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Monotonicity with respect to p of the best
constants associated with Sobolev immersions
of type W 1,p

0 (Ω) ↪→ Lq(Ω) when q ∈ {1, p,∞}
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Abstract. The goal of this paper is to collect some known results on the mono-
tonicity with respect to p of the best constants associated with Sobolev immer-
sions of type W 1,p

0 (Ω) ↪→ Lq(Ω) when q ∈ {1, p,∞}. More precisely, letting

λ(p, q; Ω) := inf
u∈W1,p

0 (Ω)\{0}
‖ |∇u|D ‖Lp(Ω)‖u‖−1

Lq(Ω) ,

we recall some monotonicity results related with the following functions

(1,∞) 3 p 7→ |Ω|p−1λ(p, 1; Ω)p ,

(1,∞) 3 p 7→ λ(p, p; Ω)p ,

(D,∞) 3 p 7→ λ(p,∞; Ω)p ,

when Ω ⊂ RD is a given open, bounded and convex set with smooth boundary.
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1. Introduction

1.1. Goal of the paper

For each open and bounded set Ω ⊂ RD (D ≥ 1) the following continuous

Sobolev immersions hold true W 1,p
0 (Ω) ↪→ Lq(Ω), (see, e.g. H. Brezis [9, pp. 284-285

& 212-213]) for each p ∈ [1,∞) and each q that satisfies the following restrictions

q ∈


[
1,

Dp

D − p

]
, if p ∈ [1, D) & D ≥ 2 ,

[1,∞), if p = D ≥ 2 ,

[1,∞], if p ∈ (D,∞) & D ≥ 2 or p ∈ [1,∞] & D = 1 .
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It follows that, for each Ω, p and q as above there exists a constant c(p, q; Ω) > 0 such
that

c(p, q; Ω)‖u‖Lq(Ω) ≤ ‖ |∇u|D ‖Lp(Ω), ∀ u ∈W 1,p
0 (Ω) .

Let λ(p, q; Ω) be the best constant in the above inequality, namely

λ(p, q; Ω) := inf
u∈W 1,p

0 (Ω)\{0}

‖ |∇u|D ‖Lp(Ω)

‖u‖Lq(Ω)
. (1.1)

The goal of this paper is to recall certain results concerning some monotonicity prop-
erties of λ(p, q; Ω) with respect to p when q ∈ {1, p,∞} and Ω are fixed. More precisely,
we will present some monotonicity results related with the following functions

(1,∞) 3 p 7→ |Ω|p−1λ(p, 1; Ω)p , (1.2)

(1,∞) 3 p 7→ λ(p, p; Ω)p , (1.3)

(D,∞) 3 p 7→ λ(p,∞; Ω)p , (1.4)

when Ω ⊂ RD is a given open, bounded and convex set with smooth boundary.

1.2. Notations

For each positive integer D ≥ 2 denot by | · |D the Euclidean norm on RD. For
each subset Ω ⊂ RD, let ∂Ω be its boundary and denote by |∂Ω| and |Ω|, the (D−1)-
dimensional Lebesgue perimeter of ∂Ω and the D-dimensional Lebesgue volume of Ω,
respectively. Next, for each positive integer D ≥ 1 define

PD := {Ω ⊂ RD : Ω is an open, bounded, convex set

with smooth boundary ∂Ω} ,
and for each Ω ∈ PD let δΩ be the distance function to the boundary of Ω, i.e.

δΩ(x) := inf
y∈∂Ω

|x− y|D, ∀ x ∈ Ω .

Denote by RΩ the inradius of Ω (that is the radius of the largest ball which can be
inscribed in Ω, or, RΩ = ‖δΩ‖L∞(Ω)). Further, let δ : PD → [0,∞) denote the average
integral of δΩ, that is

δ(Ω) :=
1

|Ω|

∫
Ω

δΩ(x) dx ,

and let h : PD → [0,∞) denote the Cheeger constant of Ω, that is

h(Ω) := inf
ω⊂Ω

|∂ω|
|ω|

, (1.5)

where the quotient |∂ω||ω| is taken among all smooth subdomains ω ⊂ Ω. We recall that

h(Ω) also has the equivalent definition

h(Ω) := inf
u∈W 1,1

0 (Ω)\{0}

∫
Ω

|∇u|Ddx∫
Ω

|u|dx
, (1.6)

and, consequently, by relation (1.1) with p = q = 1 we have h(Ω) = λ(1, 1; Ω).
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1.3. A simple observation regarding the monotonicity of the functions (1.2), (1.3)
and (1.4)

