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Abstract. This paper is devoted to a subject that Professor Csaba Varga sug-
gested during his frequent visits to the University of Perugia and in my regular
stays at the “Babeş-Bolyai” University. More specifically, continuing the work
started in [7] jointly with Professor Varga, here we establish the existence of two
nontrivial (weak) solutions of some one parameter eigenvalue (p, q)–Laplacian
problems under homogeneous Dirichlet boundary conditions in bounded domains
of RN .
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1. Introduction

The paper concerns certain nonlinear eigenvalue homogeneous Dirichlet bound-
ary condition problems in bounded domains Ω of RN , involving the (p, q)–Laplacian.
Hence the subject is strongly connected with the paper [7], we wrote jointly with
Professor Csaba Varga during his frequent visits to the University of Perugia and in
my regular stays at the “Babeş-Bolyai” University. More specifically, continuing the
work started in [7] for problems involving a general elliptic operator in divergence
form with p growth, we extend the existence theorems of two nontrivial (weak) solu-
tions of [7] to eigenvalue (p, q)–Laplacian problems. More specifically, we consider for
a nonnegative real parameter λ the problem{

−∆pu−∆qu = λ{a(x)|u|q−2u+ f(x, u)} in Ω,

u = 0 on ∂Ω,
(Pλ)
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in a bounded domain Ω of RN and we assume for simplicity that the exponents p,
q are such that 1 < p < q < N . The operator ∆℘, with ℘ ∈ {p, q}, appearing in
problem (Pλ), is the well known ℘–Laplacian, which is defined as

∆℘ϕ = div(|∇ϕ|℘−2
H ∇ϕ) for all ϕ ∈ C2(RN ).

Throughout the paper, the weight a in (Pλ) is required to be positive a.e. in Ω and
of class Lα(Ω), with α > N/q. The nonlinear perturbation f : Ω × R → R is a
Carathéodory function, which satisfies the natural growth conditions (F ) from (a)
to (c) given in Section 3, with part (c) of (F ) fairly technical, due to the complexity
in handling the nonhomogeneous (p, q)– Laplacian.

In Section 4 we find up the exact intervals of λ’s for which problem (Pλ) admits
only the trivial solution and for which (Pλ) has at least two nontrivial solutions. More
precisely, following the strategies introduced in [7], we prove the existence theorems
for problem (Pλ), using as a crucial tool Theorem 2.1 of [7], which is a differentiable
version and a variant of Theorem 3.4 in [1] due to Arcoya and Carmona.

For further previous contributions in the subject, beside [7], we mention the
papers [11, 13] due to Varga, the latter related articles [6, 19], written at the Uni-
versity of Perugia. For noteworthy comments and an extensive bibliography as well
as for applications of the well known three critical points theorems we refer to the
monumental monograph [12] of Kristály, Rădulescu and Varga.

In Section 5 we treat the different nonlinear eigenvalue problem{
−∆pu−∆qu = λf(x, u) in Ω,

u = 0 on ∂Ω,
(Pλ)

for which the technical assumption (F )–(c) is replaced by the more direct transparent
request (F )–(c′), which is much easier to verify. This straight approach first started in
[7] and we show here that the technique can be extended to cover the nonhomogeneous
case of the (p, q)–Laplacian as well.

The importance of studying problems involving operators with non standard
growth conditions, or (p, q) operators, begins independently with the pioneering pa-
pers of Zhikov in 1986 and Marcellini in 1991. The (p, q) operators were introduced in
order to describe the behavior of highly anisotropic materials, that is, materials whose
properties change drastically from point to point. Since then, increasing attention has
been focused on the study of existence, regularity and qualitative properties of the
solutions of problems of this type. For a detailed historical presentation and for a
wide list of contributions on the subject we refer to the recent paper [17] due to Min-
gione and Rădulescu, editors of the Special Issue New developments in non–uniformly
elliptic and nonstandard growth problems.

Concerning PDEs applications, the (p, q)–Laplacian ∆p + ∆q arises from the
study of general reaction–diffusion equations with nonhomogeneous diffusion and
transport aspects. These nonhomogeneous operators have applications in biophysics,
plasma physics and chemical reactions, with double phase features, where the function
u corresponds to the concentration term, and the differential operator represents the
diffusion coefficient. For further details we mention [14] as well as [17] and references
therein. Different eigenvalue problems for the (p, q)–Laplacian have been extensively
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studied in recent years. In the context of Dirichlet boundary conditions we refer to the
papers [4] by Bobkov and Tanaka, [8] by Colasuonno and Squassina, [14] by Marano
and Mosconi, [15, 16] by Marano, Mosconi and Papageorgiou, to the recent paper [20]
due to Tanaka and finally to the references therein.

For (p, q)–Laplacian eigenvalue problems under various boundary conditions
(Robin, Steklov, etc.) we quote the recent papers [2] by Barbu and Moroşanu and
[18] by Papageorgiou, Qin and Rădulescu, as well as their wide bibliography.

