Some properties of solutions to a planar system of nonlinear differential equations

Veronica Ilea and Diana Otrocol

Abstract

In this paper we present for the solutions of a planar system of differential equations, extremal principle, Nicolescu-type and Butlewski-type separation theorems. Some applications and examples are given.

Mathematics Subject Classification (2010): 34A12, 34C10, 34A34.
Keywords: Nonlinear second order differential system, extremal principle, zeros of solutions, Sturm-type theorem, Nicolescu-type theorem, Butlewski-type theorem.

1. Introduction

Let $F, G \in C\left([a, b] \times \mathbb{R}^{3}\right)$. We consider the following first order system of differential equation

$$
\left\{\begin{array}{l}
F\left(x, y, z, y^{\prime}\right)=0 \tag{1.1}\\
G\left(x, y, z, z^{\prime}\right)=0
\end{array}\right.
$$

In this paper by a solution of the system (1.1) we understand a function $(y, z) \in$ $C^{1}\left([a, b], \mathbb{R}^{2}\right)$ which satisfies (1.1).

For a function $u:[a, b] \rightarrow \mathbb{R}$ we denote by Z_{u} the zero set of u,

$$
Z_{u}:=\{x \in[a, b] \mid u(x)=0\} .
$$

Let us recall now some essential definitions and fundamental results.
Definition 1.1. A function $f: D \rightarrow \mathbb{R}\left(D \subset \mathbb{R}^{2}\right)$ is called homogeneous of degree n if $f(t u, t v)=t^{n} f(u, v)$, for each $(u, v) \in D$ and $t>0$.

The linear case of (1.1) is the following system

$$
\left\{\begin{array}{l}
y^{\prime}+p_{1}(x) y+q_{1}(x) z=0 \tag{1.2}\\
z^{\prime}+p_{2}(x) y+q_{2}(x) z=0
\end{array}\right.
$$

with $p_{i}, q_{i} \in C[a, b], i=1,2$.
For the system (1.2) the following properties of the solution are well known (see [9], [10], [11], [6], [2], [12]).

Theorem 1.2. If $(y, z) \neq 0$ is a solution of (1.2) then we have:
(i) $Z_{y} \cap Z_{z}=\emptyset$;
(ii) if $q_{1}(x) \neq 0, p_{2}(x) \neq 0, \forall x \in[a, b]$, then the zeros of y and z are simple and isolated on $[a, b]$.

Theorem 1.3. (Nicolescu's theorem [5]) We suppose that $q_{1}(x) p_{2}(x)<0, \forall x \in[a, b]$. If $(y, z) \neq 0$ is a solution of (1.2), then the zeros of y and z separate each other on $[a, b]$.

Theorem 1.4. (Butlewski's theorem [1]) We suppose that $p_{i}, q_{i} \in C[a, b], i=1,2$ and $q_{1}(x) \neq 0\left(p_{2}(x) \neq 0\right), \forall x \in[a, b]$. If $\left(y_{1}, z_{1}\right)$ and $\left(y_{2}, z_{2}\right)$ are two linear independent solutions of (1.2), then the zeros of y_{1} and $y_{2}\left(z_{1}\right.$ and $\left.z_{2}\right)$ separate each other on $[a, b]$.

The aim of this paper is to extend the above results to the solutions of (1.1). For some results in this directions see [7], [8], [4] and [3].

The organization of this paper is as follows. In Section 2 we prove some extremal principles for nonlinear first order system of differential equations and in Section 3 we study some properties of the zeros of the components of the solutions for such systems and in the end we prove Nicolescu-type and Butlewski-type separation theorems, by using Tonelli's Lemmas. The results presented in this paper generalize the main results from [3].

2. Extremal Principles

We consider the system (1.1) with $F, G \in C\left([a, b] \times \mathbb{R}^{3}\right)$. We have the following extremal principle for the solutions of (1.1).

