On eigenvalue problems governed by the (p, q)-Laplacian

Luminiţa Barbu and Gheorghe Moroşanu

Dedicated to the memory of Professor Csaba Varga

Abstract

This is a survey on recent results, mostly of the authors, regarding eigenvalue problems governed by the (p, q)-Laplacian and related open problems.

Mathematics Subject Classification (2010): 35J60, 35J92, 35P30.
Keywords: Eigenvalue problem, (p, q)-Laplacian, Sobolev space, Nehari manifold, variational methods, Lagrange multipliers.

1. Introduction

Let $\Omega \subset \mathbb{R}^{N}, N \geq 2$, be a bounded domain with smooth boundary $\partial \Omega$. For $\theta \in$ $(1, \infty)$, consider in Ω the θ-Laplace operator $\Delta_{\theta} u=\operatorname{div}\left(|\nabla u|^{\theta-2} \nabla u\right)$. Obviously, Δ_{2} is the classic Laplacian Δ. There are many applications involving such kind of operators, including the so called two phase problems. For example, the operator $\left(\Delta+c \Delta_{\theta}\right), c>0, \theta \in(1, \infty)$, has applications in Born-Infeld theory for electrostatic fields (see Bonheure, Colasuonno \& Fortunato [16], Fortunato, Orsina \& Pisani [26]). We also refer to Benci et al. [14] and Benci, Fortunato \& Pisani [15] for more general applications to quantum physics. Two phase equations arise also in other parts of mathematical physics as reaction diffusion equations (see Cherfils \& Il'yasov [18]) and nonlinear elasticity theory (see Marcellini [35] and Zhikov [45]). In fact, the literature related to this subject is vast and daily increasing.

For $p, q \in(1, \infty)$, define $\mathcal{A}_{p q}:=\Delta_{p}+\Delta_{q}$, which is usually called (p, q)-Laplacian. We assumes that $p \neq q$, because for $p=q \mathcal{A}_{p q}=2 \Delta_{p}$ and this case is not relevant for our discussion here. Notice that the operator introduced above $\left(\Delta+c \Delta_{\theta}\right)$ with $c=1$ is a $(2, \theta)$-Laplacian. The restriction to the case $c=1$ does not affect the generality.

In what follows we recall some facts concerning the classic eigenvalue problem for $-\Delta_{p}, p \in(1, \infty)$, under the Dirichlet boundary condition

$$
\left\{\begin{array}{l}
-\Delta_{p} u=\lambda|u|^{p-2} u \text { in } \Omega \tag{1.1}\\
u=0 \text { on } \partial \Omega
\end{array}\right.
$$

A real number λ is called an eigenvalue of problem (1.1) if this problem admits a nontrivial weak solution, i.e. there exists $u_{\lambda} \in W_{0}^{1, p}(\Omega) \backslash\{0\}$ such that

$$
\begin{equation*}
\int_{\Omega}\left|\nabla u_{\lambda}\right|^{p-2} \nabla u_{\lambda} \cdot \nabla w d x=\lambda \int_{\Omega}\left|u_{\lambda}\right|^{p-2} u_{\lambda} w d x \forall w \in W_{0}^{1, p}(\Omega) \tag{1.2}
\end{equation*}
$$

The nontrivial solutions u_{λ} of problem (1.1) are called eigenfunctions corresponding to the eigenvalue λ, and $\left(\lambda, u_{\lambda}\right)$ are called eigenpairs of problem (1.1).

A standard method to show the existence of an increasing sequence of eigenvalues for problem (1.1),

$$
\begin{equation*}
0<\lambda_{1}^{D}<\lambda_{2}^{D} \leq \lambda_{3}^{D} \leq \cdots \rightarrow \infty \tag{1.3}
\end{equation*}
$$

relies on the Ljusternik-Schnirelmann principle and on the concept of Krasnosel'skǐi genus. There are also other methods to prove the existence of such a sequence (see García-Azorero \& Peral [28], Drábek \& Robinson [23]). It is still not known whether this sequence includes all eigenvalues of problem (1.1), except for the well-known particular case $p=2$.

On the other hand, it is well-known that $-\Delta_{p}$ with the Dirichlet boundary condition admits a lowest positive eigenvalue λ_{1} (called principal eigenvalue), which is simple, and there exists a corresponding eigenfunction which is positive in Ω (see Lindqvist [34], Lê [33] and the references therein). Note also that the properties of the next lowest eigenvalue λ_{2} have been investigated by Anane \& Tsouli in [2], who proved that λ_{2} has a variational characterization similar to that corresponding to the linear case $p=2$.

Similar situations can be reported in the case of Neumann, Robin or Steklov boundary conditions.

2. Eigenvalue problems governed by the (p, q)-Laplacian

In this section we shall present some recent results on eigenvalue problems involving the (p, q)-Laplacian with various boundary conditions. More precisely, these results contain information regarding the corresponding eigenvalue sets. As seen below, the fact that the differential operator $\mathcal{A}_{p q}$ is non-homogeneous (i.e., $p \neq q$) implies that the eigenvalue sets are intervals or contain intervals. Throughout this section we will assume that $p, q \in(1, \infty), p \neq q$, and introduce the following notations:

$$
\begin{align*}
W & :=W^{1, \max \{p, q\}}(\Omega), \\
\frac{\partial u}{\partial \nu_{p q}} & :=\left(|\nabla u|^{p-2}+|\nabla u|^{q-2}\right) \frac{\partial u}{\partial \nu}, \tag{2.1}
\end{align*}
$$

where ν is the outward unit normal to $\partial \Omega$.

2.1. The case of Dirichlet, Neumann, Robin or Steklov boundary conditions

Let us begin with the case of the Dirichlet boundary condition. Specifically, we consider the problem

$$
\left\{\begin{array}{l}
-\mathcal{A}_{p q} u=\lambda|u|^{p-2} u \text { in } \Omega \tag{2.2}\\
u=0 \text { on } \partial \Omega
\end{array}\right.
$$

The definitions of eigenvalues, eigenfunctions and eigenpairs for problem (2.2) are similar to those corresponding to problem (1.1), the only differences being the following: the left hand side of equation (1.2) is replaced by

$$
\int_{\Omega}\left(\left|\nabla u_{\lambda}\right|^{p-2}+\left|\nabla u_{\lambda}\right|^{q-2}\right) \nabla u_{\lambda} \cdot \nabla w d x
$$

and the Sobolev space in which the weak solution is sought is now $W_{0}^{1, \max \{p, q\}}(\Omega)$.
The existence of eigenvalues for this problem in the case when the right hand side of equation (2.2) $)_{1}$ is of the form $\lambda m_{p}(x)|u|^{p-2} u$ in Ω, where $m_{p} \in L^{\infty}(\Omega)$ such that the Lebesgue measure of $\left\{x \in \Omega ; m_{p}(x)>0\right\}$ is positive, was studied by Tanaka in [42]. Using the Mountain Pass Theorem, Tanaka was able to obtain the full eigenvalue set ([42, Theorem 1, Theorem 2]). In the particular case $m_{p} \equiv 1$, Tanaka's result is the following:

