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Existence results for Dirichlet double phase
differential inclusions
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Abstract. In this paper we consider a class of double phase differential inclusions
of the type{

−div
(
|∇u|p−2∇u+ µ(x)|∇u|q−2∇u

)
∈ ∂2

Cf(x, u), in Ω,
u = 0, on ∂Ω,

where Ω ⊂ RN , with N ≥ 2, is a bounded domain with Lipschitz boundary, f(x, t)
is measurable w.r.t. the first variable on Ω and locally Lipschitz w.r.t. the second
variable and ∂2

Cf(x, ·) stands for the Clarke subdifferential of t 7→ f(x, t). The
variational formulation of the problem gives rise to a so-called hemivariational
inequality and the corresponding energy functional is not differentiable, but only
locally Lipschitz. We use nonsmooth critical point theory to prove the existence of
at least one weak solution, provided the ∂2

Cf(x, ·) satisfies an appropriate growth
condition.
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1. Introduction and main results

In this paper we are interested in a class of boundary value problems of the
following type:

(P ) :

{
−div

(
|∇u|p−2∇u+ µ(x)|∇u|q−2∇u

)
∈ ∂2

Cf(x, u), in Ω,
u = 0, on ∂Ω,

where Ω ⊂ RN , with N ≥ 2, is a bounded domain with Lipschitz boundary and
∂2
Cf(x, t) stands for the Clarke subdifferential of the locally Lipschitz mapping t 7→
f(x, t).
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The presence of the double phase operator in the left-hand side requires that
weak solutions of problem (P ) to be sought in the Musielak-Orlicz-Sobolev space

W 1,H
0 (Ω) (see Section 2.2), while the presence of the Clarke subdifferential in the

right-hand gives rise to a hemivariational inequality. More precisely, we say that u ∈
W 1,H

0 (Ω) is a weak solution of (P ) if it satisfies the following hemivariational inequality∫
Ω

[
|∇u|p−2∇u · ∇v + µ(x)|∇u|q−2∇u · ∇v

]
dx ≤

∫
Ω

f0(x, u; v)dx,

for all v ∈W 1,H
0 (Ω). Here and hereafter, f0(x, ·; ·) denotes the generalized directional

derivative of f (see Section 2.3).
The conditions, which guarantee the existence of weak solutions for problem (P ),

and the main results of the paper are listed as follows.
(H1) 1 < p < q < +∞ and 0 ≤ µ(·) ∈ L1(Ω).
(f1) f : Ω× R→ R is such that:

(i). x 7→ f(x, t) is measurable on Ω for all t ∈ R;
(ii). t 7→ f(x, t) is locally Lipschitz for a.a. x ∈ Ω;
(iii). f(x, 0) = 0 for a.a. x ∈ Ω.

(f2) There exist r ∈ (1, p∗), α ∈ L
r
r−1 (Ω) and k > 0 such that

|ζ| ≤ α(x) + k|t|r−1, for a.a. x ∈ Ω all t ∈ R and all ζ ∈ ∂2
Cf(x, t),

where p∗ is the critical exponent corresponding to p, i.e.,

p∗ :=

{ Np
N−p , if p < N,

+∞, otherwise.

The first existence result is devoted to the case when the exponent controlling
the growth of ∂Cf(x, ·) is sufficiently small. The proof relies on the fact that in this
case the associated energy functional is coercive. More precisely, we have the following
existence result.

Theorem 1.1. Assume (H1), (f1) and (f2) hold. Then for any r ∈ (1, p) the problem
(P ) possesses at least one nontrivial weak solution.

If the exponent controlling the growth of t 7→ ∂Cf(x, t) is “large”, i.e., r ∈ (q, p∗),
then the energy functional is no longer coercive. In this case we use the Ekeland
variational principle to prove the existence of at least one weak solution by replacing
(f2) with the slightly more restrictive condition (f ′2) and assume in addition condition
(f3), listed below:

(f ′2) There exist r ∈ (1, p∗), and k > 0 such that

|ζ| ≤ k|t|r−1, for a.a. x ∈ Ω all t ∈ R and all ζ ∈ ∂2
Cf(x, t).

