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Abstract. This note is devoted to present the scientific work of Professor Csaba
Varga (1959-2021), who had contributions in Calculus of Variations and its ap-
plications in the theory of Partial Differential Equations and Finsler Geometry.
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1. Introduction

Csaba György Varga passed away on 16 August 2021, after a long illness period.
He was 62 years old.

Csaba was born on 5 February 1959 in Gyulakuta (Fântânele, Romania). He
finished his university studies in 1983 at the Faculty of Mathematics of the Babeş-
Bolyai University, Cluj-Napoca.

After being a highschool teacher for seven years in
Bistriţa-Năsăud (Romania), he started his academic career
in 1990. According to him, after ”seven years of darkness”,
he had the opportunity to restart to work again in advanced
mathematics together with his former students M. Crainic
and G. Farkas. In that time, they learned and investigated
together algebraic topology, Ljusternik-Schnirelmann cate-
gory, density and condensation problems, see the early papers
[28, 30, 31, 32, 33].

These papers have proved to be influential in the coming
years when Csaba has got in contact with D. Motreanu. They
started together to explore topological and variational phe-
nomena in the context of elliptic problems. Due to this fruitful
collaboration, Csaba defended his doctoral dissertation in 1996, entitled Topological
Methods in Optimizations, under the supervision of J. Kolumbán. The central theme
of his doctoral thesis is the non-smooth critical point theory (for locally Lipschitz
functions) with applications in the theory of differential inclusions.

In the sequel, I invite the reader on a quick tour of Csaba’s mathematical interests
and contributions, placing them in the main research directions of critical point theory
and Finsler geometry.
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2. Critical point theory: from smooth to nonsmooth

From the mid of the 20th century, variational principles have been subject to rele-
vant developments, when – among others – the modern critical point theory appeared.
To be more precise, let X be a real Banach space, E : X → R be a differentiable func-
tion; x0 ∈ X is said to be a critical point of E, if the derivative of E at x0 vanishes,
i.e., dE(x0) = 0. This class of problems includes important chapters from modern
mathematics:

• weak solutions of elliptic PDEs and related problems (weak solutions of differ-
ential equations are critical points of the energy functional associated to the
original equation);

• geodesic lines in Riemannian/Finsler manifolds (these geometric objects occur
as the critical points of the natural energy functionals defined on the space of
curves with further particular properties).

A basic tool to guarantee critical points of energy functionals is the celebrated
Mountain Pass Theorem, developed by A. Ambrosetti and P. Rabinowitz [3]. The
proof of this result is based on a deformation lemma, which requires the existence of
a suitable gradient vector field, coming from the high regularity of the functional. The
Mountain Pass Theorem is applied to solve various elliptic problems; for simplicity,
we consider the model problem{

−∆u(x) = f(u(x)) x ∈ Ω,
u(x) = 0 x ∈ ∂Ω,

(P )

where Ω ⊂ Rn is a bounded domain with C1-boundary, ∆ is the Laplace operator,
while f : R → R is a continuous functions verifying certain growth conditions at the
origin and at infinity. In such cases, we associate to problem (P ) its natural energy

functional E : W 1,2
0 (Ω)→ R, defined by

E(u) =
1

2

∫
Ω

|∇u(x)|2dx−
∫

Ω

∫ u(x)

0

f(t)dtdx, u ∈W 1,2
0 (Ω),

where W 1,2
0 (Ω) = H1

0 (Ω) is the usual Sobolev space. If f has appropriate properties,
it follows that E is a C2-class functional and

dE(u) = 0⇐⇒ u is a weak solution of (P ).

A highly nontrivial problem occurs when E is not differentiable, which requires
a deep analysis; in this framework, Csaba has some relevant contributions, which are
presented roughly in the next two subsections.

2.1. Critical points for locally Lipschitz functionals

In the early eighties, K.-C. Chang [7] proposed to study the problem (P ) when-
ever f is not necessarily continuous, being only locally essentially bounded. Such
phenomena arise in mathematical physics, engineering, etc.