Theorem 2.1. (Extremal principle) Let $(y, z) \in C^{1}\left([a, b], \mathbb{R}^{2}\right)$ be a solution of (1.1) and we suppose that:
(i) $F(x, \cdot, \cdot, 0)$ and $G(x, \cdot, \cdot, 0)$ are homogeneous for all $x \in[a, b]$;
(ii) $F(x, y, \cdot, 0)$ and $G(x, \cdot, z, 0)$ are increasing, $\forall x \in[a, b]$;
(iii) $F(x, 1,1,0)<0, G(x, 1,1,0)<0, \forall x \in[a, b]$.

Then:
(a) If there exists $x_{0} \in[a, b]$ such that

$$
\max \left\{\max _{x \in[a, b]} y(x), \max _{x \in[a, b]} z(x)\right\}=\max \left\{y\left(x_{0}\right), z\left(x_{0}\right)\right\}>0
$$

then $x_{0} \in\{a, b\} ;$
(b) If there exists $x_{0} \in[a, b]$ such that

$$
\min \left\{\max _{x \in[a, b]} y(x), \max _{x \in[a, b]} z(x)\right\}=\max \left\{y\left(x_{0}\right), z\left(x_{0}\right)\right\}<0
$$

then $x_{0} \in\{a, b\}$.

Proof. (a) We suppose that $\left.x_{0} \in\right] a, b[$. Let

$$
\max \left\{\max _{x \in[a, b]} y(x), \max _{x \in[a, b]} z(x)\right\}=\max \left\{y\left(x_{0}\right), z\left(x_{0}\right)\right\}=y\left(x_{0}\right)>0 .
$$

We shall show that this leads to a contradiction.
Since $y \in C^{1}[a, b]$ we have that $y^{\prime}\left(x_{0}\right)=0$. From (1.1) we have

$$
F\left(x_{0}, y\left(x_{0}\right), z\left(x_{0}\right), 0\right)=0
$$

Using (i) and (ii) we obtain

$$
\begin{aligned}
0 & =F\left(x_{0}, y\left(x_{0}\right), z\left(x_{0}\right), 0\right) \leq F\left(x_{0}, y\left(x_{0}\right), y\left(x_{0}\right), 0\right) \\
& =y\left(x_{0}\right) F\left(x_{0}, 1,1,0\right)<0
\end{aligned}
$$

So, $x_{0} \in\{a, b\}$.
Now let $\max \left\{\max _{x \in[a, b]} y(x), \max _{x \in[a, b]} z(x)\right\}=\max \left\{y\left(x_{0}\right), z\left(x_{0}\right)\right\}=z\left(x_{0}\right)>0$.
Since $z \in C^{1}[a, b]$ we have that $z^{\prime}\left(x_{0}\right)=0$. From (1.1) we have

$$
G\left(x_{0}, y\left(x_{0}\right), z\left(x_{0}\right), 0\right)=0
$$

Using (i) and (ii) we obtain

$$
\begin{aligned}
0 & =G\left(x_{0}, y\left(x_{0}\right), z\left(x_{0}\right), 0\right) \leq G\left(x_{0}, z\left(x_{0}\right), z\left(x_{0}\right), 0\right) \\
& =z\left(x_{0}\right) G\left(x_{0}, 1,1,0\right)<0
\end{aligned}
$$

So, $x_{0} \in\{a, b\}$.
(b) Let $\min \left\{\max _{x \in[a, b]} y(x), \max _{x \in[a, b]} z(x)\right\}=\max \left\{y\left(x_{0}\right), z\left(x_{0}\right)\right\}=y\left(x_{0}\right)<0$.