Theorem 2.1. If $p, q \in(1, \infty), p \neq q$, then the set of eigenvalues of problem (2.2) is precisely $\left(\lambda_{1}^{D}, \infty\right)$, where λ_{1}^{D} denotes the first eigenvalue of the negative Dirichlet p-Laplacian, more exactly

$$
\begin{equation*}
\lambda_{1}^{D}:=\inf \left\{\frac{\int_{\Omega}|\nabla u|^{p} d x}{\int_{\Omega}|u|^{p} d x}, u \in W_{0}^{1, p}(\Omega)\right\} \tag{2.3}
\end{equation*}
$$

Notice that the eigenvalue set of $-\mathcal{A}_{p q}$ with Dirichlet boundary condition has been completely determined, being an interval independent of q.

Next, let us consider the case of a generalized Neumann boundary condition. More precisely, consider the eigenvalue problem

$$
\left\{\begin{array}{l}
-\mathcal{A}_{p q} u=\lambda|u|^{q-2} u \text { in } \Omega \tag{2.4}\\
\frac{\partial u}{\partial \nu_{p q}}=0 \text { on } \partial \Omega
\end{array}\right.
$$

The solution u of problem (2.4) is understood in a weak sense, as an element of the Sobolev space W satisfying equation $(2.4)_{1}$ in the sense of distributions and $(2.4)_{2}$ in the sense of traces. The scalar $\lambda \in \mathbb{R}$ is an eigenvalue of problem (2.4) if there exists $u_{\lambda} \in W \backslash\{0\}$ such that for all $w \in W$ we have

$$
\begin{equation*}
\int_{\Omega}\left(\left|\nabla u_{\lambda}\right|^{p-2}+\left|\nabla u_{\lambda}\right|^{q-2}\right) \nabla u_{\lambda} \cdot \nabla w d x=\lambda \int_{\Omega}\left|u_{\lambda}\right|^{q-2} u_{\lambda} w d x \tag{2.5}
\end{equation*}
$$

Problem (2.4) was investigated by Mihăilescu [36, Theorem 1.1] (for $q=2, p \in$ $(2, \infty)$), Fărcăşeanu, Mihăilescu \& Stancu-Dumitru [24, Theorem 1.1] (for $q=2, p \in$ $(1,2)$), Mihăilescu \& Moroşanu [37, Theorem 1.1] (for $q \in(2, \infty), p \in(1, \infty), p \neq q)$ and Barbu \& Moroşanu [7, Theorem 1] (for $q \in(1,2), p \in(1, \infty), p \neq q)$.

To investigate such a problem, one can use techniques based on minimization arguments, which will be briefly described in what follows.

To begin with, let us choose $w=u_{\lambda}$ in (2.5). Clearly, we see that the eigenvalues of problem (2.4) cannot be negative. It is also obvious that $\lambda_{0}=0$ is an eigenvalue of this problem with the corresponding eigenfunctions given by the nonzero constant functions.

Now, if we assume that $\lambda>0$ is an eigenvalue of problem (2.4) and choose $w \equiv 1$ in (2.5) we obtain that every eigenfunction u_{λ} corresponding to λ necessarily belong to the set

$$
\begin{equation*}
\mathcal{C}_{N e}:=\left\{u \in W ; \int_{\Omega}|u|^{q-2} u d x=0\right\} . \tag{2.6}
\end{equation*}
$$

This is a symmetric cone. Moreover, $\mathcal{C}_{N e}$ is a weakly closed subset of W and $\mathcal{C}_{N e} \backslash\{0\} \neq$ \emptyset (see [6, Section 2]).

Next, we shall briefly describe the method we can use to solve the eigenvalue problem (2.4).

For $\lambda>0$ consider the C^{1} functional $\mathcal{J}_{\lambda}: W \rightarrow \mathbb{R}$, defined as

$$
\begin{equation*}
\mathcal{J}_{\lambda}(u)=\frac{1}{p} \int_{\Omega}|\nabla u|^{p} d x+\frac{1}{q} \int_{\Omega}|\nabla u|^{q} d x-\frac{\lambda}{q} \int_{\Omega}|u|^{q} d x . \tag{2.7}
\end{equation*}
$$

This functional is often called the energy functional associated to problem (2.4). Clearly, λ is an eigenvalue of problem (2.4) if and only if there exists a critical point $u_{\lambda} \in W \backslash\{0\}$ of \mathcal{J}_{λ}, i. e. $\mathcal{J}_{\lambda}^{\prime}\left(u_{\lambda}\right)=0$.

Define

$$
\begin{equation*}
\tilde{\lambda}^{N e}:=\inf _{w \in \mathcal{C}_{N e} \backslash\{0\}} \frac{\int_{\Omega}|\nabla w|^{q} d x}{\int_{\Omega}|w|^{q} d x} . \tag{2.8}
\end{equation*}
$$

Since $\widetilde{\lambda}^{N e}=\lambda_{1}^{N e_{q}}$ for $q>p$ and $\widetilde{\lambda}^{N e} \geq \lambda_{1}^{N e_{q}}$ for $q<p$, it follows that $\widetilde{\lambda}^{N e}>0$ (we have denoted by $\lambda_{1}^{N e_{q}}$ the first positive eigenvalue of the negative Neumann q-Laplace operator).

Also, one can easily check that there is no eigenvalue of problem (2.4) in the set $\left(-\infty, \widetilde{\lambda}^{N e}\right] \backslash\{0\}$. So, from now on we shall consider that λ is arbitrary but fixed in the interval ($\left.\widetilde{\lambda}^{N e}, \infty\right)$.