(f3) There exist a nonempty open subset ω ⊂ Ω and δ,K > 0, s ∈ (1, p) such
that

f(x, t) ≥ Kts, whenever (x, t) ∈ ω × (0, δ].

Theorem 1.2. Assume (H1), (f1), (f ′2) and (f3) hold. Then for any r ∈ (q, p∗) the
problem (P ) possesses at least one nontrivial weak solution.
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We point out the fact that Theorem 1.2 is new even in the “smooth case”, i.e.,
f(x, ·) ∈ C1(R) on the one hand due to the fact that we do not impose the condition
p < N and we allow µ ∈ L1(Ω) and, on the other hand, due to the fact that we do
not impose an Ambrosetti-Rabinowitz type condition.

2. Preliminaries

2.1. Generalized N -functions and Musielak-Orlicz spaces

In this subsection we recall some definitions and basic properties of general-
ized Orlicz spaces also referred to as Musielak-Orlicz spaces. For more details and
connections see, e.g., [2, 7, 10].

Definition 2.1. A continuous and convex function ϕ : R→ [0,∞) is called N -function
if it satisfies the following conditions:

(i). ϕ(t) = 0 if and only if t = 0;
(ii). ϕ(−t) = ϕ(t) for all t ∈ R;

(iii). limt→0
ϕ(t)
t = 0 and limt→∞

ϕ(t)
t =∞.

Definition 2.2. Assume Ω ⊂ RN is a bounded domain. An application Φ : Ω × R →
[0,∞) is called generalized N -function if x 7→ Φ(x, t) is measurabe for all t ∈ R and
t 7→ Φ(x, t) is an N -function for a.a. x ∈ Ω.

Note that if Φ is a generalized N -function, then the corresponding Young con-
jugate function, Φ̃ : Ω× R→ [0,∞), defined by

Φ̃(x, s) := sup
t≥0
{st− Φ(x, t)} ,

is also a generalized N -function.

Definition 2.3. A generalized N -function Φ is said to satisfy the ∆2-condition if there
exist a constant k > 0 and a nonnegative function h ∈ L1(Ω) such that

Φ(x, 2t) ≤ kΦ(x, t) + h(x) for a.e. x ∈ Ω and all t ∈ R.

Let Φ1,Φ2 be two generalized N -functions. We say that Φ1 dominates Φ2, de-
noted Φ1 � Φ2, if there exist two constants K,L > 0 and a nonnegative function
h ∈ L1(Ω) such that

Φ2(x, t) ≤ KΦ1(x, Lt) + h(x), for a.a. x ∈ Ω and all t ∈ R.
The functions Φ1,Φ2 are called equivalent, denoted Φ1 ' Φ2, if Φ1 � Φ2 and Φ2 � Φ1.

For a generalized N -function Φ, the modular %Φ : L0(Ω) → R is the functional
given by

%Φ(u) :=

∫
Ω

Φ(x, |u|) dx,

where by L0(Ω) we denote the set of measurable functions defined on Ω. We consider
the following classes of functions:

(i). The Musielak-Orlicz class KΦ(Ω) defined by

KΦ(Ω) :=
{
u ∈ L0(Ω) : %Φ(u) <∞

}
;
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(ii). The Musielak-Orlicz space LΦ(Ω) is the linear space generated by KΦ(Ω).

Note that KΦ(Ω) ⊆ LΦ(Ω) and equality occurs if and only if KΦ(Ω) is a linear space,
or equivalently Φ satisfies the ∆2-condition.

The mapping ‖ · ‖Φ : LΦ(Ω→ [0,∞) defined by

‖u‖Φ := inf

{
β > 0 : %Φ

(
u

β

)
≤ 1

}
defines a norm (the so-called Luxemburg norm).

The following proposition highlights some useful properties of the Musielak-
Orlicz spaces.