We suppose that $\left.x_{0} \in\right] a, b[$. Analogous, we prove that this leads to a contradiction.
Corollary 2.2. Let $(y, z) \in C^{1}\left([a, b], \mathbb{R}^{2}\right)$ be a solution of the following system

$$
\left\{\begin{array}{l}
p_{1} y+q_{1} z-y^{\prime}=0 \\
p_{2} y+q_{2} z-z^{\prime}=0
\end{array}\right.
$$

and we suppose that $p_{2}>0, q_{1}>0, p_{1}+q_{1}<0$ and $p_{2}+q_{2}<0$. Then:
(a) If there exists $x_{0} \in[a, b]$ such that

$$
\max \left\{\max _{x \in[a, b]} y(x), \max _{x \in[a, b]} z(x)\right\}=\max \left\{y\left(x_{0}\right), z\left(x_{0}\right)\right\}>0
$$

then $x_{0} \in\{a, b\} ;$
(b) If there exists $x_{0} \in[a, b]$ such that

$$
\min \left\{\max _{x \in[a, b]} y(x), \max _{x \in[a, b]} z(x)\right\}=\max \left\{y\left(x_{0}\right), z\left(x_{0}\right)\right\}<0
$$

then $x_{0} \in\{a, b\}$.

Example 2.3. We consider on $[0,1]$ the system

$$
\left\{\begin{array}{c}
-2 y+z-y^{\prime}=0 \\
y-4 z-z^{\prime}=0
\end{array}\right.
$$

with initial conditions $y(0)=z(0)=1$. We have

$$
q_{1}=p_{2}=1, p_{1}+q_{1}<0, p_{2}+q_{2}<0
$$

From Figure 1 one can see that the conditions of Corollary 2.2 hold.

Figure 1. Plot of $\max \{y(x), z(x)\}$ as function of x
Theorem 2.4. Let $(y, z) \in C^{1}\left([a, b], \mathbb{R}^{2}\right)$ be a solution of the following system

$$
\left\{\begin{array}{l}
f(x, y, z)-y^{\prime}=0 \\
g(x, y, z)-z^{\prime}=0
\end{array}\right.
$$

and we suppose that
(i) f and g are homogeneous with respect to the last two arguments;
(ii) $f(x, y, \cdot)$ and $g(x, \cdot, z)$ are increasing, $\forall x \in[a, b]$;
(iii) $f(x, 1,1)<0, g(x, 1,1)<0, \forall x \in[a, b]$.

Then:
(a) If there exists $x_{0} \in[a, b]$ such that

$$
\max \left\{\max _{x \in[a, b]} y(x), \max _{x \in[a, b]} z(x)\right\}=\max \left\{y\left(x_{0}\right), z\left(x_{0}\right)\right\}>0
$$

then $x_{0} \in\{a, b\} ;$
(b) If there exists $x_{0} \in[a, b]$ such that

$$
\min \left\{\max _{x \in[a, b]} y(x), \max _{x \in[a, b]} z(x)\right\}=\max \left\{y\left(x_{0}\right), z\left(x_{0}\right)\right\}<0
$$

then $x_{0} \in\{a, b\}$.
Proof. The system satisfies the condition from Theorem 2.1.

Corollary 2.5. Let $(y, z) \in C^{1}\left([a, b], \mathbb{R}^{2}\right)$ be a solution of the following system

$$
\left\{\begin{array}{l}
p_{1} y^{3}+q_{1} z^{3}-y^{\prime}=0 \\
p_{2} y^{3}+q_{2} z^{3}-z^{\prime}=0
\end{array}\right.
$$

and we suppose that $p_{2}>0, q_{1}>0, p_{1}+q_{1}<0$ and $p_{2}+q_{2}<0$.
Then:
(a) If there exists $x_{0} \in[a, b]$ such that

$$
\max \left\{\max _{x \in[a, b]} y(x), \max _{x \in[a, b]} z(x)\right\}=\max \left\{y\left(x_{0}\right), z\left(x_{0}\right)\right\}>0
$$

then $x_{0} \in\{a, b\} ;$
(b) If there exists $x_{0} \in[a, b]$ such that

$$
\min \left\{\max _{x \in[a, b]} y(x), \max _{x \in[a, b]} z(x)\right\}=\max \left\{y\left(x_{0}\right), z\left(x_{0}\right)\right\}<0,
$$