We distinguish two cases related to p and q :
Case 1: $1<q<p$. In this case, as $\lambda>\widetilde{\lambda}^{N e}$, the functional \mathcal{J}_{λ} is coercive on $\mathcal{C}_{N e} \subset W=W^{1, p}(\Omega)$, i.e.,

$$
\lim _{\|u\|_{W^{1, p}(\Omega)} \rightarrow \infty, u \in \mathcal{C}_{N e}} \mathcal{J}_{\lambda}(u)=\infty .
$$

In particular, there exists $u_{*} \in \mathcal{C}_{N e} \backslash\{0\}$ where \mathcal{J}_{λ} attains its minimal value over $\mathcal{C}_{N e}$,

$$
J_{\lambda}\left(u_{*}\right)=\inf _{w \in \mathcal{C}_{N e} \backslash\{0\}} \mathcal{J}_{\lambda}(w) \neq 0
$$

(see [7, Lemma 6]).
Case 2: $1<p<q$. Under this assumption, the functional \mathcal{J}_{λ} is no longer coercive and may be unbounded below on $W=W^{1, q}(\Omega)$. So, we consider the restriction of
functional \mathcal{J}_{λ} to the Nehari type manifold (see [41]):

$$
\mathcal{N}_{\lambda}=\left\{v \in \mathcal{C}_{N e} \backslash\{0\} ;\left\langle\mathcal{J}_{\lambda}^{\prime}(v), v\right\rangle=0\right\}
$$

We observe that

$$
\mathcal{J}_{\lambda}(u)=\frac{q-p}{q p} \int_{\Omega}|\nabla u|^{p} d x>0 \forall u \in \mathcal{N}_{\lambda}
$$

Moreover, any possible eigenfunction corresponding to λ belongs to \mathcal{N}_{λ}.
In addition, since $\lambda>\widetilde{\lambda}^{N e}$, we can easily check that $\mathcal{N}_{\lambda} \neq \emptyset$.
In this case we have the following result (see [6, Case 2, Steps 1-4] and [7, Lemma 6]):

If $1<p<q$ and $\lambda>\widetilde{\lambda}^{N e}$, then there exists $u_{*} \in \mathcal{N}_{\lambda}$ where \mathcal{J}_{λ} attains its minimal value over \mathcal{N}_{λ},

$$
m_{\lambda}:=\inf _{w \in \mathcal{N}_{\lambda}} \mathcal{J}_{\lambda}(w)>0
$$

Using the above preliminary results and applying the Lagrange Multipliers Rule in the case $q \geq 2$ and, respectively, an approximation technique in the case $1<q<2$, one can show that in fact the minimizer u_{*} of functional \mathcal{J}_{λ} over $\mathcal{C}_{N e}$ if $q<p$ and, respectively, over \mathcal{N}_{λ} if $q>p$, is a global minimizer of \mathcal{J}_{λ} over the whole W, i.e. u_{*} is an eigenfunction of problem (2.4) corresponding to the eigenvalue $\lambda>\widetilde{\lambda}^{N e}$.

Thus, we have the following important result which provides the full spectrum of the eigenvalue problem (2.4):

Theorem 2.2. Assume that $p, q \in(1, \infty), p \neq q$. Then the set of eigenvalues of problem (2.4) is precisely $\{0\} \cup\left(\widetilde{\lambda}^{N e}, \infty\right)$, where $\widetilde{\lambda}^{N e}$ is the positive constant defined by (2.8).

Now, consider the eigenvalue problem for the Steklov (p, q)-Laplacian, namely

$$
\left\{\begin{array}{l}
\mathcal{A}_{p q} u=0 \text { in } \Omega \tag{2.9}\\
\frac{\partial u}{\partial \nu_{p q}}=\lambda|u|^{q-2} u \text { on } \partial \Omega
\end{array}\right.
$$

Using an approach similar to that used before for the Neumann (p, q)-Laplacian, one can determine the full spectrum of the eigenvalue problem (2.9). More exactly, if we denote

$$
\begin{gather*}
\mathcal{C}_{S}:=\left\{u \in W ; \int_{\partial \Omega}\left|u_{\lambda}\right|^{q-2} u_{\lambda} d \sigma=0\right\}, \tag{2.10}\\
\widetilde{\lambda}^{S}:=\inf _{w \in \mathcal{C}_{S} \backslash\{0\}} \frac{\int_{\Omega}|\nabla w|^{q} d x}{\int_{\partial \Omega}|w|^{q} d \sigma} \tag{2.11}
\end{gather*}
$$

we have the following result
Theorem 2.3. Assume that $p, q \in(1, \infty)_{\sim}, p \neq q$. Then the set of eigenvalues of problem (2.9) is precisely $\{0\} \cup\left(\widetilde{\lambda}_{S}, \infty\right)$, where $\widetilde{\lambda}_{S}$ is the positive constant defined by (2.11).

This theorem was proved by Costea \& Moroşanu [19, Theorem 3.1] in the case $p \in(1, \infty), q \in[2, \infty), p \neq q$ and later by Barbu \& Moroşanu [7, Theorem 1] in the case $p \in(1, \infty), q \in(1,2), p \neq q$.

Next, we pay attention to equation $(2.4)_{1}$ with a generalized Robin boundary condition. More precisely, we consider the following eigenvalue problem

$$
\left\{\begin{array}{l}
-\mathcal{A}_{p q} u=\lambda|u|^{q-2} u \text { in } \Omega \tag{2.12}\\
\frac{\partial u}{\partial \nu_{p q}}+\beta|u|^{q-2} u=0 \text { on } \partial \Omega
\end{array}\right.
$$

where β is a positive constant.
The eigenvalue problem (2.12) was studied by Gyulov \& Moroşanu [30], who found an interval of eigenvalues for this problem. In order to state the main result in [30], we define

$$
\begin{align*}
\widetilde{\lambda}^{R} & :=\inf _{w \in W \backslash\{0\}} \frac{\int_{\Omega}|\nabla w|^{q} d x+\beta \int_{\partial \Omega}|\nabla w|^{q} d \sigma}{\int_{\Omega}|w|^{q} d x} \tag{2.13}\\
\lambda_{0} & :=\beta \frac{|\partial \Omega|_{N-1}}{|\Omega|_{N}}
\end{align*}
$$

where $|\cdot|_{N}$ and $|\cdot|_{N-1}$ denote the Lebesgue measures of the two sets. Obviously, the constant $\widetilde{\lambda}_{R}$ coincides with the first eigenvalue of the Robin q-Laplace operator (see Lê [33]) in the case $q>p$ and is greater than or equal to that if $q<p$, so it is positive.

The results concerning the spectrum of problem (2.12) can be summarized as follows:

Theorem 2.4. Assume that $p, q \in(1, \infty), p \neq q$ and β is a positive constant. Then $\widetilde{\lambda}^{R}<\lambda_{0}$ and any $\lambda \in\left(\widetilde{\lambda}_{R}, \lambda_{0}\right)$ is an eigenvalue of problem (2.12). Moreover, the problem (2.12) has no nontrivial solution for $\lambda \in\left(-\infty, \widetilde{\lambda}^{R}\right]$.