A simple application of Hölder’s inequality leads to the following monotonicity
results regarding functions (1.2), (1.3) and (1.4) when Ω ∈ PD is an arbitrary but
fixed set (see, C. Enache and the first author of this paper [14, relation (2.1)], P.
Lindqvist [27, Theorem 3.2], G. Ercole & G.A. Pereira [16, Lemma 3.1])

h(Ω) ≤ |Ω|(p−1)/pλ(p, 1; Ω) ≤ |Ω|(q−1)/qλ(q, 1; Ω), ∀ 1 < p < q <∞ ,

h(Ω) ≤ pλ(p, p; Ω) ≤ qλ(q, q; Ω), ∀ 1 < p < q <∞ ,

|Ω|−1/pλ(p,∞; Ω) ≤ |Ω|−1/qλ(q,∞; Ω), ∀ D < p < q <∞ .

However, these results cannot offer any direct information in relation with the mono-
tonicity of the functions (1.2), (1.3) and (1.4).

2. Monotonicity of the function (1,∞) 3 p 7→ |Ω|p−1λ(p, 1; Ω)p

2.1. A connection with the p-torsion problem

By relation (1.1) with q = 1 we have that

λ(p, 1; Ω)p := inf
u∈W 1,p

0 (Ω)\{0}

‖ |∇u|D ‖pLp(Ω)

‖u‖pL1(Ω)

, ∀ p ∈ (1,∞) .

It follows that

|Ω|p−1λ(p, 1; Ω)p = inf
u∈W 1,p

0 (Ω)\{0}

|Ω|−1

∫
Ω

|∇u|pD dx(
|Ω|−1

∫
Ω

|u| dx
)p , ∀ p ∈ (1,∞) .

It is standard to check that for each p ∈ (1,∞) there exists a nonnegative minimizer

of |Ω|p−1λ(p, 1; Ω)p in W 1,p
0 (Ω)\{0}. Moreover, it is well-known (see, e.g. L. Brasco [7,

pp. 320-321]) that if up ∈W 1,p
0 (Ω)\{0} is a nonnegative minimizer of |Ω|p−1λ(p, 1; Ω)p

then

vp(x) :=

(∫
Ω

|∇up(y)|pD dy

)−1/(p−1)(∫
Ω

up(y) dy

)1/(p−1)

up(x) ,

gives the unique (weak) solution of the p-torsion problem, namely{
−∆pv = 1, in Ω,
v = 0, on ∂Ω,

(2.1)

where ∆pv := div(|∇v|p−2
D ∇v) stands for the p-Laplace operator. Conversely, if vp

is the unique (weak) solution of problem (2.1) then it is a positive minimizer of
|Ω|p−1λ(p, 1; Ω)p.
On the other hand, we recall that the p-torsional rigidity on Ω is defined as follows

Tp(Ω) :=

∫
Ω

vp dx,
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and it has the following variational characterization (see, e.g., F. Della Pietra, N.
Gavitone, & S. Guarino Lo Bianco [13, relations (18) and (19)])

Tp(Ω)p−1 = sup
u∈W 1,p

0 (Ω)\{0}

(∫
Ω

|u| dx
)p

∫
Ω

|∇u|pD dx

.

Consequently, we can relate function (1.2) with the p-torsional rigidity by the following
formula

|Ω|p−1λ(p, 1; Ω)p = |Ω|p−1Tp(Ω)1−p . (2.2)

2.2. The case of a ball

In the particular case when Ω = BR (that is a ball of radius R, centered at

the origin) vp ∈ W 1,p
0 (BR), the unique solution of problem (2.1), can be explicitly

computed (see, B. Kawohl [24, relation (3.8)]),

vp(x) =
D(p− 1)

p

[(
R

D

) p
p−1

−
(
|x|D
D

) p
p−1

]
, ∀ x ∈ BR .

Therefore

Tp(BR) =

∫
BR

vp dx =
ωD

D
p

p−1

(
D +

p

p− 1

)RD+ p
p−1 , (2.3)

where ωD = |∂B1| (that is the area of the unit ball in RD), and, by relation (2.2), we
get

|BR|p−1λ(p, 1;BR)p = |BR|p−1Tp(BR)1−p = D

(
D +

p

p− 1

)p−1

R−p,

where in the last relation we used the fact that |BR| =
ωDR

D

D
. Consequently, in this

particular case our problem reduces to the analysis of the monotonicity of the function

(1,∞) 3 p 7→ D

(
D +

p

p− 1

)p−1

R−p .