Proposition 2.4. Let Φ,Ψ be two generalized N -functions. Then the following asser-
tions hold:

(i). The Musielak-Orlicz space (LΦ(Ω), ‖ · ‖Φ) is a Banach space;
(ii). If Φ � Ψ, then LΦ(Ω) ↪→ LΨ(Ω);
(iii). %Φ(u) < 1(resp. %Φ(u) = 1; %Φ(u) > 1) if and only if ‖u‖Φ < 1 (resp. ‖u‖Φ =

1; ‖u‖Φ > 1);
(iv). The following Hölder-type inequality holds∫

Ω

|uv| dx ≤ 2‖u‖Φ‖v‖Φ̃, for all u ∈ LΦ(Ω), v ∈ LΦ̃(Ω).

For a generalized N -function Φ the corresponding Musielak-Orlicz-Sobolev space
W 1,Φ(Ω) is defined by

W 1,Φ(Ω) :=
{
u ∈ LΦ(Ω) : |∇u| ∈ LΦ(Ω)

}
.

By a slight abuse, henceforth we denote ‖∇u‖Φ instead of ‖|∇u|‖Φ. Obviously the
mapping ‖ · ‖1,Φ : W 1,Φ(Ω)→ [0,∞)

‖u‖1,Φ := ‖u‖Φ + ‖∇u‖Φ
defines a norm.

The Musielak-Orlicz-Sobolev space W 1,Φ
0 (Ω) is defined as completion of C∞0 (Ω)

in W 1,Φ(Ω) w.r.t. the norm ‖ · ‖1,Φ.

Proposition 2.5 (Musielak [10]). Assume Φ is a generalized N -function such that

inf
x∈Ω

Φ(x, 1) > 0. (2.1)

Then (W 1,Φ(Ω), ‖ · ‖1,Φ) and (W 1,Φ
0 (Ω), ‖ · ‖1,Φ) are Banach spaces. Furthermore, if

LΦ(Ω) is reflexive, then W 1,Φ(Ω) and W 1,Φ
0 (Ω) are also reflexive.

2.2. The double phase space

Throughout this section we consider the particular case of the double-phase
space, required to study problem (P ). Note that if (H1) holds, then the double phase
function H : Ω× R→ [0,∞) given by

H(x, t) := |t|p + µ(x)|t|q

is a generalized N -function satisfying (2.1). Simple computations yield

H(x, 2t) ≤ 2qH(x, t), for a.a. x ∈ Ω and all t ∈ R,
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i.e., H satisfies the ∆2-condition. Moreover, according to Colasuonno & Squassina
[4, Proposition 2.14] the space (LH(Ω), ‖ · ‖H) is uniformly convex. Consequently,

Proposition 2.5 ensures that W 1,H(Ω) and W 1,H
0 (Ω) are reflexive. Moreover, if (H1)

holds, then the following Poincaré-type inequality holds

‖u‖H ≤ C‖∇u‖H, for all u ∈W 1,H
0 (Ω),

for some positive constant C independent of u. Thus, on the space W 1,H
0 (Ω) we can

use the equivalent norm

‖u‖ := ‖∇u‖H.
We introduce next the space

Lqµ(Ω) :=

{
u ∈ L0(Ω) :

∫
Ω

µ(x)|u|q dx <∞
}
,

endowed with the seminorm

|u|q,µ :=

(∫
Ω

µ(x)|u|q dx
)1/q

.

The definition of the Luxemburg norm together with the fact that H(x, t) is a gener-
alized N -function which satisfies the ∆2-condition. So, the following estimates hold:

‖u‖qH ≤
∫

Ω

[|u|p + µ(x)|u|q]dx ≤ ‖u‖pH, ∀u ∈ L
H(Ω), with ‖u‖H < 1, (2.2)

and

‖u‖pH ≤
∫

Ω

[|u|p + µ(x)|u|q]dx ≤ ‖u‖qH, ∀u ∈ L
H(Ω), with ‖u‖H > 1. (2.3)

The following proposition highlights some embedding results that will play a
crucial role throughout the subsequent sections.