Since in the new situation the nonlinear term f is only locally essentially
bounded, it is possible to have the unlikely situation that problem (P ) has only
the zero solution, in spite of the fact that one could expect the presence of nontrivial
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solutions from practical point of view. For this reason, one usually substitutes the
value f(t) by the interval [f(t), f(t)], where

f(t) = lim
δ→0+

essinf |s−t|<δf(s), f(t) = lim
δ→0+

esssup|s−t|<δf(s),

while essinfAf = sup{a ∈ R : f(x) ≥ a for a.e. x ∈ A} and esssupAf = −essinfA(−f),
A 6= ∅. In this way, instead of problem (P ) we consider the differential inclusion{

−∆u(x) ∈ ∂F (u(x)) x ∈ Ω,
u(x) = 0 x ∈ ∂Ω,

(DI)

where F (t) =

∫ t

0

f(s)ds is a locally Lipschitz function1, whose Clarke subgradient is

∂F (t) = [f(t), f(t)], t ∈ R.

The energy functional E : W 1,2
0 (Ω)→ R associated to (DI) is not of class C1, being

only locally Lipschitz on the Sobolev space W 1,2
0 (Ω), while its critical point in the

sense of Chang, i.e., 0 ∈ ∂E(u), is a solution of the differential inclusion (DI).
In general, if E : X → R is a locally Lipschitz function in a given Banach space

X, its Clarke subgradient at u ∈ X is defined by

∂E(u) = {ξ ∈ X∗ : Eo(u; v) ≥ 〈ξ, v〉, ∀v ∈ X},

see F. H. Clarke [8], where X∗ is the dual of X, 〈·, ·〉 is the duality mapping, and

Eo(u; v) = lim sup
w→v,t→0+

E(w + tv)− E(w)

t

stands for the Clarke directional derivative of E at the point u ∈ X and direction
v ∈ X.

In a joint work with D. Motreanu, Csaba provided the first extension of the
celebrated Mountain Pass Theorem to locally Lipschitz functions, see [27]. Moreover,
they provided the so-called ’zero altitude’ version of the result, which was new even
in the smooth setting. The main tool they used is a non-smooth deformation lemma,
where the key idea is the introduction of the so-called pseuso-gradient vector field
for locally Lipschitz functions. Their non-smooth deformation lemma implies further
non-smooth minimax results (saddle point, linking theorems).

The results from [27] has several applications and extensions, see e.g. C.O. Alves
and J.A. Santos [1], or C.O. Alves, R.C. Duarte and M.A.S. Souto [2]. Moreover, var-
ious applications of the non-smooth Mountain Pass Theorem have been developed,
both in the theory of differential inclusions and hemivariational inequalities. More-
over, spectacular arguments were provided not only in bounded domains, but also on
unbounded domains. While in the former case Sobolev compactness is expected, in
the latter case – in order to regain some sort of compactness – either certain coerciv-
ity or symmetric structures are required on unbounded domains. Such an approach
is the so-called principle of symmetric criticality (both for smooth and nonsmooth

1The function F : X → R is locally Lipschitz, if for every x ∈ X there exist a neighborhood U and

a constant Kx > 0 such that |f(u)− f(v)| ≤ Kx‖u− v‖ for every u, v ∈ U , see F. H. Clarke [8].
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functionals); over the years, Csaba became a worldwide expert of this principle, most
of his results in this direction being influential in the literature, see e.g. [23, 24].

2.2. Critical points for continuous and set-valued functions

In the early nineties, M. Degiovanni and M. Marzocchi [11] have developed the
theory of critical points for continuous functionals, by introducing the so-called weak
slope of a continuous function E : X → R defined on a metric space X. A point u ∈ X
is a critical point of E if its weak slope vanishes at u. In addition, if the functional E
is of class C1, the weak slope coincides with the norm of the usual differential of E.

Being an expert of the critical point theory for locally Lipschitz functions, Csaba
obtained several important results also in the context of weak slopes. More precisely,
Csaba and his co-authors obtained quantitative versions of the deformation lemma
(without using pseudo gradient vector fields, which is not defined in such non-smooth
settings), minimax results, see e.g. [22].

In addition, inspired by the work of M. Frigon [13], Csaba and his co-authors
provided quantitative deformation lemmas and minimax results for set-valued maps,
see [21]. The Mountain Pass Theorem for set-valued maps from [21] has a central
place in the monograph of Y. Jabri [15].

