T ] , ε > 0 (4.8)

and let y ∈ Cγ1−γ(J) be the unique solution of the following Cauchy problem

Dα,β
0+ y(t) = f(t, y(t), Dα,β

0+ y(t)), for every t ∈ (0, T ], T > 0,

I1−γ0+ y(0+) = I1−γ0+ z(0+) =

m∑
i=1

λiy(τi).

Using Theorem 3.1, we obtain

y(t) =
I1−γ0+ y(0+)

Γ(γ)
tγ−1 +

1

Γ(α)

∫ t

0

(t− s)α−1g(s)ds, t ∈ (0, T ],

where g : (0, T ]→ R be a function satisfies the functional equation

g(t) = f(t, y(t), g(t)).

Now, applying Iα0+ to both sides of the inequality (4.8), we obtain∣∣∣∣Iα0+Dα,β
0+ z(t)− 1

Γ(α)

∫ t

0

(t− s)α−1h(s)ds

∣∣∣∣ ≤ ε

Γ(α)

∫ t

0

(t− s)α−1ϕ(s)ds,

where h : (0, T ]→ R be a function satisfies the functional equation

h(t) = f(t, z(t), h(t)).

Using (H3), we have for each t ∈ (0, T ]∣∣∣∣Iα0+Dα,β
0+ z(t)− 1

Γ(α)

∫ t

0

(t− s)α−1h(s)ds

∣∣∣∣ ≤ ελϕϕ(t).

From the proof of Theorem 4.1, we obtain∣∣∣∣∣z(t)− I1−γ0+ z(0+)

Γ(γ)
tγ−1 − 1

Γ(α)

∫ t

0

(t− s)α−1h(s)ds

∣∣∣∣∣ ≤ ελϕϕ(t).
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We have for any t ∈ (0, T ]

|z(t)− y(t)| =

∣∣∣∣∣z(t)− I1−γ0+ y(0+)

Γ(γ)
tγ−1 − 1

Γ(α)

∫ t

0

(t− s)α−1h(s)ds

+
1

Γ(α)

∫ t

0

(t− s)α−1 [h(s)− g(s)] ds

∣∣∣∣
≤

∣∣∣∣∣z(t)− I1−γ0+ z(0+)

Γ(γ)
tγ−1 − 1

Γ(α)

∫ t

0

(t− s)α−1h(s)ds

∣∣∣∣∣
+

1

Γ(α)

∫ t

0

(t− s)α−1|h(s)− g(s)|ds.

Thus

|z(t)− y(t)| ≤ ελϕϕ(t) +
1

Γ(α)

∫ t

0

(t− s)α−1|h(s)− g(s)|ds, t ∈ (0, T ]. (4.9)

By (H2), we have for each t ∈ (0, T ]

|h(t)− g(t)| = |f(t, z(t), h(t))− f(t, y(t), g(t))|
≤ K|z(t)− y(t)|+K|h(t)− g(t)|,

then

|h(t)− g(t)| ≤ K

1−K
|z(t)− y(t)|. (4.10)

Using (4.9) and (4.10), we have

|z(t)− y(t)| ≤ ελϕϕ(t) +
K

(1−K)Γ(α)

∫ t

0

(t− s)α−1|z(s)− y(s)|ds, t ∈ (0, T ].

By Lemma 2.15, we obtain

|z(t)− y(t)| ≤ ελϕϕ(t) +
δ1εKλϕ

(1−K)Γ(α)

∫ t

0

(t− s)α−1ϕ(s)ds,

where δ1 = δ1(α) is constant, and by (H2), we have

|z(t)− y(t)| ≤ ελϕϕ(t) +
δ1εKλ

2
ϕϕ(t)

1−K
=

(
1 +

δ1Kλϕ

1−K

)
ελϕϕ(t).