2.3. The case when Ω ∈ PD is a general set

In the general case explicit formulas for the quantity |Ω|p−1λ(p, 1; Ω)p are not
available in the literature and, consequently, the analysis of the monotonicity of the
function given in relation (1.2), i.e.

(1,∞) 3 p 7→ |Ω|p−1λ(p, 1; Ω)p ,

is not trivial. However, a hint regarding the possible monotonicity of the above func-
tion can be easily obtained by recalling the following asymptotic formula (see L.E.
Payne & G.A. Philippin [32])

lim
p→∞

∫
Ω

vp dx =

∫
Ω

δΩ dx . (2.4)
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Note that, actually, vp converges uniformly over Ω to δΩ, as p → ∞ (see, T. Bhat-
tacharya, E. DiBenedetto, & J.J. Manfredi [2] and B. Kawohl [24]). Combining (2.4)
with (2.2) we deduce that

lim
p→∞

|Ω|
p−1
p λ(p, 1; Ω) = δ(Ω)−1 ,

which further implies

lim
p→∞

|Ω|p−1λ(p, 1; Ω)p =

{
+∞ if δ(Ω) < 1,

0 if δ(Ω) > 1 .

Consequently, if the map given in relation (1.2) has a certain monotonicity then it
should be increasing if δ(Ω) < 1 and decreasing if δ(Ω) > 1. The precise result
concerning the monotonicity of function (1.2) was obtained by C. Enache and the
authors of this paper in [14] and [15]. More exactly, by [14, Theorem 2] and [15,
Remark 2] we have the following result.

Theorem 2.1. For each D ≥ 1 there exists a constant T ∈ [(2D)−1, 1] such that
for each set Ω ∈ PD with δ(Ω) ≤ T the map given in relation (1.2) is increasing.
Moreover, for any s > T there exists a set Ω ∈ PD, with δ(Ω) = s, for which the map
given in relation (1.2) is not monotone.

Remark 1. We note that, actually, we can give a better lower bound for the constant
T from the above theorem. Indeed, by [10, Proposition 6.1] we have that

δ(Ω) ≥ RΩ

D + 1
, ∀ Ω ∈ PD .

It follows that for each Ω ∈ PD with δ(Ω) < (D+ 1)−1 we have RΩ < 1 which by [14,
Lemma 1] implies that

T (p; Ω) < T (q; Ω), ∀ 1 < p < q <∞, ∀ Ω ∈ PD with δ(Ω) < (D + 1)−1 .

This observation combined with the proof of [14, Proposition 1] implies that T ≥
(D+1)−1. Consequently, in the conclusion of Theorem 2.1 we have T ∈ [(D+1)−1, 1]
which improves the older bounds for T , namely T ∈ (0, 1] (obtained in [14, Theorem
2]) and T ∈ [(2D)−1, 1] (obtained in [15, Remark 2]).

2.3.1. Open problems related to the monotonicity of function (1.2).

Problem 1. Note that by [14, Proposition 2] we have that for each ball BR with
R > D + 1 (and consequently δ(BR) > 1) the map given in relation (1.2) is not
monotone. Consequently, for each real number s > 1 a set Ω ∈ PD with δ(Ω) = s for
which the map given in relation (1.2) is not monotone could be chosen to be a ball.
However, in general, the question if for any set Ω ∈ PD with δ(Ω) > T the map given
in relation (1.2) is not monotone is open.

Problem 2. Another open problem related with the result from Theorem 2.1 is the
following: if D ≥ 2 does the number T given by Theorem 2.1 satisfy T = 1 or can the
situation T < 1 occur? Moreover, if the case T < 1 holds true, then does T depend
on D (the dimension of the Euclidean space) or not?
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2.4. An alternative variational characterization for λ(p, 1; Ω) on sets with small δ(Ω)

The monotonicity result from Theorem 2.1 allow us to obtain an alternative
variational characterization of the constant λ(p, 1; Ω) on domains Ω ∈ PD with δ(Ω) ≤
T (where T is the constant given by Theorem 2.1). More precisely, if for any Ω ∈ PD

and each p ∈ (1,∞) let us define

Λ(p, 1; Ω) := inf
v∈X0\{0}

|Ω|−1

∫
Ω

(exp(|∇v|pD)− 1) dx

exp

((
|Ω|−1

∫
Ω

|v| dx
)p)