3. Finsler geometry: from synthetic aspects to PDEs

In general, Finsler geometry is viewed as an extension of Riemannian geome-
try. S.-S. Chern claimed that Finsler geometry is just Riemannian geometry with-
out the quadratic restriction. In certain sense, Chern’s statement is confirmed, since
many classical results can be easily extended from Riemannian to Finsler structures,
as Hopf-Rinow, Cartan-Hadamard and Bonnet-Myers theorems, Rauch and Bishop-
Gromov comparison principles, see D. Bao, S.-S. Chern and Z. Shen [4]. In spite of
these facts, deep differences appear between the two geometries. Csaba was also ex-
tremely motivated to identify such nontrivial differences. In the sequel, we focus to
the following two topics, both of them being his favorite research directions:

• Busemann inequalities and the existence of ’orthogonal’ geodesic segments be-
tween Finsler submanifolds;

• Sobolev spaces over Finsler manifolds and their applications in the theory of
PDEs.

To be more precise, let us give some basic notions from Finsler geometry. Let M be an
n(≥ 2)-dimensional differentiable manifold and its tangent bundle TM =

⋃
x∈M TxM .

The pair (M,F ) is called a Finsler manifold, if the continuous function F : TM →
[0,∞) verifies the assumptions:

(a) F ∈ C∞(TM \ {0});
(b) F (x, λy) = λF (x, y) for every λ ≥ 0 and (x, y) ∈ TM ;
(c) gij(x, y) = [ 1

2F
2]yiyj (x, y) is positive definite for every (x, y) ∈ TM \ {0}, where

F (x, y) = F (yi ∂
∂xi |x).

(M,F ) is reversible, if instead of (b) one has:

(b’) F (x, λy) = |λ|F (x, y) for every λ ∈ R and (x, y) ∈ TM .
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Unlike the Levi-Civita connection in Riemannian geometry, there is no unique
natural connection in the Finsler setting; either the metric compatibility or the
torsion-free property fails for a generic Finsler connection. Among these objects, the
Chern connection has appropriate properties to provide qualitative results on Finsler
manifolds, see D. Bao, S.-S. Chern and Z. Shen [4]. By means of this connection, one
can introduce Jacobi fields, geodesics, flag curvature (replacing the sectional curva-
ture), etc.

3.1. Busemann inequalities and ’orthogonal’ geodesics on Finsler manifolds

In the forties, parallel to A.D. Alexandrov’s theory, H. Busemann [5] developed
a synthetic geometry on non-smooth metric spaces. Among others, H. Busemann
elaborated axiomatically the theory of non-positively curved metric spaces, where no
differential structure is needed. This notion of non-positive curvature requires that
in small geodesic triangles the length of a side is at least the twice of the geodesic
distance of the midpoints of the other two sides, see H. Busemann [5, p. 237]; if this
property is valid in every small geodesic triangle, the space is called Busemann NPC
space. By making a connection between smooth and synthetic objects, H. Busemann
proved that a Riemannian manifold (M, g) is a Busemann NPC space if and only if its
sectional curvature is non-positive. At the same time, he formulated the open question
for non-Riemannian manifolds asking if non-positively curved Finsler manifolds are
Busemann NPC space. It turned out that the picture for non-Riemannian Finsler
spaces is totally different with respect to Riemannian manifolds. Indeed, P. Kelly and
E. Straus [16] proved that a convex closed planar domain endowed with the standard
Hilbert distance (providing a Finsler structure with constant flag curvature -1) is a
Busemann NPC space if and only if the curve is an ellipse, thus the geometry reduces
to the Riemannian one. After this result, nothing relevant happened till the early
2000s concerning Busemann’s question on Finsler manifolds.

In 2003, Csaba and his co-authors proved in [17] that non-positively curved
Berwald manifolds2 are Busemann NPC spaces. In this way, Berwald manifolds be-
came the first non-Riemannian Finsler spaces where H. Busemann’s original question
has been affirmatively answered. This result has been extended to further synthetic
properties in [19], where the authors conjectured that non-positively curved Berwald
manifolds are the largest Finsler objects which are Busemann NPC spaces. This ques-
tion has been confirmed recently by S. Ivanov and A. Lytchak [14].

Since Busemann’s inequality can be reformulated in terms of convexity, several
applications can be found of the main results of [17, 19] by treating optimization
problems, as Weber-type transportation phenomena on curved spaces; the reader
may consult the monograph [20] for further applications in Economics and Geometry,
written by Csaba and his co-authors.

