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Abstract. In this paper we present for the solutions of a planar system of differen-
tial equations, extremal principle, Nicolescu-type and Butlewski-type separation
theorems. Some applications and examples are given.
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1. Introduction

Let F,G ∈ C([a, b]× R3). We consider the following first order system of differ-
ential equation {

F (x, y, z, y′) = 0
G(x, y, z, z′) = 0.

(1.1)

In this paper by a solution of the system (1.1) we understand a function (y, z) ∈
C1([a, b],R2) which satisfies (1.1).

For a function u : [a, b]→ R we denote by Zu the zero set of u,

Zu := {x ∈ [a, b]| u(x) = 0}.
Let us recall now some essential definitions and fundamental results.

Definition 1.1. A function f : D → R (D ⊂ R2) is called homogeneous of degree n if
f(tu, tv) = tnf(u, v), for each (u, v) ∈ D and t > 0.

The linear case of (1.1) is the following system{
y′ + p1(x)y + q1(x)z = 0
z′ + p2(x)y + q2(x)z = 0

(1.2)

with pi, qi ∈ C[a, b], i = 1, 2.
For the system (1.2) the following properties of the solution are well known (see

[9], [10], [11], [6], [2], [12]).
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Theorem 1.2. If (y, z) 6= 0 is a solution of (1.2) then we have:

(i) Zy ∩ Zz = ∅;
(ii) if q1(x) 6= 0, p2(x) 6= 0, ∀x ∈ [a, b], then the zeros of y and z are simple and

isolated on [a, b].

Theorem 1.3. (Nicolescu’s theorem [5]) We suppose that q1(x)p2(x) < 0, ∀x ∈ [a, b].
If (y, z) 6= 0 is a solution of (1.2), then the zeros of y and z separate each other on
[a, b].

Theorem 1.4. (Butlewski’s theorem [1]) We suppose that pi, qi ∈ C[a, b], i = 1, 2 and
q1(x) 6= 0 (p2(x) 6= 0), ∀x ∈ [a, b]. If (y1, z1) and (y2, z2) are two linear independent
solutions of (1.2), then the zeros of y1 and y2 (z1 and z2) separate each other on [a, b].

The aim of this paper is to extend the above results to the solutions of (1.1).
For some results in this directions see [7], [8], [4] and [3].

The organization of this paper is as follows. In Section 2 we prove some extremal
principles for nonlinear first order system of differential equations and in Section 3 we
study some properties of the zeros of the components of the solutions for such systems
and in the end we prove Nicolescu-type and Butlewski-type separation theorems, by
using Tonelli’s Lemmas. The results presented in this paper generalize the main results
from [3].

2. Extremal Principles

We consider the system (1.1) with F,G ∈ C([a, b]× R3). We have the following
extremal principle for the solutions of (1.1).

Theorem 2.1. (Extremal principle) Let (y, z) ∈ C1([a, b],R2) be a solution of (1.1)
and we suppose that:

(i) F (x, ·, ·, 0) and G(x, ·, ·, 0) are homogeneous for all x ∈ [a, b];
(ii) F (x, y, ·, 0) and G(x, ·, z, 0) are increasing, ∀x ∈ [a, b];
(iii) F (x, 1, 1, 0) < 0, G(x, 1, 1, 0) < 0, ∀x ∈ [a, b].

Then:

(a) If there exists x0 ∈ [a, b] such that

max

{
max
x∈[a,b]

y(x), max
x∈[a,b]

z(x)

}
= max {y(x0), z(x0)} > 0,

then x0 ∈ {a, b};
(b) If there exists x0 ∈ [a, b] such that

min

{
max
x∈[a,b]

y(x), max
x∈[a,b]

z(x)

}
= max {y(x0), z(x0)} < 0,

then x0 ∈ {a, b}.
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Proof. (a) We suppose that x0 ∈]a, b[. Let

max

{
max
x∈[a,b]

y(x), max
x∈[a,b]

z(x)

}
= max {y(x0), z(x0)} = y(x0) > 0.

We shall show that this leads to a contradiction.

Since y ∈ C1[a, b] we have that y′(x0) = 0. From (1.1) we have

F (x0, y(x0), z(x0), 0) = 0.

Using (i) and (ii) we obtain

0 = F (x0, y(x0), z(x0), 0) ≤ F (x0, y(x0), y(x0), 0)

= y(x0)F (x0, 1, 1, 0) < 0.

So, x0 ∈ {a, b}.

Now let max

{
max
x∈[a,b]

y(x), max
x∈[a,b]

z(x)

}
= max {y(x0), z(x0)} = z(x0) > 0.

Since z ∈ C1[a, b] we have that z′(x0) = 0. From (1.1) we have

G(x0, y(x0), z(x0), 0) = 0.