Note that this theorem does not say whether there are eigenvalues of problem (2.12) in the interval $\left[\lambda_{0}, \infty\right)$. On the other hand, we know that there exists a sequence of eigenvalues of problem (2.12) which converges to ∞ (see [5]). However, the full spectrum of problem (2.12) is still not completely known.

We also mention the paper by Papageorgiou, Vetro \& Vetro [38] where an eigenvalue problem more general than (2.12) is considered in the case $1<p<q$. Here the operator $\mathcal{A}_{p q}$ is perturbed with an indefinite and unbounded potential, $\zeta \in L^{s}(\Omega), s<N / q$ if $q \leq N$ and $s=1$ if $q>N$. The constant β is replaced by a function $\beta \in W^{1, \infty}(\partial \Omega), \beta \geq 0, \beta \not \equiv 0$ such that

$$
\begin{equation*}
\int_{\Omega} \zeta d x+\int_{\partial \Omega} \beta d \sigma>0 \tag{2.14}
\end{equation*}
$$

By arguing as in [30], the authors obtain a result similar to Theorem 2.4 (see [38, Theorem 1]).

Finally, let us consider the Steklov like eigenvalue problem

$$
\left\{\begin{array}{l}
-\mathcal{A}_{p q} u+\rho_{1}(x)|u|^{p-2} u+\rho_{2}(x)|u|^{q-2} u=0, x \in \Omega, \tag{2.15}\\
\frac{\partial u}{\partial \nu_{p q}}+\gamma_{1}(x)|u|^{p-2} u+\gamma_{2}(x)|u|^{q-2} u=\lambda|u|^{q-2} u, x \in \partial \Omega .
\end{array}\right.
$$

Assume that the following hypotheses are fulfilled:
$\left(h_{\rho_{1} \gamma_{1}}\right) \rho_{1} \in L^{\infty}(\Omega)$ and $\gamma_{1} \in L^{\infty}(\partial \Omega), \rho_{1}, \gamma_{1}$ are nonnegative functions such that

$$
\begin{equation*}
\int_{\Omega} \rho_{1} d x+\int_{\partial \Omega} \gamma_{1} d \sigma>0 \tag{2.16}
\end{equation*}
$$

$\left(h_{\rho_{2} \gamma_{2}}\right) \quad \rho_{2} \in L^{\infty}(\Omega), \gamma_{2} \in L^{\infty}(\partial \Omega)$ and ρ_{2} is a nonnegative function.
It is worth pointing out that the potential function γ_{2} is allowed to be sign changing.
As usual, a scalar $\lambda \in \mathbb{R}$ is said to be an eigenvalue of the problem (2.15) if there exists $u_{\lambda} \in W \backslash\{0\}$ such that for all $w \in W$

$$
\begin{align*}
& \int_{\Omega}\left(\left|\nabla u_{\lambda}\right|^{p-2}+\left|\nabla u_{\lambda}\right|^{q-2}\right) \nabla u_{\lambda} \cdot \nabla w d x \\
& \quad+\int_{\Omega}\left(\rho_{1}\left|u_{\lambda}\right|^{p-2}+\rho_{2}\left|u_{\lambda}\right|^{q-2}\right) u_{\lambda} w d x \tag{2.17}\\
& \quad+\int_{\partial \Omega}\left(\gamma_{1}\left|u_{\lambda}\right|^{p-2}+\gamma_{2}\left|u_{\lambda}\right|^{q-2}\right) u_{\lambda} w d \sigma=\lambda \int_{\partial \Omega}\left|u_{\lambda}\right|^{q-2} u_{\lambda} w d \sigma
\end{align*}
$$

The function u_{λ} is called an eigenfunction of the problem (2.15) (corresponding to the eigenvalue λ).

Define

$$
\begin{equation*}
\widetilde{\lambda}^{S R}:=\inf _{w \in W \backslash\{0\}} \frac{\int_{\Omega}\left(|\nabla w|^{q}+\rho_{2}|w|^{q}\right) d x+\int_{\partial \Omega} \gamma_{2}|w|^{q} d \sigma}{\int_{\partial \Omega}|w|^{q} d \sigma} . \tag{2.18}
\end{equation*}
$$

Problem (2.15) was studied by Barbu \& Moroşanu [11]. Let us recall the main result on its eigenvalue set:
Theorem 2.5. ([11, Theorem 1]) Assume that $p, q \in(1, \infty), p \neq q$ and assumptions $\left(h_{\rho_{i} \gamma_{i}}\right), i=1,2$, are fulfilled. Then the set of eigenvalues of problem (2.15) is precisely $\left(\widetilde{\lambda}^{S R}, \infty\right)$.

Note that if $\gamma_{1} \equiv 0$ and $\gamma_{2} \equiv$ const. >0, then we have a Steklov-Robin boundary condition. The arguments we have used in the mentioned paper can easily be adapted to the following eigenvalue problem

$$
\left\{\begin{array}{l}
-\mathcal{A}_{p q} u+\rho_{1}(x)|u|^{p-2} u+\rho_{2}(x)|u|^{q-2} u=\lambda|u|^{q-2} u, x \in \Omega \tag{2.19}\\
\frac{\partial u}{\partial \nu_{p q}}+\gamma_{1}(x)|u|^{p-2} u+\gamma_{2}(x)|u|^{q-2} u=0, \quad x \in \partial \Omega
\end{array}\right.
$$

under similar assumptions for the functions $\rho_{i}, \gamma_{i}, i=1,2$. While in the previous works [30] and [38] only subsets of the corresponding spectra were found, in this case the presence of the potential functions ρ_{i}, γ_{i} satisfying assumptions $\left(h_{\rho_{i} \gamma_{i}}\right), i=1,2$, allows the full description of the spectrum.