− 1

, (2.5)

where X0 := W 1,∞(Ω) ∩
(
∩q>1W

1,q
0 (Ω)

)
. Then by [14, Theorem 3] we have the

following result:

Theorem 2.2. Let D ≥ 1 be an integer and Ω ∈ PD be a set. If ‖δΩ‖L∞(Ω) ≤ 1, then
Λ(p, 1; Ω) > 0, for all p ∈ (1,∞), while if δ (Ω) > 1, then Λ(p, 1; Ω) = 0, for all
p ∈ (1,∞). Moreover, if δ (Ω) ≤ T , where T is the constant given by Theorem 2.1,

then λ(p, 1; Ω) = |Ω|
1−p
p Λ(p, 1; Ω)1/p, for all p ∈ (1,∞).

Remark 2. Note that the fact that ‖δΩ‖L∞(Ω) ≤ 1 implies δ (Ω) ≤ 1. However, the

fact that for any Ω ∈ PD with δ (Ω) ≤ 1 it holds Λ(p, 1; Ω) > 0, for all p ∈ (1,∞)
is an open problem. This problem would be solved for instance if one can show that
T = 1.

2.5. Monotonicity of the p-torsional rigidity

Another monotonicity result that can be related with the above discussion is
that of the function

(1,∞) 3 p→ Tp(Ω) , (2.6)

when Ω ∈ PD is given. Note that by relation (2.2) this is equivalent with the mono-
tonicity of the map

(1,∞) 3 p→ λ(p, 1; Ω)−p/(p−1) .

2.5.1. The case of a ball. The discussion of the particular case when Ω is a ball, say
Ω = BR consists in the investigation of the monotonicity of the function given by
relation (2.3), namely

(1,∞) 3 p 7→ ωD

D
p

p−1

(
D +

p

p− 1

)RD+ p
p−1 .

By [15, Theorem 3] we have the following result.

Theorem 2.3. (a) If R ≥ De
1

D+1 then (1,∞) 3 p → Tp(BR) is decreasing on the
entire interval (1,∞).

(b) If R ∈ (D,De
1

D+1 ) then (1,∞) 3 p → Tp(BR) is decreasing on(
1,

1−D ln( R
D )

1−(D+1) ln( R
D )

)
and increasing on

(
1−D ln( R

D )
1−(D+1) ln( R

D )
,∞
)

.
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(c) If R ≤ D then (1,∞) 3 p→ Tp(BR) is increasing on the entire interval (1,∞).

2.5.2. The case when Ω ∈ PD is a general set. The analysis of the monotonicity of the
map given by relation (2.6) on a general set Ω ∈ PD is, as in the case of the function
(1.2), more difficult since we do not have explicit formulas for Tp(Ω). However, a hint
can be given in this case if we take into account an asymptotic formula which can be
found in one of the papers by H. Bueno & G. Ercole [11, Theorem 2, relation (16)] or
H. Bueno, G. Ercole, & S. S. Macedo [12, relation (1.10)]), namely

lim
p→1+

Tp(Ω)1−p = h(Ω) , (2.7)

where h(Ω) stands for the Cheeger constant of Ω given by relations (1.5) and (1.6).
It follows that

lim
p→1+

Tp(Ω) =

{
0, if h(Ω) > 1,
∞, if h(Ω) < 1.

(2.8)

Consequently, if the function given in relation (2.6) has a certain monotonicity then
it should be increasing if h(Ω) > 1 and decreasing if h(Ω) < 1. However, the analysis

from [15] shows that it is more useful to work with the quotient |∂Ω|
|Ω| than with the

Cheeger constant, h(Ω), when we analyse the monotonicity of the p-torsional rigidity
with respect to p ∈ (1,∞). According to relation (1.5) that fact is not unexpected

even if h(Ω) ≤ |∂Ω|
|Ω| . Note that in the particular case when Ω = BR the result from

Theorem 2.3 is consistent with the above discussion since it is well-known that |∂BR|
|BR| =

h(BR) = D
R and then we observe that function (1,∞) 3 p → Tp(BR) is increasing if

h(BR) = D
R > 1 and decreasing if h(BR) = D

R ≤ e
−1/(D+1) < 1.