Let us end the comments by noting that the results of this note can be extended
to the equations of problems (Pλ) and (Pλ) under Robin boundary conditions, as
obtained in [7] via a delicate consequence of the three critical points Theorem 2.1
of [7].

2. Preliminaries and auxiliary results for (Pλ)

In this section we introduce the main notation and assumptions for (Pλ).
Throughout the paper, · denotes the Euclidean inner product and | · | the corre-
sponding Euclidean norm in any space Rn, n = 1, 2, . . . .

Let 1 < p < q < N and let Ap,q : RN → R be the potential

Ap,q(ξ) =
1

p
|ξ|p +

1

q
|ξ|q of Ap,q(ξ) = |ξ|p−2ξ + |ξ|q−2ξ. (2.1)

Then both Ap,q and Ap,q are continuous in RN , Ap,q is even and strictly convex in
RN . Clearly, Ap,q(ξ) · ξ ≥ Ap,q(ξ) for all ξ ∈ RN .

Lemma 3 of [10] can also be generalized in this framework and we use the proof
of Lemma 2.4 of [7], adopting the notation in (2.1).

Lemma 2.1. Let ξ, (ξn)n be in RN such that

(Ap,q(ξn)−Ap,q(ξ)) · (ξn − ξ)→ 0 as n→∞. (2.2)

Then (ξn)n converges to ξ.

Proof. First we assert that (ξn)n is bounded. Otherwise, up to a subsequence, still
denoted by (ξn)n, we would have |ξn| → ∞. Hence, as n→∞

(Ap,q(ξn)−Ap,q(ξ)) · (ξn − ξ) ∼ Ap,q(ξn)ξn = |ξn|p + |ξn|q →∞,
which is impossible by (2.2). Therefore, (ξn)n is bounded and possesses a subsequence,
still denoted by (ξn)n, which converges to some η ∈ RN . Thus (Ap,q(η)−Ap,q(ξ)) ·
(η − ξ) = 0 by (2.2) and the strict convexity of Ap,q implies that η = ξ. This also
shows that actually the entire sequence (ξn)n converges to ξ. �

Since 1 < p < q < N , the natural solution space of (Pλ) is the separable

uniformly convex Sobolev space W 1,q
0 (Ω), endowed with the usual norm ‖u‖ = ‖∇u‖q,

being Ω a bounded domain of RN . From here on, any Lebesgue space L℘(Ω), ℘ ≥ 1,
is equipped with the canonical norm ‖ · ‖℘, while ℘′ is the conjugate exponent of ℘.

It is clear that W−1,q′(Ω) is the dual space of W 1,q
0 (Ω) and that q? = Nq/(N − q) is

the Sobolev critical exponent of W 1,q
0 (Ω).
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Lemma 2.2. Let Ap,q be as in (2.1). Then the functional

Φp,q(u) =

∫
Ω

Ap,q(∇u(x))dx =
‖∇u‖pp
p

+
‖u‖q

q
, Φp,q : W 1,q

0 (Ω)→ R,

is convex, weakly lower semicontinuous and of class C1(W 1,q
0 (Ω)).

Moreover, Φ′p,q : W 1,q
0 (Ω) → W−1,q′(Ω) verifies the (S+) condition, i.e., for

every sequence (un)n ⊂W 1,q
0 (Ω) such that un ⇀ u weakly in W 1,q

0 (Ω) and

lim sup
n→∞

∫
Ω

Ap,q(∇un) · (∇un −∇u)dx ≤ 0, (2.3)

then un → u strongly in W 1,q
0 (Ω).

Proof. A simple calculation shows that the functional Φp,q is convex and of class

C1(W 1,q
0 (Ω)). Hence, in particular Φp,q is weakly lower semicontinuous in W 1,q

0 (Ω) by
Corollary 3.9 of [5].

Let (un)n be a sequence in W 1,q
0 (Ω) as in the statement. Then

Φp,q(u) ≤ lim inf
n

Φp,q(un),

since Φp,q is weakly lower semicontinuous on W 1,q
0 (Ω).

We claim that
∫

Ω
Ap,q(∇u) · (∇un − ∇u)dx → 0 as n → ∞. Indeed, since

un ⇀ u in W 1,q
0 (Ω) as n→∞, in particular ∇un ⇀ ∇u in [Lq(Ω)]N and ∇un ⇀ ∇u

in [Lp(Ω)]N as n→∞. Moreover, (2.1) implies that |Ap,q(∇u)| ≤ |∇u|p−1 + |∇u|q−1,

with clearly |∇u|p−1 ∈ Lp′(Ω) and |∇u|q−1 ∈ Lq′(Ω). This gives at once that∫
Ω

Ap,q(∇u) · (∇un −∇u)dx =

∫
Ω

|∇u|p−2∇u · (∇un −∇u)dx

+

∫
Ω

|∇u|q−2∇u · (∇un −∇u)dx

tends to 0 as n→∞, as claimed.
Therefore, by convexity and (2.3) we get that

0 ≤ lim sup
n→∞

∫
Ω

(Ap,q(∇un)−Ap,q(∇u)) · (∇un −∇u)dx ≤ 0.