then $x_{0} \in\{a, b\}$.
Example 2.6. We consider on $[0,1]$ the system

$$
\left\{\begin{array}{c}
-5 y^{3}+2 z^{3}-y^{\prime}=0 \\
2 y^{3}-6 z^{3}-z^{\prime}=0
\end{array}\right.
$$

with initial conditions $y(0)=z(0)=1$. We have

$$
q_{1}=2, p_{2}=2, p_{1}+q_{1}<0, p_{2}+q_{2}<0 .
$$

From Figure 2 one can see that the conditions of Corollary 2.5 hold.

Figure 2. Plot of max $\{y(x), z(x)\}$ as function of x
In the end of this section, we consider the following functional-differential system

$$
\left\{\begin{array}{l}
F\left(x, y, y(g), z, y^{\prime}\right)=0 \tag{2.1}\\
G\left(x, y, z, z(h), z^{\prime}\right)=0
\end{array}\right.
$$

Theorem 2.7. Let $(y, z) \in C^{1}\left([a, b], \mathbb{R}^{2}\right)$ be a solution of the system (2.1), where $g, h \in$ $C[a, b]), g(x) \leq x, h(x) \leq x, a \leq g(x) \leq b, a \leq h(x) \leq b, \forall x \in[a, b]$ and we suppose that:
(i) $F(x, \cdot, \cdot, \cdot, 0)$ and $G(x, \cdot, \cdot, \cdot, 0)$ are homogeneous, for all $x \in[a, b]$;
(ii) $F(x, y, \cdot, \cdot, 0)$ and $G(x, \cdot, z, \cdot, 0)$ are increasing, $\forall x \in[a, b]$;
(iii) $F(x, 1,1,1,0)<0, G(x, 1,1,1,0)<0, \forall x \in[a, b]$.

Then:
(a) If there exists $x_{0} \in[a, b]$ such that

$$
\max \left\{\max _{x \in[a, b]} y(x), \max _{x \in[a, b]} z(x)\right\}=\max \left\{y\left(x_{0}\right), z\left(x_{0}\right)\right\}>0
$$

then $x_{0} \in\{a, b\} ;$
(b) If there exists $x_{0} \in[a, b]$ such that

$$
\min \left\{\max _{x \in[a, b]} y(x), \max _{x \in[a, b]} z(x)\right\}=\max \left\{y\left(x_{0}\right), z\left(x_{0}\right)\right\}<0
$$

then $x_{0} \in\{a, b\}$.
Proof. (a) We suppose that $\left.x_{0} \in\right] a, b[$. Let

$$
\max \left\{\max _{x \in[a, b]} y(x), \max _{x \in[a, b]} z(x)\right\}=\max \left\{y\left(x_{0}\right), z\left(x_{0}\right)\right\}=y\left(x_{0}\right)>0 .
$$

We shall show that this leads to a contradiction.
Since $y \in C^{1}[a, b]$ we have that $y^{\prime}\left(x_{0}\right)=0$. From (1.1) we have

$$
F\left(x_{0}, y\left(x_{0}\right), y\left(g\left(x_{0}\right)\right), z\left(x_{0}\right), 0\right)=0
$$

Using (i) and (ii) we obtain

$$
\begin{aligned}
0 & =F\left(x_{0}, y\left(x_{0}\right), y\left(g\left(x_{0}\right)\right), z\left(x_{0}\right), 0\right) \leq F\left(x_{0}, y\left(x_{0}\right), y\left(x_{0}\right), y\left(x_{0}\right), 0\right) \\
& =y\left(x_{0}\right) F\left(x_{0}, 1,1,1,0\right)<0
\end{aligned}
$$