The general result concerning the monotonicity of function (2.6) was obtained
by C. Enache and the authors of this paper in [15, Theorem 2]. We recall this result
below.

Theorem 2.4. Assume D ≥ 2. Then there exist two real numbers A1 ∈
[

1
2 , e

−1
D+1

]
and

A2 ∈ [1, D] such that

(i) for each Ω ∈ PD with |∂Ω|
|Ω| ≤ A1 the map given in relation (2.6) is decreasing on

the entire interval (1,∞);

(ii) for each Ω ∈ PD with |∂Ω|
|Ω| ≥ A2 the map given in relation (2.6) is increasing on

the entire interval (1,∞);

(iii) for each real number s ∈ (A1, A2) there exists Ω ∈ PD with |∂Ω|
|Ω| = s such that

the map given in relation (2.6) is not monotone on (1,∞).

2.5.3. Open problems related to the monotonicity of function (2.6).

Problem 1. Note that by Theorem 2.3 we have that for each ball BR with R ∈
(D,De

1
D+1 ) the map given in relation (2.6) is not monotone. Consequently, for each

real number s ∈ (e
−1

D+1 , 1) a set Ω ∈ PD with |∂Ω|
|Ω| = s for which the map given in

relation (2.6) is not monotone could be chosen to be a ball. However, in general, the

question if for any set Ω ∈ PD with |∂Ω|
|Ω| ∈ (A1, A2) the map given in relation (2.6) is

not monotone is open.
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Problem 2. Another open problem related with the result from Theorem 2.3 is the

following: do the numbers A1 and A2 given by Theorem 2.3 satisfy A1 = e
−1

D+1 and

A2 = 1 or can the situations A1 < e
−1

D+1 and A2 > 1 occur? Further, if the case A2 > 1
holds true, then does A2 depend on D (the dimension of the Euclidean space) or not?

3. Monotonicity of the function (1,∞) 3 p 7→ λ(p, p; Ω)p

3.1. A connection with the eigenvalue problem of the p-Laplace operator

By relation (1.1) with q = p we have that

λ(p, p; Ω)p := inf
u∈W 1,p

0 (Ω)\{0}

‖ |∇u|D ‖pLp(Ω)

‖u‖pLp(Ω)

= inf
u∈W 1,p

0 (Ω)\{0}

∫
Ω

|∇u|pD dx∫
Ω

|u|p dx
, ∀ p ∈ (1,∞) .

It is well-known that this minimization problem is related to the eigenvalue problem
for the p-Laplace operator, namely{

−∆pu = λ|u|p−2u in Ω,
u = 0 on ∂Ω,

(3.1)

in the sense that λ(p, p; Ω)p represents the lowest eigenvalue of the problem (3.1),
also known as the principal frequency of the p-Laplace operator (see, e.g. P. Lindqvist
[26]). (We recall that by an eigenvalue of problem (3.1) we understand a parameter
λ for which the problem possesses a nontrivial (weak) solution.)

3.2. The case D = 1

In the particular case when D = 1, if Ω ∈ P1 then there exists a, b ∈ R with
a < b such that Ω = (a, b). It is well-known (see, e.g. P. Lindqvist [28]) that

λ(p, p; (a, b))p = (p− 1)

(
2

b− a

)p(
π/p

sin(π/p)

)p

, ∀ p ∈ (1,∞) .

Consequently, in this particular case our problem reduces to the analysis of the mono-
tonicity of the function

(1,∞) 3 p 7→ (p− 1)

(
2

b− a

)p(
π/p

sin(π/p)

)p

.

The corresponding investigation was carried on by R. Kajikiya, M. Tanaka, & S.
Tanaka in [23, Theorem 1.1]. More precisely, they proved the following result.

Theorem 3.1. If b−a
2 ≤ 1 then the map p 7→ λ(p, p; (a, b))p is increasing on the entire

interval (1,∞). If b−a
2 > 1 then there exists p? = p?

(
b−a

2

)
∈ (1,∞) such that p 7→

λ(p, p; (a, b))p is increasing on (1, p?) and decreasing on (p?,∞).
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3.3. The case D ≥ 2

In the general case, when D ≥ 2, there is no explicit formula of λ(p, p; Ω)p when
p ∈ (1,∞)\{2}, not even on simple domains such as balls or squares. This fact makes
the study of the monotonicity of the map given in relation (1.3), i.e.