In other words,

lim
n→∞

∫
Ω

(Ap,q(∇un)−Ap,q(∇u)) · (∇un −∇u)dx = 0,

that is the sequence n 7→ (Ap,q(∇un) −Ap,q(∇u)) · (∇un − ∇u) ≥ 0 converges to 0
in L1(Ω). Hence, up to a subsequence, still denoted in the same way,

(Ap,q(∇un)−Ap,q(∇u)) · (∇un −∇u)→ 0 a.e. in Ω.

Lemma 2.1 gives that also∇un → ∇u a.e. in Ω. In particular, the Brézis–Lieb theorem
gives as n→∞

‖∇u‖pp = ‖∇un‖pp − ‖∇un −∇u‖pp + o(1),

‖∇u‖qq = ‖∇un‖qq − ‖∇un −∇u‖qq + o(1),
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and (2.3) holds in the stronger form

lim
n→∞

∫
Ω

Ap,q(∇un) · (∇un −∇u)dx = 0.

Consequently, the combination of the above facts implies that as n→∞

o(1) =

∫
Ω

Ap,q(∇un) · (∇un −∇u)dx

= ‖∇un‖pp −
∫

Ω

|∇un|p−2∇un · ∇udx

+ ‖∇un‖qq −
∫

Ω

|∇un|p−2∇un · ∇udx

= ‖∇u‖pp + ‖∇un −∇u‖pp − ‖∇u‖pp
+ ‖∇u‖qq + ‖∇un −∇u‖qq − ‖∇u‖qq + o(1)

= ‖∇un −∇u‖pp + ‖∇un −∇u‖qq + o(1),

since

|∇un|p−2∇un ⇀ |∇u|p−2∇u in [Lp
′
(Ω)]N

and similarly

|∇un|q−2∇un ⇀ |∇u|q−2∇u in [Lq
′
(Ω)]N .

In particular, ‖∇un − ∇u‖q = o(1) as n → ∞, that is un → u strongly in W 1,q
0 (Ω),

as required. �

3. Formulation of the problem (Pλ)

The assumptions on the coefficient a make it a good Lebesgue weight. Thus,
throughout the paper, for brevity in notation, we denote by L℘(Ω; a), ℘ ≥ 1, the
weighted ℘–Lebesgue space equipped with the norm

‖u‖℘,a =

(∫
Ω

a(x)|u(x)|℘dx
)1/℘

.

In this section, we study (Pλ), so that 1 < p < q < N , the set Ω is a bounded

domain of RN , and the natural solution space for (Pλ) is W 1,q
0 (Ω). Before introducing

the main structural assumptions on f , let us recall some basic properties, following
somehow [7].

Since a ∈ Lα(Ω) and α > N/q, the embedding W 1,q
0 ↪→↪→ Lα

′q(Ω) is compact.

Moreover, Lα
′q(Ω) ↪→ Lq(Ω; a) is continuous, being by the Hölder inequality ‖u‖qq,a ≤

‖a‖α‖u‖qα′q for all u ∈ Lα′q(Ω). Hence, also the embedding W 1,q
0 (Ω) ↪→↪→ Lq(Ω; a) is

compact.

Let λ1 be the first eigenvalue of the problem

−∆qu = λ a(x)|u|q−2u
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in W 1,q
0 (Ω), that is λ1 is defined by the Rayleigh quotient

λ1 = inf
u∈W 1,q

0 (Ω)
u6=0

∫
Ω
|∇u|qdx∫

Ω
a(x)|u|qdx

= inf
u∈W 1,q

0 (Ω)
u6=0

‖u‖q

‖u‖qq,a
. (3.1)

By Proposition 3.1 of [9], the infimum in (3.1) is achieved and λ1 > 0. Denote by

u1 ∈ W 1,q
0 (Ω) the normalized eigenfunction corresponding to λ1, that is ‖u1‖q,a = 1

and ‖u1‖q = λ1. In particular,

λ1‖u‖qq,a ≤ ‖u‖q for every u ∈W 1,q
0 (Ω). (3.2)

On f we assume the next condition.

(F ) Let f : Ω × R → R be a Carathéodory function in R, f 6≡ 0, satisfying the
following properties.
(a) There exist two measurable functions f0, f1 on Ω and a real exponent m ∈

(1, q), such that 0 ≤ f0 ≤ Cfa, 0 ≤ f1 ≤ Cfa a.e. in Ω for some appropriate
constant Cf > 0, and

|f(x, s)| ≤ f0(x) + f1(x)|s|m−1 for a.a. x ∈ Ω and all s ∈ R.

(b) There exists γ ∈ (q, q?/α′) such that lim sup
s→0

|f(x, s)|
a(x)|s|γ−1

< ∞, uniformly

a.e. in Ω.