So, $x_{0} \in\{a, b\}$.
Now let $\max \left\{\max _{x \in[a, b]} y(x), \max _{x \in[a, b]} z(x)\right\}=\max \left\{y\left(x_{0}\right), z\left(x_{0}\right)\right\}=z\left(x_{0}\right)>0$.
Since $z \in C^{1}[a, b]$ we have that $z^{\prime}\left(x_{0}\right)=0$. From (1.1) we have

$$
G\left(x_{0}, y\left(x_{0}\right), z\left(x_{0}\right), z\left(h\left(x_{0}\right)\right), 0\right)=0
$$

Using (i) and (ii) we obtain

$$
\begin{aligned}
0 & =G\left(x_{0}, y\left(x_{0}\right), z\left(x_{0}\right), z\left(h\left(x_{0}\right)\right), 0\right) \leq G\left(x_{0}, z\left(x_{0}\right), z\left(x_{0}\right), z\left(x_{0}\right), 0\right) \\
& =z\left(x_{0}\right) G\left(x_{0}, 1,1,1,0\right)<0
\end{aligned}
$$

So, $x_{0} \in\{a, b\}$.
(b) Let $\min \left\{\max _{x \in[a, b]} y(x), \max _{x \in[a, b]} z(x)\right\}=\max \left\{y\left(x_{0}\right), z\left(x_{0}\right)\right\}=y\left(x_{0}\right)<0$.

We suppose that $\left.x_{0} \in\right] a, b[$. Analogous, we prove that this leads to a contradiction.

Corollary 2.8. Let $(y, z) \in C^{1}\left([a, b], \mathbb{R}^{2}\right)$ be a solution of the following system

$$
\left\{\begin{array}{l}
p_{1} y+q_{1} z-y^{\prime}=0 \\
p_{2} y+q_{2} z+q_{3} z(h)-z^{\prime}=0
\end{array}\right.
$$

and we suppose that $q_{1}>0, p_{2}>0, q_{3}>0, p_{1}+q_{1}<0$ and $p_{2}+q_{2}+q_{3}<0, h(x) \leq x$, $a \leq h(x) \leq b, \forall x \in[a, b]$.

Then:
(a) If there exists $x_{0} \in[a, b]$ such that

$$
\max \left\{\max _{x \in[a, b]} y(x), \max _{x \in[a, b]} z(x)\right\}=\max \left\{y\left(x_{0}\right), z\left(x_{0}\right)\right\}>0,
$$

then $x_{0} \in\{a, b\}$;
(b) If there exists $x_{0} \in[a, b]$ such that

$$
\min \left\{\max _{x \in[a, b]} y(x), \max _{x \in[a, b]} z(x)\right\}=\max \left\{y\left(x_{0}\right), z\left(x_{0}\right)\right\}<0
$$

then $x_{0} \in\{a, b\}$.
Example 2.9. We consider on $[0,1]$ the system

$$
\left\{\begin{array}{l}
-4 y^{6}(x)+z^{6}(x)-y^{\prime}(x)=0 \\
3 y(x)-5 z(x)+z\left(x^{2}\right)-z^{\prime}(x)=0
\end{array}\right.
$$

with initial conditions $y(0)=z(0)=1$. We have $q_{1}=1, p_{2}=3, q_{3}=1, p_{1}+q_{1}<0$, $p_{2}+q_{2}+q_{3}<0, h(x)=x^{2}$. From Figure 3 one can see that the conditions of Theorem 2.7 hold.

Figure 3. Plot of max $\{y(x), z(x)\}$ as function of x

3. Zeros of the Components of the Solutions of the System (1.1)

Let us consider the following conditions on the system (1.1):
$\left(\mathrm{C}_{1}\right) F(x, 0,0,0)=0, G(x, 0,0,0)=0, \forall x \in[a, b]$.
$\left(\mathrm{C}_{2}\right)$ If (y, z) is a solution of (1.1) and $y\left(x_{0}\right)=z\left(x_{0}\right)=0$ for some $x_{0} \in[a, b]$, then $y=z=0$.
$\left(\mathrm{C}_{3}\right)$ The Cauchy problem for (1.1) has at most a solution.
$\left(\mathrm{C}_{4}\right)$ Let (y, z) a solution of (1.1), then the problem