Using (i) and (ii) we obtain

0 = G(x0, y(x0), z(x0), 0) ≤ G(x0, z(x0), z(x0), 0)

= z(x0)G(x0, 1, 1, 0) < 0.

So, x0 ∈ {a, b}.

(b) Let min

{
max
x∈[a,b]

y(x), max
x∈[a,b]

z(x)

}
= max {y(x0), z(x0)} = y(x0) < 0.

We suppose that x0 ∈]a, b[. Analogous, we prove that this leads to a contradiction. �

Corollary 2.2. Let (y, z) ∈ C1([a, b],R2) be a solution of the following system{
p1y + q1z − y′ = 0
p2y + q2z − z′ = 0

and we suppose that p2 > 0, q1 > 0, p1 + q1 < 0 and p2 + q2 < 0. Then:

(a) If there exists x0 ∈ [a, b] such that

max

{
max
x∈[a,b]

y(x), max
x∈[a,b]

z(x)

}
= max {y(x0), z(x0)} > 0,

then x0 ∈ {a, b};
(b) If there exists x0 ∈ [a, b] such that

min

{
max
x∈[a,b]

y(x), max
x∈[a,b]

z(x)

}
= max {y(x0), z(x0)} < 0,

then x0 ∈ {a, b}.
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Example 2.3. We consider on [0, 1] the system{
−2y + z − y′ = 0
y − 4z − z′ = 0

with initial conditions y(0) = z(0) = 1. We have

q1 = p2 = 1, p1 + q1 < 0, p2 + q2 < 0.

From Figure 1 one can see that the conditions of Corollary 2.2 hold.
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max(y(x),z(x))=y(x)
max(y(x),z(x))=z(x)

Figure 1. Plot of max {y(x), z(x)} as function of x

Theorem 2.4. Let (y, z) ∈ C1([a, b],R2) be a solution of the following system{
f(x, y, z)− y′ = 0
g(x, y, z)− z′ = 0

and we suppose that

(i) f and g are homogeneous with respect to the last two arguments;
(ii) f(x, y, ·) and g(x, ·, z) are increasing, ∀x ∈ [a, b];
(iii) f(x, 1, 1) < 0, g(x, 1, 1) < 0, ∀x ∈ [a, b].

Then:

(a) If there exists x0 ∈ [a, b] such that

max

{
max
x∈[a,b]

y(x), max
x∈[a,b]

z(x)

}
= max {y(x0), z(x0)} > 0,

then x0 ∈ {a, b};
(b) If there exists x0 ∈ [a, b] such that

min

{
max
x∈[a,b]

y(x), max
x∈[a,b]

z(x)

}
= max {y(x0), z(x0)} < 0,

then x0 ∈ {a, b}.

Proof. The system satisfies the condition from Theorem 2.1. �
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Corollary 2.5. Let (y, z) ∈ C1([a, b],R2) be a solution of the following system{
p1y

3 + q1z
3 − y′ = 0

p2y
3 + q2z

3 − z′ = 0

and we suppose that p2 > 0, q1 > 0, p1 + q1 < 0 and p2 + q2 < 0.
Then:

(a) If there exists x0 ∈ [a, b] such that

max

{
max
x∈[a,b]

y(x), max
x∈[a,b]

z(x)

}
= max {y(x0), z(x0)} > 0,

then x0 ∈ {a, b};
(b) If there exists x0 ∈ [a, b] such that

min

{
max
x∈[a,b]

y(x), max
x∈[a,b]

z(x)

}
= max {y(x0), z(x0)} < 0,

then x0 ∈ {a, b}.

Example 2.6. We consider on [0, 1] the system{
−5y3 + 2z3 − y′ = 0
2y3 − 6z3 − z′ = 0

with initial conditions y(0) = z(0) = 1. We have

q1 = 2, p2 = 2, p1 + q1 < 0, p2 + q2 < 0.

From Figure 2 one can see that the conditions of Corollary 2.5 hold.
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Figure 2. Plot of max {y(x), z(x)} as function of x

In the end of this section, we consider the following functional-differential system{
F (x, y, y(g), z, y′) = 0
G(x, y, z, z(h), z′) = 0,

(2.1)
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Theorem 2.7. Let (y, z) ∈ C1([a, b],R2) be a solution of the system (2.1), where g, h ∈
C[a, b]), g(x) ≤ x, h(x) ≤ x, a ≤ g(x) ≤ b, a ≤ h(x) ≤ b, ∀x ∈ [a, b] and we suppose
that:

(i) F (x, ·, ·, ·, 0) and G(x, ·, ·, ·, 0) are homogeneous, for all x ∈ [a, b];
(ii) F (x, y, ·, ·, 0) and G(x, ·, z, ·, 0) are increasing, ∀x ∈ [a, b];
(iii) F (x, 1, 1, 1, 0) < 0, G(x, 1, 1, 1, 0) < 0, ∀x ∈ [a, b].