(c)

∫
Ω

F (x, u1(x))dx ≥ 1

q′
+

q′

pλ1
‖∇u1‖pp, where u1 is the first normalized eigen-

function defined above, F (x, s) =

∫ s

0

f(x, t)dt and q′ is the Hölder conju-

gate of q.

Note that, in the literature, a ∈ L∞(Ω) in the more familiar and standard setting
of the p–Laplacian, so that the exponent γ in (F )–(b) belongs to the open interval
(p, p?). For further comments on p–growth problems, we refer to [7].

As shown in [7], conditions (F )–(a) and (b) imply that f(x, 0) = 0 for a.a. x ∈ Ω,
that by the L’Hôpital rule

lim sup
s→0

|F (x, s)|
a(x)|s|γ

<∞ uniformly a.e. in Ω, (3.3)

and finally that

Sf = ess sup
s6=0,x∈Ω

|f(x, s)|
a(x)|s|q−1

∈ R+ (3.4)

is positive and finite by (F )–(b) and the fact that γ > q. Moreover,
|f(x, s)|/a(x)|s|m−1 ≤ 2Cf |s|m−q for a.a. x ∈ Ω and all s, with |s| ≥ 1, by (F )–
(a). Thus,

lim
s→∞

|f(x, s)|
a(x)|s|q−1

= 0 uniformly a.e. in Ω,

since 1 < m < q by (F )–(a).
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Hence the positive number

λ? =
λ1

1 + Sf
(3.5)

is well defined. Furthermore, by (3.4)

ess sup
s6=0,x∈Ω

|F (x, s)|
a(x)|s|q

=
Sf
q
. (3.6)

The main result of the section is proved by using the underlying energy functional Jλ
associated to the variational problem (Pλ). For later purposes, we write Jλ in the
form

Jλ(u) = Φp,q(u) + λΨ(u),

Ψ(u) = −H(u), H(u) = H1(u) +H2(u),

H1(u) =
1

q
‖u‖qq,a, H2(u) =

∫
Ω

F (x, u(x))dx.

(3.7)

Thanks to Lemma 2.2, (F )–(a) and (b) it is easy to see that the functional Jλ is well

defined in W 1,q
0 (Ω) and of class C1(W 1,q

0 (Ω)). Furthermore,

〈J ′λ(u), ϕ〉 =

∫
Ω

Ap,q(∇u(x)) · ∇ϕ(x)dx

− λ
∫

Ω

{
a(x)|u(x)|q−2u(x) + f(x, u(x))

}
ϕ(x)dx,

where 〈·, ·〉 denotes the duality pairing between W 1,q
0 (Ω) and its dual space W−1,q′(Ω).

Therefore, the critical points u ∈W 1,q
0 (Ω) of the functional Jλ are exactly the (weak)

solutions of problem (Pλ).
By convenience, for every r ∈ ( inf

u∈W 1,q
0 (Ω)

Ψ(u), sup
u∈W 1,q

0 (Ω)

Ψ(u)) let us introduce

the two functions

ϕ1(r) = inf
u∈Ψ−1(Ir)

inf
v∈Ψ−1(r)

Φp,q(v)− Φp,q(u)

Ψ(u)− r
, Ir = (−∞, r), (3.8)

ϕ2(r) = sup
u∈Ψ−1(Ir)

inf
v∈Ψ−1(r)

Φp,q(v)− Φp,q(u)

Ψ(u)− r
, Ir = (r,∞). (3.9)

If Ψ(v) < 0 at some v ∈W 1,q
0 (Ω), then the crucial positive number

λ? = ϕ1(0) = inf
u∈Ψ−1(I0)

− Φp,q(u)

Ψ(u)
, I0 = (−∞, 0), (3.10)

is well defined.

The proof of the next result, as well as the proof on the main existence theorem
for (Pλ), is where we use the technical assumption (F )–(c).

Lemma 3.1. If (F )–(a), (b) and (c) hold, then Ψ−1(I0) is non–empty and moreover
λ? ≤ λ? < λ1.
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Proof. From (F )–(c) and (3.7) it follows in particular that that Ψ(u1) < 0, since

H(u1) >
1

q
, i.e. u1 ∈ Ψ−1(I0).

Hence, λ? is well defined. Again by (F )–(c) and (3.7)

λ? = ϕ1(0) = inf
u∈Ψ−1(I0)

−Φp,q(u)

Ψ(u)

≤ Φp,q(u1)

H(u1)
=

‖∇u1‖pp/p+ ‖∇u1‖qq/q
‖u1‖qq,a/q +

∫
Ω
F (x, u1(x))dx

≤
‖∇u1‖pp/p+ ‖∇u1‖qq/q

1/q + 1/q′ + q′‖∇u1‖pp/pλ1

<
‖∇u1‖pp/p

q′‖∇u1‖pp/pλ1
+
‖u1‖q

q
= λ1,

as required. Finally, by (3.7), (3.6) and (3.2), for all u ∈ W 1,q
0 (Ω), with u 6= 0, we

have
Φp,q(u)

|Ψ(u)|
≥ ‖u‖q/q

(1 + Sf )‖u‖qq,a/q
≥ λ1

1 + Sf
= λ?.