$$
\left\{\begin{array}{l}
F\left(x, y, z, y^{\prime}\right)=0 \\
G\left(x, y, z, z^{\prime}\right)=0 \\
y\left(x_{0}\right)=y_{0}, y^{\prime}\left(x_{0}\right)=y_{0}^{\prime}
\end{array}\right.
$$

where $x_{0} \in[a, b], y_{0}, y_{0}^{\prime} \in \mathbb{R}$ has at most a solution.
$\left(\mathrm{C}_{5}\right)$ Let (y, z) a solution of (1.1) then the problem

$$
\left\{\begin{array}{l}
F\left(x, y, z, y^{\prime}\right)=0 \\
G\left(x, y, z, z^{\prime}\right)=0 \\
z\left(x_{0}\right)=z_{0}, z^{\prime}\left(x_{0}\right)=z_{0}^{\prime}
\end{array}\right.
$$

where $x_{0} \in[a, b], z_{0}, z_{0}^{\prime} \in \mathbb{R}$ has at most a solution.
Remarks. (1) If $F(x, u, \cdot, w)=0$ has a solution in $v, \forall x_{0} \in[a, b], u, w \in \mathbb{R}$, then $\left(\mathrm{C}_{3}\right)$ implies $\left(\mathrm{C}_{4}\right)$.
(2) If $F(x, \cdot, v, w)=0$ has a solution in $u, \forall x_{0} \in[a, b], v, w \in \mathbb{R}$, then $\left(\mathrm{C}_{3}\right)$ implies $\left(\mathrm{C}_{5}\right)$.
(3) $\left(\mathrm{C}_{1}\right)$ and $\left(\mathrm{C}_{3}\right)$ imply $\left(\mathrm{C}_{2}\right)$.
(4) Let us consider the system

$$
\left\{\begin{array}{l}
p_{1} y+q_{1} z-y^{\prime}=0 \\
p_{2} y+q_{2} z-z^{\prime}=0
\end{array}, p_{i}, q_{i} \in C[a, b], i=1,2 .\right.
$$

In this case the conditions $\left(\mathrm{C}_{1}\right),\left(\mathrm{C}_{2}\right)$ and $\left(\mathrm{C}_{3}\right)$ are satisfy.
If $q_{1}(x) \neq 0, \forall x_{0} \in[a, b]$, then the condition $\left(\mathrm{C}_{4}\right)$ is satisfied.
If $p_{2}(x) \neq 0, \forall x_{0} \in[a, b]$, then the condition $\left(\mathrm{C}_{5}\right)$ is satisfied.
(5) $\left(\mathrm{C}_{4}\right)$ and $\left(\mathrm{C}_{5}\right)$ imply $\left(\mathrm{C}_{3}\right)$.

In what follows we also need the next result (see [13], [9], [4]).
Lemma 3.1. (Tonelli's Lemma; see [13] and [7]) Let $y_{1}, y_{2} \in C^{1}[a, b]$ be two functions that satisfy the following conditions:
(i) $y_{1}(a)=0, y_{1}(b)=0$ and $\left.y_{1}(x)>0, \forall x \in\right] a, b[$;
(ii) $y_{2}(x)>0, \forall x \in[a, b]$.

Then there exists $\lambda>0$ and $\left.x_{0} \in\right] a, b[$ such that:

$$
y_{2}\left(x_{0}\right)=\lambda y_{1}\left(x_{0}\right) \text { and } y_{2}^{\prime}\left(x_{0}\right)=\lambda y_{1}^{\prime}\left(x_{0}\right)
$$

Next, we use another version of Tonelli's lemma.
Lemma 3.2. (Tonelli's Lemma) Let $y_{1}, y_{2} \in C[a, b]$ be such that:
(i) $y_{1}(a)=0, y_{1}(b)=0$ and $\left.y_{1}(x) \neq 0, \forall x \in\right] a, b[$;
(ii) $y_{2}(x) \neq 0, \forall x \in[a, b]$.