Then:

(a) If there exists x0 ∈ [a, b] such that

max

{
max
x∈[a,b]

y(x), max
x∈[a,b]

z(x)

}
= max {y(x0), z(x0)} > 0,

then x0 ∈ {a, b};
(b) If there exists x0 ∈ [a, b] such that

min

{
max
x∈[a,b]

y(x), max
x∈[a,b]

z(x)

}
= max {y(x0), z(x0)} < 0,

then x0 ∈ {a, b}.

Proof. (a) We suppose that x0 ∈]a, b[. Let

max

{
max
x∈[a,b]

y(x), max
x∈[a,b]

z(x)

}
= max {y(x0), z(x0)} = y(x0) > 0.

We shall show that this leads to a contradiction.
Since y ∈ C1[a, b] we have that y′(x0) = 0. From (1.1) we have

F (x0, y(x0), y(g(x0)), z(x0), 0) = 0.

Using (i) and (ii) we obtain

0 = F (x0, y(x0), y(g(x0)), z(x0), 0) ≤ F (x0, y(x0), y(x0), y(x0), 0)

= y(x0)F (x0, 1, 1, 1, 0) < 0.

So, x0 ∈ {a, b}.

Now let max

{
max
x∈[a,b]

y(x), max
x∈[a,b]

z(x)

}
= max {y(x0), z(x0)} = z(x0) > 0.

Since z ∈ C1[a, b] we have that z′(x0) = 0. From (1.1) we have

G(x0, y(x0), z(x0), z(h(x0)), 0) = 0.

Using (i) and (ii) we obtain

0 = G(x0, y(x0), z(x0), z(h(x0)), 0) ≤ G(x0, z(x0), z(x0), z(x0), 0)

= z(x0)G(x0, 1, 1, 1, 0) < 0.

So, x0 ∈ {a, b}.

(b) Let min

{
max
x∈[a,b]

y(x), max
x∈[a,b]

z(x)

}
= max {y(x0), z(x0)} = y(x0) < 0.

We suppose that x0 ∈]a, b[. Analogous, we prove that this leads to a contradiction. �
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Corollary 2.8. Let (y, z) ∈ C1([a, b],R2) be a solution of the following system{
p1y + q1z − y′ = 0
p2y + q2z + q3z(h)− z′ = 0

and we suppose that q1 > 0, p2 > 0, q3 > 0, p1+q1 < 0 and p2+q2+q3 < 0, h(x) ≤ x,
a ≤ h(x) ≤ b, ∀x ∈ [a, b].

Then:

(a) If there exists x0 ∈ [a, b] such that

max

{
max
x∈[a,b]

y(x), max
x∈[a,b]

z(x)

}
= max {y(x0), z(x0)} > 0,

then x0 ∈ {a, b};
(b) If there exists x0 ∈ [a, b] such that

min

{
max
x∈[a,b]

y(x), max
x∈[a,b]

z(x)

}
= max {y(x0), z(x0)} < 0,

then x0 ∈ {a, b}.

Example 2.9. We consider on [0, 1] the system{
−4y6(x) + z6(x)− y′(x) = 0
3y(x)− 5z(x) + z(x2)− z′(x) = 0

with initial conditions y(0) = z(0) = 1. We have q1 = 1, p2 = 3, q3 = 1, p1 + q1 < 0,
p2 +q2 +q3 < 0, h(x) = x2. From Figure 3 one can see that the conditions of Theorem
2.7 hold.
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3. Zeros of the Components of the Solutions of the System (1.1)

Let us consider the following conditions on the system (1.1):

(C1) F (x, 0, 0, 0) = 0, G(x, 0, 0, 0) = 0, ∀x ∈ [a, b].
(C2) If (y, z) is a solution of (1.1) and y(x0) = z(x0) = 0 for some x0 ∈ [a, b], then

y = z = 0.
(C3) The Cauchy problem for (1.1) has at most a solution.
(C4) Let (y, z) a solution of (1.1), then the problem F (x, y, z, y′) = 0

G(x, y, z, z′) = 0
y(x0) = y0, y

′(x0) = y′0

where x0 ∈ [a, b], y0, y
′
0 ∈ R has at most a solution.

(C5) Let (y, z) a solution of (1.1) then the problem F (x, y, z, y′) = 0
G(x, y, z, z′) = 0
z(x0) = z0, z

′(x0) = z′0

where x0 ∈ [a, b], z0, z
′
0 ∈ R has at most a solution.

Remarks. (1) If F (x, u, ·, w) = 0 has a solution in v, ∀x0 ∈ [a, b], u, w ∈ R, then
(C3) implies (C4).