Proposition 2.6 (Colasuonno & Squassina [4]). Assume (H1) holds. The following
statements are true:

(i). The embedding LH(Ω) ↪→ Lp(Ω) ∩ Lqµ(Ω) is continuous;

(ii). If µ ∈ L∞(Ω), then the embedding Lq(Ω) ↪→ LH(Ω) is continuous;

(iii). If p ≤ N , then the embedding W 1,H
0 (Ω) ↪→ Lr(Ω) is compact for all r ∈

(1, p∗);

(iv). If p > N , then the embedding W 1,H
0 (Ω) ↪→ Lr(Ω) is compact for all r ∈

(1,+∞).

2.3. Locally Lipschitz functionals

We recall that a functional φ : X → R, with X being a Banach space, is said
to be locally Lipschitz if, for every u ∈ X there exists a neighborhood V of u and a
positive constant L, which depends on the neighborhood V, such that

|φ(w)− φ(v)| ≤ L‖w − v‖, ∀v, w ∈ V.
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Definition 2.7. Let φ : X → R be a locally Lipschitz function. The generalized direc-
tional derivative of φ at u ∈ X in the direction v ∈ X, denoted φ0(u; v), is defined
by

φ0(u; v) := lim sup
w→u
t↓0

φ(w + tv)− φ(w)

t
. (2.4)

The following result points out some important properties of generalized directional
derivatives that will be used in the sequel. For the proof one can consult Clarke [3].

Proposition 2.8. Let φ, ρ : X → R be two locally Lipschitz functions. Then we have

(i). for each fixed u ∈ X, the function v 7→ φ0(u; v) is finite, subadditive and
satisfies

|φ0(u; v)| ≤ L‖v‖,
where L > 0 is the Lipschitz constant near the point u;

(ii). the function (u, v) 7→ φ0(u; v) is upper semicontinuous;
(iii). φ0(u;−v) = (−φ)0(u; v), for all u, v ∈ X;
(iv). φ0(u;µv) = µφ0(u; v), for all u, v ∈ X and all µ > 0;
(v). (φ+ ρ)0(u; v) ≤ φ0(u; v) + ρ0(u; v), for all u, v ∈ X.

Definition 2.9. The Clarke subdifferential of a locally Lipschitz function φ : X → R
at a point u ∈ X, denoted ∂Cφ(u), is the subset of X∗ defined by

∂Cφ(u) :=
{
ξ ∈ X∗ : φ0(u; v) ≥ 〈ξ, v〉, ∀v ∈ X

}
. (2.5)

We point out the fact that if φ is convex, then the Clarke subdifferential ∂Cφ
coincides with the subdifferential of φ in the sense of Convex Analysis. Although is
no longer monotone, for each u ∈ X the generalized gradient ∂Cφ(u) is a nonempty,
convex and weak*-compact subset of X∗ (see, e.g., Clarke [3, Proposition 2.1.2]).
Furthermore, if φ ∈ C1(X,R), then ∂Cφ(u) = {φ′(u)}.

Theorem 2.10 (Lebourg’s Mean Value Theorem [8]). Let U be an open subset of a
Banach space X and u, v be two points of U such that the line segment

[u, v] := {(1− t)u+ tv : 0 ≤ t ≤ 1} ⊂ U.
If φ : U → R is a locally Lipschitz function, then there exist t ∈ (0, 1) and

ζ ∈ ∂Cφ(u+ t(v − u)) such that

φ(v)− φ(u) = 〈ζ, v − u〉.

Definition 2.11. We say that u ∈ X is a critical point for the locally Lipschitz func-
tional φ : X → R if 0 ∈ ∂Cφ(u).

Remark 2.12. The point u ∈ X is critical for φ if and only if φ0(u; v) ≥ 0, ∀v ∈ X.
Furthermore, any local extremum of φ is in fact a critical point.

We close this subsection by recalling the well-known Ekeland variational principle
(see, e.g., [6]) which will play a key role in the proof of Theorem 1.2.