Hence, in particular λ? ≥ λ? by (3.10). �

Lemma 3.2. If (F )–(a) holds, then the operators

H′1, H′2, Ψ′ : W 1,q
0 (Ω)→W−1,q′(Ω)

are compact and H1, H2, Ψ are sequentially weakly continuous in W 1,q
0 (Ω).

The proof is mutatis mutandis the same as the proof of the similar Lemma 3.2
of [7] and so we omit it here.

Lemma 3.3. If (F )–(a) holds, then the functional Jλ = Φp,q + λΨ is coercive

in W 1,q
0 (Ω) for every λ ∈ I, I = (−∞, λ1).

Proof. Clearly, (F )–(a) implies that

|F (x, s)| ≤ f0(x)|s|+ f1(x)|s|m/m ≤ f0(x) + (f0(x) + f1(x)/m)|s|m (3.11)

for a.a. x ∈ Ω and all s ∈ R.
Fix λ ∈ (−∞, λ1) and u ∈ W 1,q

0 (Ω). Then, (3.2), (3.7), (3.11) and the Hölder
inequality give

Jλ(u) ≥ 1

q
‖u‖q − λ

q
‖u‖qq,a − |λ|

∫
Ω

|F (x, u)|dx

≥ 1

q

(
1− λ

λ1

)
‖u‖q − |λ| · ‖f0‖1 − |λ| · ‖f0 + f1/m‖α‖u‖mα′m

≥ 1

q

(
1− λ

λ1

)
‖u‖q − |λ|C1 − |λ|C2‖u‖m,

where C1 = ‖f0‖1 and C2 = cmα′m‖f0 + f1/m‖α, where cα′m denotes the Sobolev

constant of the compact embedding W 1,q
0 (Ω) ↪→↪→ Lα

′m(Ω). Clearly C1 < ∞, since
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f0 ∈ Lα(Ω) ⊂ L1(Ω) by (F )–(a), being α > N/q > 1 and Ω bounded. This shows the
assertion, since 1 < m < q by (F )–(a). �

4. Main result for (Pλ)

Following the strategies proposed in [7], here we prove the main theorem for the
(p, q) problem Pλ.

Theorem 4.1. Let Ap,q be as in (2.1) and let λ? and λ? be as defined in (3.5) and in
(3.10), respectively. Assume that (F )–(a) and (b) hold.

(i) If λ ∈ [0, λ?], then (Pλ) has only the trivial solution.
(ii) If also (F )–(c) holds, then problem (Pλ) admits at least two nontrivial solutions

for every λ ∈ (λ?, λ1), where λ? = ϕ1(0) < λ1 by Lemma 3.1.

Proof. (i) Let u ∈W 1,q
0 (Ω) be a nontrivial solution of (Pλ) for some λ ≥ 0. Then,∫

Ω

Ap,q(∇u) · ∇ϕdx = λ

∫
Ω

{a(x)|u|q−2u+ f(x, u)}ϕdx

for all ϕ ∈W 1,q
0 (Ω). Take ϕ = u and by (2.1), (3.2), (3.4) and (3.7)

λ1‖u‖q < λ1

∫
Ω

Ap,q(∇u)∇u dx = λ1λ

∫
Ω

{a(x)|u|q + f(x, u)u}dx

= λ1λ

(
‖u‖qq,a +

∫
Ω

f(x, u)

a(x)|u|q−1
a(x)|u|qdx

)
≤ λ1λ (1 + Sf ) ‖u‖qq,a ≤ λ (1 + Sf ) ‖u‖q.

Therefore λ > λ? by (3.5), as required.

(ii) By (2.1) the functional Φp,q is convex. Moreover, Φp,q is weakly lower semicontin-

uous and Φ′p,q verifies condition (S+) in W 1,q
0 (Ω), as already proved in Lemma 2.2.

Furthermore, Ψ′ : W 1,q
0 (Ω) → W−1,q′(Ω) is compact and Ψ is sequentially weakly

continuous in W 1,q
0 (Ω) by Lemma 3.2. Moreover, the functional Jλ is coercive for

every λ ∈ I, where I = (−∞, λ1), thanks to Lemma 3.3.

We claim that Ψ(W 1,q
0 (Ω)) ⊃ R−0 = (−∞, 0]. Indeed, Ψ(0) = 0 and (F )–(a) and

(3.11) imply that

|F (x, s)| ≤ f0(x) + (1 + 1/m)Cfa(x)|s|m

for a.a. x ∈ Ω and all s ∈ R. Hence, the Hölder inequality gives

Ψ(u) ≤ −1

q
‖u‖qq,a +

∫
Ω

|F (x, u)|dx

≤ −1

q
‖u‖qq,a + ‖f0‖1 + 2Cf

∫
Ω

a(x)|u|mdx

≤ −1

q
‖u‖qq,a + ‖f0‖1 + 2Cf‖a‖(q−m)/q

1 ‖u‖mq,a,
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since a ∈ L1(Ω), being α > N/q > 1 and Ω bounded. Therefore,

lim
‖u‖q,a→∞
u∈W 1,q

0 (Ω)

Ψ(u) = −∞,

thanks to the restriction 1 < m < q in assumption (F )–(a). Hence, the claim follows

by the continuity of Ψ in W 1,q
0 (Ω) and by (3.2).