Then there exists $\lambda \in \mathbb{R}^{*}$ and $x_{0} \in[a, b]$ such that:

$$
y_{2}\left(x_{0}\right)=\lambda y_{1}\left(x_{0}\right) \text { and } y_{2}^{\prime}\left(x_{0}\right)=\lambda y_{1}^{\prime}\left(x_{0}\right) .
$$

Remark 3.3. For Lemma 3.1 see also: [3], [4] and [9].
Our results are the following.
Theorem 3.4. (Nicolescu-type separation theorem) For the system (1.1), we suppose that:
(i) F and G are homogeneous with respect to the last three arguments;
(ii) $F(x, y, z, \cdot)$ and $G(x, y, z, \cdot)$ are increasing, $\forall x \in[a, b]$;
(iii) $F(x, 1, \lambda, 1) \neq 0, G(x, \lambda, 1,1) \neq 0$, for all $\lambda \in \mathbb{R}^{*}$.

Then, if (y, z) is a solution of (1.1), the zeros of y and z separate each other.
Proof. We consider x_{1} and x_{2} two consecutive zeros of $y(x)$. We have to prove that $z(x)$ has at least one zero in the interval $\left(x_{1}, x_{2}\right)$.

We suppose that $z(x) \neq 0, x \in\left[x_{1}, x_{2}\right]$. Applying Tonelli's Lemma 3.2 there exists $x_{0} \in\left(x_{1}, x_{2}\right)$ and $\lambda \in \mathbb{R}^{*}$ such that

$$
z\left(x_{0}\right)=\lambda y\left(x_{0}\right), z^{\prime}\left(x_{0}\right)=\lambda y^{\prime}\left(x_{0}\right)
$$

From (1.1) we have

$$
F\left(x_{0}, y\left(x_{0}\right), \lambda y\left(x_{0}\right), y^{\prime}\left(x_{0}\right)\right)=0 .
$$

We suppose that $y\left(x_{0}\right) \geq y^{\prime}\left(x_{0}\right)$. Then

$$
\begin{aligned}
0 & =F\left(x_{0}, y\left(x_{0}\right), \lambda y\left(x_{0}\right), y^{\prime}\left(x_{0}\right)\right) \leq F\left(x_{0}, y\left(x_{0}\right), \lambda y\left(x_{0}\right), y\left(x_{0}\right)\right) \\
& =y\left(x_{0}\right) F\left(x_{0}, 1, \lambda, 1\right)<0 \\
0 & =G\left(x_{0}, y\left(x_{0}\right), \lambda y\left(x_{0}\right), \lambda y^{\prime}\left(x_{0}\right)\right) \leq G\left(x_{0}, y\left(x_{0}\right), \lambda y\left(x_{0}\right), \lambda y\left(x_{0}\right)\right) \\
& =\lambda y\left(x_{0}\right) G\left(x_{0}, \frac{1}{\lambda}, 1,1\right)<0
\end{aligned}
$$

so we have reached a contradiction.
If $y\left(x_{0}\right) \leq y^{\prime}\left(x_{0}\right)$. Then

$$
\begin{aligned}
0 & =F\left(x_{0}, y\left(x_{0}\right), \lambda y\left(x_{0}\right), y^{\prime}\left(x_{0}\right)\right) \geq F\left(x_{0}, y\left(x_{0}\right), \lambda y\left(x_{0}\right), y\left(x_{0}\right)\right) \\
& =y\left(x_{0}\right) F\left(x_{0}, 1, \lambda, 1\right)>0 \\
0 & =G\left(x_{0}, y\left(x_{0}\right), \lambda y\left(x_{0}\right), \lambda y^{\prime}\left(x_{0}\right)\right) \geq G\left(x_{0}, y\left(x_{0}\right), \lambda y\left(x_{0}\right), \lambda y\left(x_{0}\right)\right) \\
& =\lambda y\left(x_{0}\right) G\left(x_{0}, \frac{1}{\lambda}, 1,1\right)>0
\end{aligned}
$$