(1,∞) 3 p 7→ λ(p, p; Ω)p ,

more complicated. However, a hint regarding its monotonicity comes from the follow-
ing asymptotic formula due to P. Juutinen, P. Lindqvist, & J. J. Manfredi [21, Lemma
1.5] and N. Fukagai, M. Ito, & K. Narukawa [18, Corollaries 3.2 and 4.5]

lim
p→∞

λ(p, p; Ω) = R−1
Ω ,

which yields

lim
p→∞

λ(p, p; Ω)p =

{
+∞ if RΩ < 1,

0 if RΩ > 1 .

Consequently, if the map given in relation (1.3) has a certain monotonicity then it
should be increasing if RΩ < 1 and decreasing if RΩ > 1.

A first result concerning the monotonicity of the map (1.3) when D ≥ 2 can be
found in a paper by V. Bobkov & M. Tanaka, namely [3, Proposition 9], where the
following theorem was proved.

Theorem 3.2. Assume that D ≥ 2 is an integer and Ω ⊂ RD is a domain satisfying

Br ⊂ Ω ⊂ BR ,

where r, R ∈ (1, e) are two real numbers such that

max{1, e lnR} < r ≤ R < e ,

and Br, BR stand for two balls having radii r and R, respectively. Then the map given
by relation (1.3) is not monotone on (1,∞).

This result was complemented and improved by M. Bocea and the first author of
this paper in [5, Theorem 1]. The precise result is formulated in the following theorem.

Theorem 3.3. Let D ≥ 2 be a given integer. Then there exists a real number M ∈
[e−1, 1] such that for each Ω ∈ PD with RΩ ≤ M the map given by relation (1.3)
is increasing on the entire interval (1,∞). Moreover, for each s > M there exists
a domain Ω ∈ PD with RΩ = s for which the map given by relation (1.3) is not
monotone on the entire interval (1,∞).

3.3.1. Open problems related to the monotonicity of function (1.3).

Problem 1. The following open problem can be formulated in relation with the above
result: if D ≥ 2 and M is the number given by Theorem 3.3 is it true that for all
Ω ∈ PD with RΩ > M the map given by relation (1.3) is not monotone on the entire
interval (1,∞)? In [5, Proposition 1 & Theorem 1] the authors proved the existence
of such kind of domains by using as main argument a result due to R. Kajikiya [22,
Proposition 2.3] (see also L. Brasco [8, Theorem 1.1] for a similar result). Moreover,
the first author of this paper complemented the result by proving in [30, Theorem 1
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(d)] that when Ω is a ball, say BR, with the radius strictly larger than 1, (R > 1), then
the map given by relation (1.3) is not monotone on the entire interval (1,∞). (That
time the main argument was based on some estimates of the principal frequency due
to J. Benedikt & P. Drábek [1, Theorem 2].) Excepting these particular investigations
the general case is an open problem.

Problem 2. Another open problem related with the result from Theorem 3.3 is the
following: if D ≥ 2 does the number M given by Theorem 3.3 satisfy M = 1 or can
the situation M < 1 occur? Moreover, if the case M < 1 holds true, then does M
depend on D (the dimension of the Euclidean space) or not?

3.3.2. Monotonicity results for similar eigenvalue problems. In this section we recall
certain papers where similar results with those formulated in Theorem 3.3 can be
found.

Monotonicity results for variational eigenvalues of the Dirichlet p-Laplace op-
erator. Since λ(p, p; Ω)p represents the lowest eigenvalue of the problem (3.1) it is
natural to ask if similar results hold true for other eigenvalues of the problem. In that
context, firstly, we need to recall the well known fact that the description of the entire
set of eigenvalues of problem (3.1), when p 6= 2, is still an open question. However, for
the sequence of variational eigenvalues produced by using the Ljusternik-Schnirelman
theory (see, e.g. P. Lindqvist [29] or A. Lê [25] for the description of the set of varia-
tional eigenvalues of problem (3.1)) similar results as those given in Theorem 3.3 were
obtained by the first author of this paper in [30, Theorem 1].

Monotonicity results for the principal frequency on an annulus. A similar result
with those from Theorem 3.3 was obtained when Ω is an annulus (i.e., Ω is the
difference of two concentric balls), and consequently Ω 6∈ PD, by A. Grecu and the
first author of this paper in [19, Theorem 1].