Another important aspect of Finsler manifolds is to determine the number of
geodesic segments perpendicular to certain submanifolds. Since the notion of perpen-
dicularity as well as the behavior of the energy functional defined on the space of

2Special Finsler structures, where the coefficients of the Chern connection are not directional-

dependent.
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curves are delicate issues on Finsler manifolds, a comprehensive study of this prob-
lem was completed by Csaba and his co-authors in [18]; the most challenging part
of the proof is the validity of the Palais-Smale compactness condition of the energy
functional defined on the space of curves. The result from [18] has been extended by

E. Caponio, M.Á. Javaloyes and A. Masiello [6] to stationary spacetimes over Finsler
structures.

3.2. Sobolev spaces versus Finsler manifolds

Within the class of reversible Finsler manifolds (including in particular the class
of Riemannian manifolds), the synthetic notion of Sobolev spaces on metric measure
spaces and the analytic notion of Sobolev spaces coincide. However, the case when
the Finsler manifold is not reversible (modeling e.g. Randers spaces, the Matsumoto
mountain slope metric, or the Finsler-Poincaré ball), it turns out that surprising
phenomena arise, which was described in the paper [12] of Csaba and his co-authors.
To be more precise, let

W 1,2(M,F,m) =

{
u ∈W 1,2

loc (M) :

∫
M

F ∗2(x,Du(x))dm(x) < +∞
}
,

and W 1,2
0 (M,F,m) be the closure of C∞0 (M) with respect to the (asymmetric) norm

‖u‖F =

(∫
M

F ∗2(x,Du(x))dm(x) +

∫
M

u2(x)dm(x)

)1/2

, (3.1)

where m is the usual measure on (M,F ). Let

rF = sup
x∈M

sup
y∈TxM\{0}

F (x, y)

F (x,−y)

be the reversibility constant on (M,F ). Clearly, rF ≥ 1 and rF = 1 if and only if
(M,F ) is reversible. Let

Fs(x, y) =

(
F 2(x, y) + F 2(x,−y)

2

)1/2

, (x, y) ∈ TM.

It is clear that (M,Fs) is a reversible Finsler manifold, Fs being the symmetrized
Finsler metric associated with F .

In [12] the authors proved that if rF < +∞, then (W 1,2
0 (M,F,m), ‖ · ‖Fs) is a

reflexive Banach space, while the norm ‖ · ‖Fs
and the asymmetric norm ‖ · ‖F are

equivalent; in particular,(
1 + r2

F

2

)−1/2

‖u‖F ≤ ‖u‖Fs
≤
(

1 + r−2
F

2

)−1/2

‖u‖F , ∀u ∈W 1,2
0 (M,F,m).

A more surprising fact – which shows the genuine difference between Riemannian and
Finsler geometry – is that the authors of [12] constructed a function u on the Finsler-

Poincaré ball (having the reversibility constant +∞) such that u ∈ W 1,2
0 (M,F,m)

but −u /∈ W 1,2
0 (M,F,m). In this way, the Sobolev space over a non-compact Finsler

manifold (M,F ) with rF = +∞ need not be even a vector space.
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Csaba was also interested to study elliptic PDEs involving the Finsler-Laplace
operator. Such kind of problems were discussed in [25], where the authors established
Hardy-type inequalities on Finsler manifolds with some applications. Further results
of Csaba and his co-authors, involving elliptic operators on different domains can be
found in [10, 26, 29].

4. Concluding part

Csaba’s most important contributions to applied mathematics have been pub-
lished in internationally recognized journals such as Calculus of Variations and Partial
Differential Equations, Nonlinear Differential Equations and Applications, Discrete
and Continuous Dynamical Systems-A, Advances in Differential Equations, Non-
linear Analysis Real World Applications, etc. A summary of these results has been
published in two monographs by Cambridge University Press in 2010 (see [20]) and
Springer in 2021 (see [9]).

Csaba was invited to various research institutes and universities, as Universita
di Perugia, Eötvös Lóránd University, Alfréd Rényi Institute of Mathematics, Uni-
versita di Catania, Technical University of Athens, etc. He collaborated with dozens
of national and international mathematicians, resulting joint publications. He has
more than 90 research papers, being cited in prestigious journals such as Mathematis-
che Annalen, Journal of Functional Analysis, Journal of Differential Equations and
others.

In addition to his scientific achievements, one of Csaba’s greatest merits lies
in discovering and educating young mathematical talents. Many of his former stu-
dents became world-renowned mathematicians, working at prestigious European and
American universities such as Humboldt University, Utrecht University, Virginia Poly-
technic Institute and State University. As a doctoral supervisor, he advised numerous
students, who became outstanding researchers and lecturers at the Babeş-Bolyai Uni-
versity and Sapientia University of Transylvania.

Csaba’s absence remains an unfilled void in our soul.
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