so we have reached a contradiction.
Theorem 3.5. (Butlewski-type separation theorem) For the homogeneous system (1.1), we suppose that it satisfies condition $\left(C_{2}\right)$. Then, if $\left(y_{1}, z_{1}\right)$ and $\left(y_{2}, z_{2}\right)$ are two linear independent solutions of (1.1), then the zeros of y_{1} and $y_{2}\left(z_{1}\right.$ and $\left.z_{2}\right)$ separate each other on $[a, b]$.

Proof. We consider x_{1} and x_{2} two consecutive zeros of $y_{1}(x)$. We have to prove that $y_{2}(x)$ has at least one zero in $\left[x_{1}, x_{2}\right]$.

We suppose that $y_{2}(x) \neq 0, x \in\left[x_{1}, x_{2}\right]$. Applying Tonelli's Lemma 3.2 there exists $x_{0} \in\left(x_{1}, x_{2}\right)$ and $\lambda \in \mathbb{R}^{*}$ such that

$$
y_{2}\left(x_{0}\right)=\lambda y_{1}\left(x_{0}\right), y_{2}^{\prime}\left(x_{0}\right)=\lambda y_{1}^{\prime}\left(x_{0}\right) .
$$

Taking into account $\left(\mathrm{C}_{2}\right)$ we have that $y_{2}(x)=\lambda y_{1}(x)$ and so we have reached a contradiction.

Acknowledgement. The work of the first author was partially supported by a grant of the Romanian National Authority for Scientific Research, CNCS - UEFISCDI, project number PN-II-ID-PCE-2011-3-0094.

References

[1] Butlewski, Z., Sur les zeros des integrales reelles des equations differentielles lineaires, Mathematica, 17(1941), 85-110.
[2] Hartman, P., Ordinary differential equations, J. Wiley and Sons, New York, 1964.
[3] Ilea, V.A., Otrocol, D., Rus, I.A., Some properties of solutions of the homogeneous nonlinear second order differential equations, Mathematica, $\mathbf{5 7}(80)(2017)$, no. 1-2, 3843.
[4] Mureşan, A.S., Tonelli's lemma and applications, Carpathian J. Math., 28(2012), no. 1, 103-110.
[5] Nicolescu, M., Sur les theoremes de Sturm, Mathematica, 1(1929), 111-114.
[6] Reid, W.T., Sturmian theory for ordinary differential equations, Springer, Berlin, 1980.
[7] Rus, I.A., On the zeros of solutions of a system with two first order differential equations, (Romanian), Studii şi Cercetări de Matematică (Cluj), 14(1963), 151-156.
[8] Rus, I.A., Separation theorems for the zeros of some real functions, Mathematica, 27(1985), no. 1, 43-46.
[9] Rus, I.A., Differential equations, integral equations and dinamical systems, (Romanian), Transilvania Press, Cluj-Napoca, 1996.
[10] Sansone, G., Equazioni differenziali nel compo reale, Parte Prima, Bologna, 1948.
[11] Sansone, G., Equazioni differenziali nel compo reale, Parte Seconda, Bologna, 1949.
[12] Swanson, C.A., Comparison and oscillation theory of linear differential equations, Academic Press, New York, 1968.
[13] Tonelli, L., Un'osservazione su un teorema di Sturm, Boll. Union. Mat. Italiana, 6(1927), 126-128.

Veronica Ilea
Babeş-Bolyai University, Faculty of Mathematics and Computer Science
Cluj-Napoca, Romania
e-mail: vdarzu@math.ubbcluj.ro
Diana Otrocol
Technical University of Cluj-Napoca, Romania
"T. Popoviciu" Institute of Numerical Analysis, Romanian Academy, Cluj-Napoca, Romania e-mail: Diana.Otrocol@math.utcluj.ro