Monotonicity of the first positive eigenvalue of the Neumann p-Laplace operator.
Similar investigations with those from Theorem 3.3 were considered in the context
of the first positive eigenvalue of the p-Laplace operator under the homogeneous
Neumann boundary condition by the first author of this paper in collaboration with
J. D. Rossi in [31, Theorem 1.1].

Monotonicity results for the principal frequency of the anisotropic p-Laplace op-
erator. M. Bocea in collaboration with the authors of this paper discussed the mono-
tonicity of the principal frequency of the anisotropic p-Laplace operator in [6, Theo-
rem 1].

3.4. An alternative variational characterization for λ(p, p; Ω) on sets with small
inradius

We note that combining the monotonicity result from Theorem 3.3 with those
obtained by M. Bocea and the first author of this paper in [4, Theorem 2] we deduce
that for each set Ω ∈ PD with RΩ ∈ (0,M ], where M is given by Theorem 3.3, we have
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the following alternative variational characterization of λ(p, p; Ω)p when p ∈ (1,∞),
namely

λ(p, p; Ω)p = inf
u∈X0\{0}

∫
Ω

Φp(|∇u|) dx∫
Ω

Φp(|u|) dx
,

where, X0 := W 1,∞(Ω) ∩
(
∩q>1W

1,q
0 (Ω)

)
and Φp(t) can be taken to be either one of

the functions t 7→ sinh(|t|p), t 7→ cosh(|t|p) − 1, or t 7→ exp(|t|p) − 1. It is interesting
that this variational characterization fails to hold true when Ω ∈ PD with RΩ ∈ (1,∞)
since in that case the above infimum vanishes (see, [4, Theorem 2]).

4. Monotonicity of the function (D,∞) 3 p 7→ λ(p,∞; Ω)p

4.1. A connection between λ(p,∞; Ω)p and an eigenvalue problem

By relation (1.1) with q =∞ we have that

λ(p,∞; Ω)p := inf
u∈W 1,p

0 (Ω)\{0}

‖ |∇u|D ‖pLp(Ω)

‖u‖pL∞(Ω)

= inf
u∈W 1,p

0 (Ω)\{0}

∫
Ω

|∇u|pD dx

‖u‖pL∞(Ω)

, ∀ p ∈ (D,∞) .

Note that λ(p,∞; Ω)p is also known as the best constant in Morrey’s inequality, that
is the largest constant C > 0 for which the following inequality holds true

C‖u‖pL∞(Ω) ≤
∫

Ω

|∇u(x)|pD dx, ∀ u ∈W 1,p
0 (Ω) .

It is well known (see, e.g. G. Ercole & G. A. Pereira [16, Theorem 2.5] or R. Hynd
& E. Lindgren [20]) that for each p ∈ (D,∞) there exists a nonnegative minimizer of

λ(p,∞; Ω)p, say up ∈W 1,p
0 (Ω), such that

‖up‖L∞(Ω) = 1 and ‖ |∇up|D ‖pLp(Ω) = λ(p,∞; Ω)p .

Moreover, there exists a unique point xp ∈ Ω such that

up(xp) = ‖up‖L∞(Ω) = 1 ,

and the following equation is satisfied in the sense of distributions{
−div(|∇up(x)|p−2

D ∇up(x)) = λ(p,∞; Ω)p|up(xp)|p−2up(xp)δxp
(x), if x ∈ Ω,

up(x) = 0, if x ∈ ∂Ω,

where by δxp
the Dirac mass concentrated at xp was denoted.
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4.1.1. The case of a ball. In the particular case when Ω = BR (that is a ball of radius
R, centered at the origin) then

λ(p,∞;BR)p =
DvD
Rp−D

(
p−D
p− 1

)p−1

, (4.1)

where vD = |B1| denotes the volume of the unit ball in RD, (see, e.g., [16, relation
(1.9)]). Consequently, in this particular case our problem reduces to the analysis of
the monotonicity of the function

(D,∞) 3 p 7→ DvD
Rp−D

(
p−D
p− 1

)p−1

.

The precise result in this case is the following (see [17, Theorem 1.2])

Theorem 4.1. For every integer D ≥ 1 if R ≤ 1 then the map p 7→ λ(p,∞;BR)p is in-
creasing on the entire interval (D,∞), while, if R > 1 then the map p 7→ λ(p,∞;BR)p

is not monotone on (D,∞).