Thus, ( inf
W 1,q

0 (Ω)
Ψ, sup

W 1,q
0 (Ω)

Ψ) ⊃ R−0 . By (3.8) for every u ∈ Ψ−1(I0) we have

ϕ1(r) ≤ Φp,q(u)

r −Ψ(u)
for all r ∈ (Ψ(u), 0),

so that

lim sup
r→0−

ϕ1(r) ≤ − Φp,q(u)

Ψ(u)
for all u ∈ Ψ−1(I0).

In other words, by (3.10)

lim sup
r→0−

ϕ1(r) ≤ ϕ1(0) = λ?. (4.1)

From (F )–(a) and (b), that is (3.3) and (3.4), it follows the existence of a positive
real number κ > 0 such that

|F (x, s)| ≤ κ a(x)|s|γ for a.a. x ∈ Ω and all s ∈ R. (4.2)

To this aim, denoting by `0 the limit number in (3.3), there exists δ > 0 such that
|F (x, s)| ≤ (`0 + 1)a(x)|s|γ for a.a. x ∈ Ω and all s, with |s| < δ. Fix s, with |s| ≥ δ,
then by (3.6) for a.a. x ∈ Ω

|F (x, s)| ≤ Sf
q
|s|q−γa(x)|s|γ ≤ Sfδ

q−γ

q
a(x)|s|γ ,

being γ > q by (F )–(b). Hence, κ = max{`0 + 1, Sfδ
q−γ/q} and (4.2) holds.

We note in passing that the embedding W 1,q
0 (Ω) ↪→ Lγ(Ω; a) is continuous. Indeed,

by the Hölder inequality, with 1/℘+ 1/α+ γ/q? = 1, where ℘ is the crucial exponent

℘ =
α′q?

q? − γα′
> 1,

being γ ∈ (q, q?/α′), as assumed in (F )–(b), we have∫
Ω

a(x)|u|γdx ≤ |Ω|1/℘‖a‖α‖u‖γq? ≤ C̃‖u‖γ , (4.3)

where C̃ = cγq? |Ω|1/℘‖a‖α and cq? is the Sobolev constant for the continuous embed-

ding W 1,q
0 (Ω) ↪→ Lq

?

(Ω).

Hence, by (3.2), (3.7), (4.2) and (4.3) for every u ∈W 1,q
0 (Ω), we get

|Ψ(u)| ≤ 1

qλ1
‖u‖q + Cγ‖u‖γ , (4.4)

where Cγ = C̃ κ. Therefore, given r < 0 and v ∈ Ψ−1(r) we have by (2.1)

r = Ψ(v) ≥ − 1

qλ1
‖v‖q − Cγ‖v‖γ ≥ −

1

λ1
Φp,q(v)− `Φp,q(v)γ/q, (4.5)
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where ` = Cγq
γ/q.

Since the functional Φp,q is bounded below, coercive and lower semicontinuous

on the reflexive Banach space W 1,q
0 (Ω), it is easy to see that Φp,q is also coercive on the

sequentially weakly closed non–empty set Ψ−1(r) thanks to Lemma 3.2. Therefore,
by Theorem 6.1.1 of [3], there exists an element ur ∈ Ψ−1(r) such that

Φp,q(ur) = inf
v∈Ψ−1(r)

Φp,q(v).

By (3.9), we get

ϕ2(r) ≥ −1

r
inf

v∈Ψ−1(r)
Φp,q(v) =

Φp,q(ur)

|r|
,

being u ≡ 0 ∈ Ψ−1(Ir). From (4.5) we obtain

1 ≤ 1

λ1
· Φp,q(ur)

|r|
+ `|r|γ/p−1

(
Φp,q(ur)

|r|

)γ/q
≤ ϕ2(r)

λ1
+ `|r|γ/q−1ϕ2(r)γ/q.

(4.6)

There are now two possibilities to be considered. Either ϕ2 is locally bounded at 0−,
so that the above inequality shows at once that

lim inf
r→0−

ϕ2(r) ≥ λ1, (4.7)

being γ > q by (F )–(b), or lim supr→0− ϕ2(r) = ∞. In both cases, (4.1) and
Lemma 3.1 yield that

lim sup
r→0−

ϕ1(r) ≤ λ? < λ1 ≤ lim sup
r→0−

ϕ2(r).