Then, for any t ∈ (0, T ]

|z(t)− y(t)| ≤
[(

1 +
δ1Kλϕ

1−K

)
λϕ

]
εϕ(t) = cεϕ(t),

which completes the proof of Theorem 4.2. �
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5. Examples

Example 5.1. Consider the following problem of non-linear implicit fractional differ-
ential equations

D
1
2 ,0

0+ y(t) =
1

10e−t+2
(

1 + |y(t)|+
∣∣∣D 1

2 ,0

0+ y(t)
∣∣∣) +

1√
t

for each t ∈ (0, 1] (5.1)

I
1
2

0+y(0+) = 3y

(
1

3

)
+ 2y

(
1

2

)
. (5.2)

Set

f(t, u, v) =
1

10e−t+2(1 + |u|+ |v|)
+

1√
t
, t ∈ (0, 1], u, v ∈ R.

We have

C
β(1−α)
1−γ ([0, 1]) = C0

1
2
([0, 1]) =

{
h : (0, 1]→ R : t

1
2h ∈ C([0, 1])

}
,

with γ = α =
1

2
and β = 0. Clearly, the function f ∈ C 1

2
([0, 1]).

Hence condition (H1) is satisfied.
For each u, ū, v, v̄ ∈ R and t ∈ (0, 1], we have

|f(t, u, v)− f(t, ū, v̄)| ≤ 1

10e
(|u− ū|+ |v − v̄|).

Hence condition (H2) is satisfied with K = K =
1

10e
.

The condition

KΓ(γ)

(1−K)Γ(α+ γ)


2∑
i=1

λiτ
α+γ−1
i∣∣∣∣∣Γ(γ)−
2∑
i=1

λiτ
γ−1
i

∣∣∣∣∣
+ Tα

 ≈ 0.122 < 1,

is satisfied with λ1 = 3, λ2 = 2, τ1 =
1

3
, τ2 =

1

2
and T = 1. It follows from Theorem 3.2

that the problem (5.1)–(5.2) has a unique solution in the space C
1
2
1
2

([0, 1]). Moreover,

Theorem 4.1, implies that the problem (5.1)–(5.2) is Ulam-Hyers stable.

Example 5.2. Consider the following initial value problem

D
1
2 ,0

0+ y(t) =
1

9 + e−t

[
|y(t)|

1 + |y(t)|
−
|D

1
2 ,0

0+ y(t)|

1 + |D
1
2 ,0

0+ y(t)|

]
+
t+ 1√
t
, t ∈ (0, 1] (5.3)

I
1
2

0+y(0+) = 2y

(
1

2

)
. (5.4)

Set

f(t, u, v) =
1

9 + e−t

[
u

1 + u
− v

1 + v

]
+
t+ 1√
t
, t ∈ (0, 1], u, v ∈ [0,+∞).
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We have

C
β(1−α)
1−γ ([0, 1]) = C0

1
2
([0, 1]) =

{
h : (0, 1]→ R : t

1
2h ∈ C([0, 1])

}
,

with γ = α =
1

2
and β = 0. Clearly, the function f ∈ C 1

2
([0, 1]).

Hence condition (H1) is satisfied.
For each u, ū, v, v̄ ∈ R and t ∈ (0, 1] :

|f(t, u, v)− f(t, ū, v̄)| ≤ 1

9 + e−t
(|u− ū|+ |v − v̄|)

≤ 1

9 + e−1
(|u− ū|+ |v − v̄|) .

Hence condition (H2) is satisfied with K = K =
1

9 + e−1
.

The condition

KΓ(γ)

(1−K)Γ(α+ γ)

 λ1τ
α+γ−1
1∣∣∣Γ(γ)− λ1τγ−11

∣∣∣ + Tα

 ≈ 0.6077 < 1,

is satisfied with λ1 = 2, τ1 =
1

2
and T = 1. It follows from Theorem 3.2 that the

problem (5.3)-(5.4) has a unique solution in the space C
1
2
1
2

([0, 1]), and by Theorem

4.1, the problem (5.3)-(5.4) is Ulam-Hyers stable.
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Universidad de Santiago de Compostela
Santiago de Compostela, Spain
e-mail: juanjose.nieto.roig@usc.es