4.1.2. The case when Ω ∈ PD is a general set. In the general case an explicit formula
for the quantity λ(p,∞; Ω)p is not available in the literature and, consequently, the
analysis of the monotonicity of the map given in relation (1.4), i.e.

(1,∞) 3 p 7→ λ(p,∞; Ω)p ,

is more complicated. However, a hint regarding its monotonicity comes from the
following asymptotic formula (see, e.g. [16, Theorem 3.2])

lim
p→∞

λ(p,∞; Ω) = R−1
Ω ,

where RΩ = ‖δΩ‖L∞(Ω) denotes the inradius of Ω, which yields

lim
p→∞

λ(p,∞; Ω)p =

{
+∞ if RΩ < 1,

0 if RΩ > 1.

Consequently, if the map given in relation (1.4) has a certain monotonicity then it
should be increasing if RΩ < 1 and decreasing if RΩ > 1.
On the other hand, by [16, Corollary 2.7] for each Ω ∈ PD and each p ∈ (D,∞) the
following inequalities hold

λ
(
p,∞;B D

√
|Ω|/vD

)p
≤ λ(p,∞; Ω)p ≤ λ (p,∞;BRΩ)

p
. (4.2)

Combining relations (4.1) and (4.2) we deduce that

lim
p→D+

λ(p,∞; Ω) = 0, ∀ Ω ∈ PD .

The above pieces of information show that the map given in relation (1.4) is not
monotone on (D,∞) for any set Ω ∈ PD with RΩ > 1. The general result on the
monotonicity of the map given in relation (1.4) was obtained by M. Fărcăşeanu in
collaboration with the first author of this paper in [17, Theorem 1.2] and is given in
the following theorem.
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Theorem 4.2. For every integer D ≥ 2 there exists L ∈ [e−1, 1] such that for each
Ω ∈ PD with RΩ ∈ (0, L] the map given in relation (1.4) is increasing on (D,∞) while
for each Ω ∈ PD with RΩ > 1 the map given in relation (1.4) is not monotone on
(D,∞).

4.1.3. An open problem related to the monotonicity of function (1.4). The following
open problem can be formulated in relation with the above result: if D ≥ 2 does the
number L given by Theorem 4.2 satisfy L = 1 or can the situation L < 1 occur?
Moreover, if the case L < 1 holds true, then does L depend on D (the dimension of
the Euclidean space) or not?

4.2. An alternative variational characterization for λ(p,∞; Ω) on sets with small
inradius

The monotonicity results from Theorems 4.1 and 4.2 allow us to obtain an al-
ternative variational characterization of the constant λ(p,∞; Ω) on domains Ω ∈ PD

with RΩ ≤ L (where L is the constant given by Theorem 4.2). More precisely, if for
any Ω ∈ PD and each p ∈ (1,∞) we define

Λ(p,∞; Ω) := inf
u∈X0\{0}

∫
Ω

(exp(|∇u|pD)− 1) dx

exp
(
‖u‖pL∞(Ω)

)
− 1

, (4.3)

where X0 := W 1,∞(Ω) ∩
(
∩q>1W

1,q
0 (Ω)

)
, then by [17, Theorem 1.3] we have the

following result.

Theorem 4.3. Let D ≥ 1 be an integer and Ω ∈ PD be a set. If RΩ < 1, then
Λ(p,∞; Ω) > 0, for all p ∈ (D,∞), while if RΩ > 1, then Λ(p,∞; Ω) = 0, for all
p ∈ (D,∞). Moreover, if RΩ ≤ L, with L the constant given by Theorem 4.2, then
Λ(p,∞; Ω) = λ(p,∞; Ω)p, for all p ∈ (D,∞). In the particular case when Ω = BR

(i.e., Ω is a ball of radius R from RD) then Λ(p,∞;BR) = 0, for all p ∈ (D,∞) if
R > 1 and Λ(p,∞;BR) = λ(p,∞;BR)p, for all p ∈ (D,∞) if R ∈ (0, 1].
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[15] Enache, C., Mihăilescu, M., Stancu-Dumitru, D., The monotonicity of the p-torsional
rigidity in convex domains, Mathematische Zeitschrift, 302(2022), 419-431.

[16] Ercole, G., Pereira, G.A., Asymptotics for the best Sobolev constants and their extremal
functions, Math. Nachr., 289(2016), 1433-1449.
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