Hence, for all integers n ≥ n? = 1 + [2/(λ1 − λ?)] there exists a number rn < 0 so
close to 0− that ϕ1(rn) < λ? + 1/n < λ1 − 1/n < ϕ2(rn). In particular,

[λ? + 1/n, λ1 − 1/n] ⊂ (ϕ1(rn), ϕ2(rn)) = (ϕ1(rn), ϕ2(rn)) ∩ I (4.8)

for all n ≥ n?, where I = (−∞, λ1) is the interval of λ’s on which Jλ is coercive

in W 1,q
0 (Ω) by Lemma 3.3. Therefore, since all the assumptions of Theorem 2.1, Part

(a) of (ii) of [7] are satisfied and u ≡ 0 is a critical point of Jλ, problem (Pλ)
admits at least two nontrivial solutions for all λ ∈ (ϕ1(rn), ϕ2(rn)) and all n ≥ n?. In
conclusion, problem (Pλ) admits at least two nontrivial solutions for all λ ∈ (λ?, λ1),
since

(λ?, λ1) =

∞⋃
n=n?

[λ? + 1/n, λ1 − 1/n] ⊂
∞⋃

n=n?

(ϕ1(rn), ϕ2(rn))

by (4.8). �
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5. The nonlinear eigenvalue problem (Pλ)

In this last section we treat the different somehow simpler nonlinear eigenvalue
problem (Pλ), for which the involved assumption (F )–(c) is replaced by a more direct
transparent request, which is much easier to verify.

To this aim, let us denote by

B0 = {x ∈ RN : |x− x0| ≤ r0}
the closed ball of RN centered at a point x0 ∈ RN and of radius r0 > 0. As in the
previous paper [7], for the somehow simpler problem (Pλ), the ad hoc hypothesis
(F )–(c) is replaced by the less stringent condition

(F )–(c′) Assume that there exist x0 ∈ Ω, s0 ∈ R and r0 > 0 so small that B0 ⊂ Ω
and

ess inf
B0

F (x, |s0|) = µ0 > 0, ess sup
B0

max
|t|≤|s0|

|F (x, t)| = M0 <∞.

Clearly, when f does not depend on x, condition (F )–(c′) simply reduces to the
request that F (s0) > 0 at a point s0 ∈ R, as first assumed in [11] by Kristály, Lisei
and Varga. In this new setting, we derive the next result which improves the main
theorem of [11] and extends Corollary 3.6 of [7] to the (p, q)–Laplacian case.

Theorem 5.1. Let Ap,q be as in (2.1) and let f : Ω×R→ R satisfy conditions (F )–(a)
and (b).

(i) If λ ∈ [0, `?], where `? = λ1/Sf , then problem (Pλ) has only the trivial solution.
(ii) If furthermore f verifies (F )–(c′), then there exists `? ≥ `? such that (Pλ)

admits at least two nontrivial solutions for all λ ∈ (`?,∞).

Proof. Using the notation of (2.1) and Lemma 2.2, the energy functional Jλ, associ-
ated to problem (Pλ), is given by Jλ = Φp,q+λΨ2, where Φp,q is defined in Lemma 2.2
and

Ψ2(u) = −
∫

Ω

F (x, u(x))dx for all u ∈W 1,q
0 (Ω).

First, note that Jλ is coercive in W 1,q
0 (Ω) for every λ ∈ R. Indeed, as shown in the

proof of Lemma 3.3, by (2.1) for all u ∈W 1,q
0 (Ω)

Jλ(u) ≥ 1

q
‖u‖q − |λ|

∫
Ω

|F (x, u)|dx ≥ 1

q
‖u‖q − |λ|C1 − |λ|C2‖u‖m,

where C1 = ‖f0‖1, C2 = cmα′m‖f0 + f1/m‖α and cα′m denotes as before the Sobolev

constant of the compact embedding W 1,q
0 (Ω) ↪→↪→ Lα

′m(Ω). This shows the claim,
since 1 < m < q by (F )–(a). Hence, here I = R.

(i) This part of the statement is proved using the same argument produced for the

proof of Theorem 4.1–(i). Let u ∈ W 1,q
0 (Ω) be a nontrivial solution of (Pλ) for some

λ ≥ 0. Then, by (2.1) and (3.4)

λ1‖u‖q < λ1

∫
Ω

Ap,q(∇u) · ∇udx = λ1λ

∫
Ω

f(x, u)udx ≤ λ1λSf‖u‖qq,a

≤ λSf‖u‖q
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thanks to (3.2). Thus, if u is a nontrivial (weak) solution of (Pλ), then necessarily
λ > `? = λ1/Sf , as required.

(ii) The proof of this part is again strongly based on an application of Theorem 2.1,
Part (a) of (ii) of [7] and the fact that u ≡ 0 is a critical point of Jλ. The new key
functions ϕ1 and ϕ2 are now given by

ϕ1(r) = inf
u∈Ψ−1

2 (Ir)

inf
v∈Ψ−1

2 (r)
Φp,q(v)− Φp,q(u)

Ψ2(u)− r
, Ir = (−∞, r),

ϕ2(r) = sup
u∈Ψ−1

2 (Ir)

inf
v∈Ψ−1

2 (r)
Φp,q(v)− Φp,q(u)

Ψ2(u)− r
, Ir = (r,∞).