2.2. The case of parametric boundary conditions

Consider the following eigenvalue problem

$$
\left\{\begin{array}{l}
-\mathcal{A}_{p q} u=\lambda \alpha(x)|u|^{r-2} u \quad \text { in } \Omega \tag{2.20}\\
\frac{\partial u}{\partial \nu_{p q}}=\lambda \beta(x)|u|^{r-2} u \quad \text { on } \partial \Omega
\end{array}\right.
$$

under the following hypotheses

$$
\left(h_{p q r}\right) p, q, r \in(1, \infty), p \neq q
$$

$\left(h_{\alpha \beta}\right) \alpha \in L^{\infty}(\Omega)$ and $b \in L^{\infty}(\partial \Omega)$ are given nonnegative functions satisfying

$$
\begin{equation*}
\int_{\Omega} \alpha d x+\int_{\partial \Omega} \beta d \sigma>0 \tag{2.21}
\end{equation*}
$$

Such eigenvalue problems were discussed for the first time by Von Below \& François [43] (see also François [27]) who considered the linear eigenvalue problem

$$
\left\{\begin{array}{l}
-\Delta u=\lambda u \quad \text { in } \Omega \\
\frac{\partial u}{\partial \nu}=\lambda \beta u \quad \text { on } \partial \Omega
\end{array}\right.
$$

They call it a dynamical eigenvalue problem since it can be derived from the study of the heat equation with dynamical boundary conditions. Also, the motivation behind problem (2.20) comes from the study of a double phase parabolic equation (see Arora \& Shmarev [3], Huang [31], Marcellini [35] and the references therein) under a dynamical boundary condition. The existence theory for such parabolic problems relies on the spectral theory of associated elliptic problems with the parameter λ both in the equation and the boundary condition.

The eigenvalues and eigenfunctions of problem (2.20) can be defined as before. All eigenfunctions of problem (2.20) belong to the set

$$
\begin{equation*}
\mathcal{C}_{r}:=\left\{u \in W ; \int_{\Omega} \alpha|u|^{r-2} u d x+\int_{\partial \Omega} \beta|u|^{r-2} u d \sigma=0\right\} \tag{2.22}
\end{equation*}
$$

In the case $r=q$, define

$$
\begin{equation*}
\tilde{\lambda}:=\inf _{w \in \mathcal{C}^{\prime} \backslash\{0\}} \frac{\int_{\Omega}|\nabla w|^{q} d x}{\int_{\Omega} \alpha|w|^{q} d x+\int_{\partial \Omega} \beta|w|^{q} d \sigma} \tag{2.23}
\end{equation*}
$$

If $r \neq q$ we assume, without any loss of generality, that $1<p<q$ and for $r \in(p, q)$ define

$$
\begin{equation*}
\lambda_{*}:=\inf _{v \in \mathcal{C}_{r} \backslash \mathcal{Z}_{r}} \Gamma \frac{K_{q}(v)^{1-\gamma} K_{p}(v)^{\gamma}}{\mathcal{K}_{r}(v)}, \lambda^{*}:=\frac{r}{q^{1-\gamma} p^{\gamma}} \lambda_{*} \tag{2.24}
\end{equation*}
$$

where

$$
\begin{align*}
\mathcal{Z}_{r} & :=\left\{v \in W ; \int_{\Omega} \alpha|v|^{r} d x+\int_{\partial \Omega} \beta|v|^{r} d \sigma=0\right\}, \\
K_{p}(u) & :=\int_{\Omega}|\nabla u|^{p} d x, K_{q}(u):=\int_{\Omega}|\nabla u|^{q} d x \tag{2.25}\\
\mathcal{K}_{r}(u) & :=\int_{\Omega} \alpha|u|^{r} d x+\int_{\partial \Omega} \beta|u|^{r} d \sigma \forall u \in W=W^{1, q}(\Omega), \\
\gamma & :=\frac{q-r}{q-p}, \Gamma:=\frac{q-p}{(r-p)^{1-\gamma}(q-r)^{\gamma}} .
\end{align*}
$$

In the case $r=q$ we have obtained the following result:
Theorem 2.6. ([7, Theorem 1]) Assume that $p, q \in(1, \infty), p \neq q, r=q$ and $\left(h_{\alpha \beta}\right)$ holds. Then $\widetilde{\lambda}>0$ and the set of eigenvalues of problem $(2.20)($ with $r=q)$ is precisely $\{0\} \cup(\widetilde{\lambda}, \infty)$, where $\widetilde{\lambda}$ is the constant defined by (2.23).

Note that problem (2.20) in the case $q=2$ and $p \in(1, \infty), p \neq 2$, has been previously studied by Abreu \& Madeira[1].

In the case $r \notin\{p, q\}$, we have the following result:
Theorem 2.7. ([8, Theorem 1.1], [10, Theorem 1]) Suppose that assumption $\left(h_{\alpha \beta}\right)$ holds.
(a) If either $(1<r<p<q<\infty)$ or $\left(1<q<p<r<\infty\right.$ and $r \in\left(1, \frac{q(N-1)}{N-q}\right)$ if $1<q<N)$, then the set of eigenvalues of problem (2.20) is $[0, \infty)$.
(b) If $1<p<r<q<\infty$, with $r<\frac{q(N-1)}{N-q}$ if $q<N$, then $0<\lambda_{*}<\lambda^{*}$ and for $\lambda \in\{0\} \cup\left[\lambda^{*}, \infty\right)$ there exists a weak solution $u_{\lambda} \in W^{1, p}(\Omega) \backslash\{0\}$ to problem (2.20). For any $\lambda \in\left(-\infty, \lambda_{*}\right) \backslash\{0\}$ problem (2.20) has only the trivial solution. Moreover, the constants λ_{*}, λ^{*} can be expressed as follows

$$
\begin{equation*}
\lambda_{*}=\inf _{v \in \mathcal{C}_{r} \backslash \mathcal{Z}_{r}} \frac{K_{p}(v)+K_{q}(v)}{\mathcal{K}_{r}(v)}, \lambda^{*}=\inf _{v \in \mathcal{C}_{r} \backslash \mathcal{Z}} \frac{\frac{1}{p} K_{p}(v)+\frac{1}{q} K_{q}(v)}{\frac{1}{r} \mathcal{K}_{r}(v)} . \tag{2.26}
\end{equation*}
$$

Thus, we were able to find the full eigenvalue sets in two of the three possible cases. The difficult case is $r \in(p, q)$, for which the eigenvalue set is not completely known.