(2) If F (x, ·, v, w) = 0 has a solution in u, ∀x0 ∈ [a, b], v, w ∈ R, then (C3) implies
(C5).

(3) (C1) and (C3) imply (C2).
(4) Let us consider the system{

p1y + q1z − y′ = 0
p2y + q2z − z′ = 0

, pi, qi ∈ C[a, b], i = 1, 2.

In this case the conditions (C1),(C2) and (C3) are satisfy.
If q1(x) 6= 0,∀x0 ∈ [a, b], then the condition (C4) is satisfied.
If p2(x) 6= 0,∀x0 ∈ [a, b], then the condition (C5) is satisfied.

(5) (C4) and (C5) imply (C3).

In what follows we also need the next result (see [13], [9], [4]).

Lemma 3.1. (Tonelli’s Lemma; see [13] and [7]) Let y1, y2 ∈ C1[a, b] be two functions
that satisfy the following conditions:

(i) y1(a) = 0, y1(b) = 0 and y1(x) > 0,∀x ∈]a, b[;
(ii) y2(x) > 0 , ∀ x ∈ [a, b].

Then there exists λ > 0 and x0 ∈]a, b[ such that:

y2(x0) = λy1(x0) and y′2(x0) = λy′1(x0).

Next, we use another version of Tonelli’s lemma.

Lemma 3.2. (Tonelli’s Lemma) Let y1, y2 ∈ C[a, b] be such that:

(i) y1(a) = 0, y1(b) = 0 and y1(x) 6= 0,∀x ∈]a, b[;
(ii) y2(x) 6= 0 , ∀ x ∈ [a, b].
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Then there exists λ ∈ R∗ and x0 ∈ [a, b] such that:

y2(x0) = λy1(x0) and y′2(x0) = λy′1(x0).

Remark 3.3. For Lemma 3.1 see also: [3], [4] and [9].

Our results are the following.

Theorem 3.4. (Nicolescu-type separation theorem) For the system (1.1), we suppose
that:

(i) F and G are homogeneous with respect to the last three arguments;
(ii) F (x, y, z, ·) and G(x, y, z, ·) are increasing, ∀x ∈ [a, b];
(iii) F (x, 1, λ, 1) 6= 0, G(x, λ, 1, 1) 6= 0, for all λ ∈ R∗.

Then, if (y, z) is a solution of (1.1), the zeros of y and z separate each other.

Proof. We consider x1 and x2 two consecutive zeros of y(x). We have to prove that
z(x) has at least one zero in the interval (x1, x2).

We suppose that z(x) 6= 0, x ∈ [x1, x2]. Applying Tonelli’s Lemma 3.2 there
exists x0 ∈ (x1, x2) and λ ∈ R∗ such that

z(x0) = λy(x0), z′(x0) = λy′(x0).

From (1.1) we have

F (x0, y(x0), λy(x0), y′(x0)) = 0.

We suppose that y(x0) ≥ y′(x0). Then

0 = F (x0, y(x0), λy(x0), y′(x0)) ≤ F (x0, y(x0), λy(x0), y(x0))

= y(x0)F (x0, 1, λ, 1) < 0,

0 = G(x0, y(x0), λy(x0), λy′(x0)) ≤ G(x0, y(x0), λy(x0), λy(x0))

= λy(x0)G(x0,
1
λ , 1, 1) < 0,

so we have reached a contradiction.
If y(x0) ≤ y′(x0). Then

0 = F (x0, y(x0), λy(x0), y′(x0)) ≥ F (x0, y(x0), λy(x0), y(x0))

= y(x0)F (x0, 1, λ, 1) > 0,

0 = G(x0, y(x0), λy(x0), λy′(x0)) ≥ G(x0, y(x0), λy(x0), λy(x0))

= λy(x0)G(x0,
1
λ , 1, 1) > 0,

so we have reached a contradiction. �

Theorem 3.5. (Butlewski-type separation theorem) For the homogeneous system (1.1),
we suppose that it satisfies condition (C2). Then, if (y1, z1) and (y2, z2) are two linear
independent solutions of (1.1), then the zeros of y1 and y2 (z1 and z2) separate each
other on [a, b].

Proof. We consider x1 and x2 two consecutive zeros of y1(x). We have to prove that
y2(x) has at least one zero in [x1, x2].
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We suppose that y2(x) 6= 0, x ∈ [x1, x2]. Applying Tonelli’s Lemma 3.2 there
exists x0 ∈ (x1, x2) and λ ∈ R∗ such that

y2(x0) = λy1(x0), y′2(x0) = λy′1(x0).

Taking into account (C2) we have that y2(x) = λy1(x) and so we have reached a
contradiction. �
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