(5.1)

We first show that there exists u0 ∈W 1,q
0 (Ω) such that Ψ2(u0) < 0, so that the crucial

number

`? = ϕ1(0) = inf
u∈Ψ−1

2 (I0)
− Φp,q(u)

Ψ2(u)
, I0 = (−∞, 0), (5.2)

is well defined. To this aim, take σ ∈ (0, 1) and put

B = {x ∈ RN : |x− x0| ≤ σr0}, B1 =
{
x ∈ RN : |x− x0| ≤ r1

}
,

where r1 = (1 + σ)r0/2. Hence,

B ⊂ B1 ⊂ B0 ⊂ Ω.

Clearly, F (x, 0) = 0 a.e. in Ω, so that s0 6= 0 in (F )–(c′). Put v0 = |s0|χB1 in Ω and
fix ε, with 0 < ε < (1− σ)r0/2. Denote by ρε the convolution kernel of fixed radius ε
and define

u0 = ρε ∗ v0 in Ω.

Hence, u0 ≡ |s0| in B, 0 ≤ u0 ≤ |s0| in Ω, u0 ∈ C∞c (Ω) and suppu0 ⊂ B0. Therefore,

u0 ∈W 1,q
0 (Ω). By (F )–(c′),

Ψ2(u0) = −
∫
B

F (x, |s0|)dx−
∫
B0\B

F (x, u0(x))dx ≤M0

∫
B0\B

dx− µ0

∫
B

dx

≤ ωNrN0
[
M0(1− σN )− µ0σ

N
]
,

where ωN is the measure of the unit ball in RN . Then, taking σ ∈ (0, 1) so close to 1−

that σN > M0/(µ0 +M0), we get that Ψ2(u0) < 0, as claimed.

Furthermore, by (3.6) and (3.2), for all u ∈ W 1,q
0 (Ω), with u 6≡ 0, we easily

obtain that
Φp,q(u)

|Ψ2(u)|
≥ ‖u‖q/q
Sf‖u‖qq,a/q

≥ λ1

Sf
= `?.

Hence, `? ≥ `? by (5.2).

In particular, for all u ∈ Ψ−1
2 (I0), we have by (5.1)

ϕ1(r) ≤ Φp,q(u)

r −Ψ2(u)
for all r ∈ (Ψ2(u), 0).
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Hence, (4.1) holds in the form lim sup
r→0−

ϕ1(r) ≤ ϕ1(0) = `?, where now ϕ1(0) is given

by (5.1) and (5.2). Also in this new setting (4.2) and (4.3) are still valid and (4.4)
simply reduces to

|Ψ2(u)| ≤ Cγ‖u‖γ for all u ∈W 1,q
0 (Ω),

with the same constant Cγ > 0. Taking r < 0 and v ∈ Ψ−1
2 (r), we get

r = Ψ2(v) ≥ −Cγ‖v‖γ ≥ −Cγ(qΦp,q(v))γ/q.

Therefore, by (5.1), since u ≡ 0 ∈ Ψ−1
2 (Ir),

ϕ2(r) ≥ 1

|r|
inf

v∈Ψ−1
2 (r)

Φp,q(v) ≥ κ|r|q/γ−1,

where κ = C
−q/γ
γ /q. This implies that lim

r→0−
ϕ2(r) = ∞, being γ > q by (F )–(b). In

conclusion, we have proved that

lim sup
r→0−

ϕ1(r) ≤ ϕ1(0) = `? < lim
r→0−

ϕ2(r) =∞. (5.3)

This shows that for all integers n ≥ n? = 2+[`?] there exists rn < 0 so close to 0− that
ϕ1(rn) < `? + 1/n < n < ϕ2(rn). Hence, since all the assumptions of Theorem 2.1,
Part (a) of (ii) of [7] are satisfied and u ≡ 0 a critical point of Jλ, problem (Pλ)
admits at least two nontrivial solutions for all

λ ∈
∞⋃

n=n?

(ϕ1(rn), ϕ2(rn)) ⊃
∞⋃

n=n?

[`? + 1/n, n] = (`?,∞),

since here I = R is the interval of λ’s in which the main functional Jλ is coercive
in W 1,q

0 (Ω). �

It is apparent from the main definitions (3.5), (3.10), Theorem 5.1 and (5.2) that
0 < λ? < `? ≤ `? ≤ λ?. Hence, Theorem 5.1 provides also the useful information that
0 < λ? < λ?.
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[17] Mingione, G.; Rădulescu, V., Recent developments in problems with nonstandard growth
and nonuniform ellipticity, J. Math. Anal. Appl., 501(2021), Paper No. 125197, 41 pp.
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Università degli Studi di Perugia,
Dipartimento di Matematica e Informatica,
Via L. Vanvitelli, 1, 06123 Perugia, Italy
e-mail: patrizia.pucci@unipg.it