Now, let us pay attention to the following eigenvalue problem governed by the (p, q, r)-Laplacian, which is defined by $\mathcal{A}_{p q r} u:=\Delta_{p} u+\Delta_{q} u+\Delta_{r} u$,

$$
\left\{\begin{array}{l}
-\mathcal{A}_{p q r}=\lambda \alpha(x)|u|^{r-2} u \quad \text { in } \Omega, \tag{2.27}\\
\frac{\partial u}{\partial \nu_{p q r}}=\lambda \beta(x)|u|^{r-2} u \quad \text { on } \partial \Omega,
\end{array}\right.
$$

under the assumption $\left(h_{\alpha \beta}\right)$ above and

$$
\left(h_{p q r}\right)^{\prime} p, q, r \in(1,+\infty), q<p, r \notin\{p, q\} .
$$

In the boundary condition $(2.27)_{2}, \frac{\partial u}{\partial \nu_{p q r}}$ denotes the conormal derivative corresponding to the differential operator $\mathcal{A}_{p q r}$, i.e.,

$$
\frac{\partial u}{\partial \nu_{p q r}}:=\left(\sum_{\alpha \in\{p, q, r\}}|\nabla u|^{\alpha-2}\right) \frac{\partial u}{\partial \nu} .
$$

where ν is the outward unit normal to $\partial \Omega$.
Such a triple-phase eigenvalue problem is motivated by some models arising in mathematical physics. More exactly, let us consider the operator

$$
Q u:=-\operatorname{div}\left(\frac{\nabla u}{\sqrt{1-|\nabla u|^{2}}}\right)
$$

This operator occurs in the electrostatic Born-Infeld equation (see [16]), in string theory, in particular in the study of D-branes (see, e.g., [29]), and in classical relativity, where Q represents the mean curvature operator in Lorent-Minkowski space (see, e.g., [12] and [17]). A second order approximation of Q is $\mathcal{B}:=-\triangle u-\triangle_{4} u-\frac{3}{2} \triangle_{6} u$, which is a negative $(2,4,6)$-Laplacian (see [40]), with the coefficient $-3 / 2$ instead of -1 .

In fact, one can consider a more general eigenvalue problem, with

$$
\mathcal{B} u:=\Delta_{p} u+\rho_{q} \Delta_{q} u+\rho_{r} \Delta_{r} u, \quad \rho_{q}, \rho_{r}>0
$$

instead of $\mathcal{A}_{p q r}$, and with

$$
\frac{\partial u}{\partial \nu_{\mathcal{B}}}:=\left(\sum_{\alpha \in\{p, q, r\}} \rho_{\alpha}|\nabla u|^{\alpha-2}\right) \frac{\partial u}{\partial \nu}, \rho_{p}=1
$$

instead of $\frac{\partial u}{\partial \nu_{p q r}}$ (see $[9$, Section 4]).
Under assumption $\left(h_{p q r}\right)^{\prime}$, the appropriate Sobolev space for problem (2.27) is $\widetilde{W}:=W^{1, \max \{p, r\}}(\Omega)$. One can define the eigenvalues of problem (2.27) as follows: $\lambda \in \mathbb{R}$ is an eigenvalue of problem (2.27) if there exists $u_{\lambda} \in \widetilde{W} \backslash\{0\}$ such that

$$
\begin{align*}
& \int_{\Omega}\left(\left|\nabla u_{\lambda}\right|^{p-2}+\left|\nabla u_{\lambda}\right|^{q-2}+\left|\nabla u_{\lambda}\right|^{r-2}\right) \nabla u_{\lambda} \cdot \nabla w d x \\
& \quad=\lambda\left(\int_{\Omega} a\left|u_{\lambda}\right|^{r-2} u_{\lambda} w d x+\int_{\partial \Omega} b\left|u_{\lambda}\right|^{r-2} u_{\lambda} w d \sigma\right) \forall w \in \widetilde{W} . \tag{2.28}
\end{align*}
$$

If u_{λ} is an eigenfunction corresponding to a positive eigenvalue λ then necessarily u_{λ} belongs to the set

$$
\begin{equation*}
\mathcal{C}:=\left\{u \in \widetilde{W} ; \int_{\Omega} \alpha|u|^{r-2} u d x+\int_{\partial \Omega} \beta|u|^{r-2} u d \sigma=0\right\} . \tag{2.29}
\end{equation*}
$$

Let us introduce the notations

$$
\begin{align*}
K_{\alpha}(u) & :=\int_{\Omega}|\nabla u|^{\alpha} d x, \alpha \in\{p, q, r\}, \\
k_{r}(u) & :=\int_{\Omega} \alpha|u|^{r} d x+\int_{\partial \Omega} \beta|u|^{r} d \sigma \forall u \in W, \tag{2.30}\\
\mathcal{Z} & :=\left\{v \in W ; k_{r}(v)=0\right\} .
\end{align*}
$$

Define

$$
\begin{equation*}
\Lambda_{r}:=\inf _{v \in \mathcal{C} \backslash \mathcal{Z}} \frac{K_{r}(v)}{k_{r}(v)} \tag{2.31}
\end{equation*}
$$

For $r \in(q, p)$ denote

$$
\begin{align*}
\Lambda_{*} & :=\inf _{v \in \mathcal{C} \backslash \mathcal{Z}}\left(\Gamma \frac{K_{p}(v)^{1-\gamma} K_{q}(v)^{\gamma}}{k_{r}(v)}+\frac{K_{r}(v)}{k_{r}(v)}\right) \\
\Lambda^{*} & :=\inf _{v \in \mathcal{C} \backslash \mathcal{Z}}\left(\Gamma \frac{r}{p^{1-\gamma} q^{\gamma}} \frac{K_{p}(v)^{1-\gamma} K_{q}(v)^{\gamma}}{k_{r}(v)}+\frac{K_{r}(v)}{k_{r}(v)}\right), \tag{2.32}\\
\gamma & :=\frac{p-r}{p-q}, \Gamma:=\frac{p-q}{(r-q)^{1-\gamma}(p-r)^{\gamma}} .
\end{align*}
$$

The main result concerning problem (2.27) is the following:
Theorem 2.8. (see [9, Theorems 1.1 and 1.2]) Assume that $\left(h_{p q r}^{\prime}\right)$ and ($h_{\alpha \beta}$) above are fulfilled. If $r \notin(q, p)$, then $\Lambda_{r}>0$ and the set of eigenvalues of problem (2.27) is precisely $\{0\} \cup\left(\Lambda_{r}, \infty\right)$, where Λ_{r} is the constant defined by (2.31). Otherwise, if $r \in$ (q, p), and $r<q(N-1) /(N-q)$ if $q<N$, then $0<\Lambda_{*}<\Lambda^{*}$, every $\lambda \in\{0\} \cup\left[\Lambda^{*}, \infty\right)$
is an eigenvalue of problem (2.27), and for any $\lambda \in\left(-\infty, \Lambda_{*}\right) \backslash\{0\}$ problem (2.27) has only the trivial solution.

It would be nice to see whether some of the above result could be extended to the case in which operator $\mathcal{A}_{p q}$ is replaced by the operator $\mathcal{Q}_{p q}:=\mathcal{Q}_{p}+\mathcal{Q}_{q}$, where for $\theta \in(1, \infty)$ we have denoted by \mathcal{Q}_{θ} the operator defined as follows

$$
\begin{equation*}
\mathcal{Q}_{\theta} u:=\operatorname{div}\left(F^{\theta-1}(\nabla u) F_{\xi}(\nabla u)\right), \tag{2.33}
\end{equation*}
$$

where F is a positive, one-homogeneous, convex function on \mathbb{R}^{N} and F_{ξ} denotes the gradient of F.

If we assume that $F \in C^{2}\left(\mathbb{R}^{N} \backslash\{0\}\right)$ and the Hessian matrix of $F^{p},\left(F_{\xi_{i} \xi_{j}}^{p}(\xi)\right)_{i, j}$, is positive definite on $\mathbb{R}^{N} \backslash\{0\}$, then operator \mathcal{Q}_{θ} is elliptic. This operator is a natural generalization of Δ_{θ} which can be obtained from \mathcal{Q}_{θ} if F is the Euclidean norm. A typical example of F satisfying the above conditions is the l_{r}-norm (denoted by $\left.\|\cdot\|_{r}\right)$,

$$
F(\xi):=\left(\sum_{i=1}^{N}\left|\xi_{i}\right|^{r}\right)^{1 / r}, r \in(1, \infty)
$$

for which the operator \mathcal{Q}_{θ} has the form

$$
\Delta_{r \theta}(u):=\operatorname{div}\left(\|\nabla u\|_{r}^{\theta-r} \nabla^{r} u\right)
$$

where

$$
\nabla^{r} u:=\left(\left|\frac{\partial u}{\partial x_{1}}\right|^{r-2} \frac{\partial u}{\partial x_{1}}, \cdots,\left|\frac{\partial u}{\partial x_{N}}\right|^{r-2} \frac{\partial u}{\partial x_{N}}\right)
$$

Note that $\Delta_{r \theta}$ is a nonlinear operator unless $\theta=r=2$ when it reduces to the usual Laplacian. An important special case is $r=\theta$, when $\Delta_{\theta \theta}$ is the so-called pseudo θ-Laplacian.

The operator defined in (2.33) is often called anisotropic p-Laplacian or Finsler p-Laplacian. There exist many papers dedicated to the study of its eigenvalues, for different boundary conditions (Dirichlet, Neumann, Robin or Steklov). See, e.g., [13], [20], [21], [22], [25], [32], [44] and references therein.

As an example, let us consider the eigenvalue problem

$$
\left\{\begin{array}{l}
-\mathcal{Q}_{p} u=\lambda \alpha(x)|u|^{q-2} u \text { in } \Omega, \tag{2.34}\\
F^{p-1}(\nabla u) \nabla_{\xi} F(\nabla u) \cdot \nu=\lambda \beta(x)|u|^{q-2} u \text { on } \partial \Omega .
\end{array}\right.
$$

As usual, a real number λ is an eigenvalue of problem (2.34) if there exists $u_{\lambda} \in$ $W^{1, p} \backslash\{0\}$ such that for all $w \in W^{1, p}(\Omega)$

$$
\begin{align*}
& \int_{\Omega} F\left(\nabla u_{\lambda}\right)^{p-1} \nabla_{\xi} F\left(\nabla u_{\lambda}\right) \cdot \nabla w d x \\
& =\lambda\left(\int_{\Omega} \alpha\left|u_{\lambda}\right|^{q-2} u_{\lambda} w d x+\int_{\partial \Omega} \beta\left|u_{\lambda}\right|^{q-2} u_{\lambda} w d \sigma\right) . \tag{2.35}
\end{align*}
$$

The following result holds for problem (2.34).

Theorem 2.9. ([4, Theorem 1.2]) Assume that $q \in(1, \infty), p \in\left(\frac{N q}{N+q-1}, \infty\right), p \neq q$, and $\left(h_{\alpha \beta}\right)$ are fulfilled. Then the set of eigenvalues of problem (2.34) is $[0, \infty)$.

We expect that many of the above results will be extended to eigenvalue problems governed by the operator $\mathcal{Q}_{p q}$.

References

[1] Abreu, J., Madeira, G., Generalized eigenvalues of the ($p, 2$)-Laplacian under a parametric boundary condition, Proc. Edinb. Math. Soc, 63(2020), no. 1, 287-303.
[2] Anane, A., Tsouli, N., On the second eigenvalue of the p-Laplacian, in "Nonlinear Partial Differential Equations (From a Conference in Fes, Maroc, 1994)" (Benkirane, A., Gossez, J.-P., Eds.), Pitman Research Notes in Math. 343, Longman, 1996.
[3] Arora, R., Shmarev, S., Double-phase parabolic equations with variable growth and nonlinear sources, Adv. Nonlinear Anal., 12(2023), no. 1, 304-335.
[4] Barbu, L., Eigenvalues for anisotropic p-Laplacian under a Steklov-like boundary condition, Stud. Univ. Babeş-Bolyai Math., 66(2021), no. 1, 85-94.
[5] Barbu, L., Burlacu, A., Moroşanu, G., On a bulk-boundary eigenvalue problem involving the (p, q)-Laplacian (in preparation).
[6] Barbu, L., Moroşanu, G., Eigenvalues of the negative (p, q)-Laplacian under a Steklovlike boundary condition, Complex Var. Elliptic Equ., 64(2019), no. 4, 685-700.
[7] Barbu, L., Moroşanu, G., Full description of the eigenvalue set of the (p, q)-Laplacian with a Steklov-like boundary condition, J. Differential Equations, 290(2021), 1-16.
[8] Barbu, L., Moroşanu, G., On a Steklov eigenvalue problem associated with the (p, q)-Laplacian, Carpathian J. Math., 37(2021), 161-171.
[9] Barbu, L., Moroşanu, G., Eigenvalues of the (p, q, r) - Laplacian with a parametric boundary condition, Carpathian J. Math., 38(2022), no. 3, 547-561.
[10] Barbu, L., Moroşanu, G., On the eigenvalue set of the (p, q) - Laplacian with a NeumannSteklov boundary condition, Differential Integral Equations, 36(2023), no. 5-6, 437-452.
[11] Barbu, L., Moroşanu, G., Full description of the spectrum of a Steklov-like eigenvalue problem involving the (p, q)-Laplacian, Ann. Acad. Rom. Sci., Ser. Math. Appl. (in press).
[12] Bartnik, R. and Simon, L., Space-like hypersurfaces with prescribed boundary values and mean curvature, Comm. Math. Phys., 87(1982), 131-152.
[13] Belloni M., Kawohl B., Juutinen P., The p-Laplace eigenvalue problem as $p \rightarrow \infty$ in a Finsler metric, J. Eur. Math. Soc., 8(2006), 123-138.
[14] Benci, V., D'Avenia, P., Fortunato, D., et al., Solitons in several space dimensions: Derrick's problem and infinitely many solutions, Arch. Ration. Mech. Anal., 154(2000), 297-324.
[15] Benci, V., Fortunato, D., Pisani, L., Soliton like solutions of a Lorentz invariant equation in dimension 3, Rev. Math. Phys., 10(1998), 315-344.
[16] Bonheure, D., Colasuonno, F., Földes, J., On the Born-Infeld equation for electrostatic fields with a superposition of point charges, Ann. Mat. Pura Appl., 198(2019), 749-772.
[17] Cheng, S.-Y., Yau, S.-T., Maximal space-like hypersurfaces in the Lorentz-Minkowski spaces, Ann. of Math., 104(1976), 407-419.
[18] Cherfils, L., Il'yasov, Y., On the stationary solutions of generalized reaction diffusion equations with $p \& q-$ Laplacian, Commun. Pure Appl. Anal., 4(2005), 9-22.
[19] Costea, N., Moroşanu, G., Steklov-type eigenvalues of $\Delta p+\Delta q$, Pure Appl. Funct. Anal., 3(2018), no. 1, 75-89.
[20] Della Pietra, F., Gavitone, N., Faber-Krahn inequality for anisotropic eigenvalue problems with Robin boundary conditions, Potential Anal., 41(2014), 1147-1166.
[21] Della Pietra F., Gavitone N., Sharp bounds for the first eigenvalue and the torsional rigidity related to some anisotropic operators, Math. Nachr., 287(2014), 194-209.
[22] Della Pietra F., Gavitone N., Piscitelli G., On the second Dirichlet eigenvalue of some nonlinear anisotropic elliptic operators, Bull. Sci. Math., 155(2019), 10-32.
[23] Drábek P., Robinson, S., Resonance problems for the p-Laplacian, J. Funct. Anal., 169(1999), 189-200.
[24] Fărcăşeanu, M., Mihăilescu, M., Stancu-Dumitru, D., On the set of eigenvalues of some PDEs with homogeneous Neumann boundary condition, Nonlinear Anal., 116(2015), 1925.
[25] Ferone, V., Kawohl, B., Remarks on Finsler-Laplacian, Proc. Amer. Math. Soc., 137(2008), no. 1, 247-253.
[26] Fortunato, D., Orsina, L., Pisani, L., Born-Infeld type equations for electrostatic fields, J. Math. Phys., 43(2002), 5698-5706.
[27] François, F., Spectral asymptotics stemming from parabolic equations under dynamical boundary conditions, Asymptot. Anal., 46(2006), no. 1, 43-52.
[28] García-Azorero, J.P., Peral, I., Existence and nonuniqueness for the p-Laplacian: nonlinear eigenvalues, Comm. Partial Differential Equations, 12(1987), 1389-1430.
[29] Gibbons, G.W., Born-Infeld particles and Dirichlet p-branes, Nuclear Phys. B, 514(1998), 603-639.
[30] Gyulov, T., Moroşanu, G., Eigenvalues of $-\left(\Delta_{p}+\Delta_{q}\right)$ under a Robin-like boundary condition, Ann. Acad. Rom. Sci. Ser. Math. Appl., 8(2016), 114-131.
[31] Huang, Z., The weak solutions of a nonlinear parabolic equation from two-phase problem, J. Inequal. Appl., 1(2021), 1-19.
[32] Kawohl B., Novaga M., The p-Laplace eigenvalue problem as $p \rightarrow 1$ and Cheeger sets in a Finsler metric, J. Convex Anal., 15(2008), 623-634.
[33] Lê, A., Eigenvalue problems for p-Laplacian, Nonlinear Anal., 64(2006), 1057-1099.
[34] Lindqvist, P., On the equation - div $\left(|\nabla u|^{p-2} \nabla u\right)-\lambda|u|^{p-2} u=0$, Proc. Amer. Math. Soc., 109(1990), 157-164.
[35] Marcellini, P., A variational approach to parabolic equations under general and p, q growth conditions, Nonlinear Anal., 194(2020), 111-456.
[36] Mihăilescu, M., An eigenvalue problem possesing a continuous family of eigenvalues plus an isolated eigenvale, Commun. Pure Appl. Anal., 10(2011), 701-708.
[37] Mihăilescu, M., Moroşanu, G., Eigenvalues of $-\triangle_{p}-\triangle_{q}$ under Neumann boundary condition, Canad. Math. Bull., 59(2016), no. 3, 606-616.
[38] Papageorgiou, N.S., Vetro, C., Vetro, F., Continuous spectrum for a two phase eigenvalue problem with an indefinite and unbounded potential, J. Differential Equations, 268(2020), no. 8, 4102-4118.
[39] Pohozaev, S.I., The fibering method and its applications to nonlinear boundary value problem, Rend. Istit. Mat. Univ. Trieste, 31(1999), no. 1-2, 235-305.
[40] Pomponio, A., Watanabe, T., Some quasilinear elliptic equations involving multiple PLaplacians, Indiana Univ. Math. J., 67(2018), no. 6, 2199-2224.
[41] Szulkin, A., Weth, T., The Method of Nehary Manifold, Handbook of Nonconvex Analysis and Applications, Int. Press, Somerville, MA, 597-632, 2010.
[42] Tanaka, M., Generalized eigenvalue problems for (p, q)-Laplacian with indefinite weight, J. Math. Anal. Appl., 419(2014), 1181-1192.
[43] Von Below, J., François, G., Spectral asymptotics for the Laplacian under an eigenvalue dependent boundary condition, Bull. Belg. Math. Soc. Simon Stevin, 12(2005), no. 4, 505-519.
[44] Wang G., Xia C., An optimal anisotropic Poincaré inequality for convex domains. Pacific J. Math., 258(2012), 305-326.
[45] Zhikov, V.V., Averaging of functionals of the calculus of variations and elasticity theory, Izv. Akad. Nauk SSSR Ser. Mat., 50(1986), 675-710; English translation in Math. USSRIzv., 29(1987), 33-66.

Luminița Barbu
"Ovidius" University,
Faculty of Mathematics and Computer Science, 124 Mamaia Blvd, 900527 Constanţa, Romania
e-mail: lbarbu@univ-ovidius.ro
Gheorghe Moroşanu
"Babeş-Bolyai" University,
Faculty of Mathematics and Computer Science, 1 Mihail Kogălniceanu Street, 400084 Cluj-Napoca, Romania
e-mail: morosanu@math.ubbcluj.ro