Theorem 2.13. Let (Y, d) be a complete metric space and let ϕ : Y → (−∞,∞] be
a proper, lower semicontinuous and bounded from below functional. Then for any
ε, λ > 0 and any v ∈ Y satisfying ϕ(v) ≤ infY ϕ+ ε there exists u ∈ Y such that:
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(i). ϕ(u) ≤ ϕ(v);
(ii). d(v, u) ≤ 1

λ ;
(iii). −ελd(u,w) ≤ ϕ(w)− ϕ(u), for all w ∈ Y.

3. Proof of the main results

Define the functionals I : W 1,H
0 (Ω)→ R and F : Lr(Ω)→ R by

I(u) :=

∫
Ω

[
1

p
|∇u|p +

µ(x)

q
|∇u|q

]
dx for all u ∈W 1,H

0 (Ω)

and

F (w) :=

∫
Ω

f(x,w)dx for all w ∈ Lr(Ω)

respectively. Then I ∈ C1(W 1,H
0 (Ω),R) with its derivative given by

〈I ′(u), v〉 =

∫
Ω

[
|∇u|p−2∇u · ∇v + µ(x)|∇u|q−2∇u · ∇v

]
dx, (3.1)

for all v ∈W 1,H
0 (Ω).

Due to the Aubin-Clarke Theorem (see, e.g., [3, Theorem 2.7.5]) F is locally
Lipschitz and

∂CF (w) ⊆
∫

Ω

∂2
Cf(x,w)dx,∀w ∈ Lr(Ω),

in the sense that for any ξ ∈ ∂CF (w) there exists ζ ∈ L
r
r−1 (Ω) such that 〈ξ, z〉 =

∫
Ω

ζ(x)z(x)dx, ∀z ∈ Lr(Ω),

ζ(x) ∈ ∂2
Cf(x,w(x)), for a.a. x ∈ Ω.

(3.2)

On the other hand, Proposition 2.6 ensures that for any r ∈ (1, p∗) the embedding

operator i : W 1,H
0 (Ω) → Lr(Ω) is compact and its adjoint operator, i∗ : L

r
r−1 (Ω) →

(W 1,H
0 (Ω))∗, is also compact. Consequently, the energy functional associated to prob-

lem (P ), E : W 1,H
0 (Ω)→ R

E(u) := I(u)− F (i(u)), (3.3)

is well defined, weakly lower semicontinuous and locally Lipschitz. Moreover, basic
subdifferential calculus (see, e.g., Carl, Le & Motreanu [1, Propositions 2.173, 2.174
& Corollary 2.180] ensures that

∂CE(u) ⊆ I ′(u)− i∗∂CF (i(u)), ∀u ∈W 1,H
0 (Ω).

Henceforth, for any u ∈ W 1,H
0 (Ω) and any ζ ∈ L

r
r−1 (Ω) we simply write u and ζ

instead of i(u) and i∗(ζ), respectivelly.

Lemma 3.1. If r ∈ (1, p∗), then any critical point of E (in the sense of Definition
2.11) is a weak solution for problem (P ).
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Proof. Let u ∈W 1,H
0 (Ω) be a critical point of E. Then 0 ∈ ∂CE(u), or equivalently

I ′(u) ∈ ∂CF (u).

Keeping in mind (3.2), there exists ζ ∈ L
r
r−1 (Ω) such that ζ ∈ ∂2

Cf(x, u) a.a. in Ω
and

〈I ′(u), v〉 =

∫
Ω

ζvdx, ∀v ∈W 1,H
0 (Ω).

Now, using the definition of the Clarke subdifferential and (3.1) we get that∫
Ω

[
|∇u|p−2∇u · ∇v + µ(x)|∇u|q−2∇u · ∇v

]
dx ≤

∫
Ω

f0(x, u; v)dx,

for all v ∈W 1,H
0 (Ω), i.e., u is indeed a weak solution for problem (P ). �

Proof of Theorem 1.1. Let u ∈W 1,H
0 (Ω) be fixed. Simple computations show that

1

q
%H(|∇u|) ≤ I(u) ≤ 1

p
%H(|∇u|),

which combined with (2.2)-(2.3) leads to the following inequalities:

1

q
‖u‖q ≤ I(u) ≤ 1

p
‖u‖p, if ‖u‖ < 1, (3.4)

and
1

q
‖u‖p ≤ I(u) ≤ 1

p
‖u‖q, if ‖u‖ > 1, (3.5)

respectivelly. On the other hand, using Lebourg’s Mean Value Theorem and the com-

pact embedding W 1,H
0 (Ω) ↪→ Lr(Ω) we get

|F (u)| =

∣∣∣∣∫
Ω

f(x, u)dx

∣∣∣∣ ≤ ∫
Ω

|f(x, u)− f(x, 0)|dx ≤
∫

Ω

|ζ||u|dx

≤
∫

Ω

(α(x) + k|u|r−1)|u|dx ≤ ‖α‖ r
r−1
‖u‖r − k‖u‖rr

≤ C0‖α‖ r
r−1
‖u‖+ C1‖u‖r,

for some suitable constants C0, C1 > 0. Thus, for any u ∈W 1,H
0 (Ω) with ‖u‖ > 1 one

has

E(u) = I(u)− F (u) ≥ 1

q
‖u‖p − C0‖α‖ r

r−1
‖u‖ − C1‖u‖r →∞, as ‖u‖ → ∞,

i.e., the energy functional E is coercive. Since E is also weakly lower semicontinuous,
The Direct Method in the Calculus of Variations (see, e.g., [5, Theorem 1.7]) ensures
the existence of a global minimizer u0 of E, i.e.,

E(u0) = inf
u∈W 1,H

0 (Ω)
E(u).

The conclusion follows now from Remark 2.12 and Lemma 3.1. �
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Lemma 3.2. Assume (H1), (f1) and (f ′2) hold. If r ∈ (q, p∗), then there exist ρ ∈ (0, 1)
and γ > 0 such that

inf
u∈∂Bρ(0)

E(u) ≥ γ,

where ∂Bρ(0) := {u ∈W 1,H
0 (Ω) : ‖u‖ = ρ}.

Proof. Since (f ′2) is in fact condition (f2) with α ≡ 0, it follows that there exists
C1 > 0 such that

|F (u)| ≤ C1‖u‖r, ∀u ∈W 1,H
0 (Ω).

Thus, for fixed ρ ∈
(

0,min
{

1, (qC1)
1
q−r

})
and any u ∈ ∂Bρ(0) one has

E(u) ≥ 1

q
‖u‖q − C1‖u‖r =

1

q
ρq
(
1− qC1ρ

r−q) .
The choice of ρ implies that γ := 1

qρ
q (1− qC1ρ

r−q) > 0, thus completing the proof.

�

Lemma 3.3. Assume (H1), (f1) and (f3) hold. If r ∈ (q, p∗), then there exist w0 ∈
W 1,H

0 (Ω) \ {0} and t0 ∈ (0, 1) such that

E(tw0) < 0, ∀t ∈ (0, t0).

Proof. Let x0 ∈ ω be fixed and choose R > 0 such that B̄R(x0) ⊂ ω. Then there
exists w0 ∈ C∞0 (ω) such that{

w0(x) = 1, in BR(x0),
0 ≤ w0(x) ≤ 1, on ω \ B̄R(x0).

Obviously w0 ∈W 1,H
0 (Ω) and ‖w0‖ > 0. Then, for any 0 < t < min{1, δ, ‖w0‖−1} the

following estimates hold

F (tw0) =

∫
Ω

f(x, tw0(x))dx =

∫
ω

f(x, tw0(x))dx ≥
∫
ω

Ktsdx = Kmeas(ω)ts,

and

E(tw0) = I(tw0)− F (tw0) ≤ 1

p
‖tw0‖p −Kmeas(ω)ts

= Kmeas(ω)ts
[
‖w0‖ptp−s

pKmeas(ω)
− 1

]
,

which shows E(tw0) < 0 for all t ∈ (0, t0) with

t0 := min

{
1, δ, ‖w0‖−1,

(
pKmeas(ω)

‖w0‖p

) 1
p−s
}
.

�

Proof of Theorem 1.2. Lemmas 3.2 and 3.3 ensure that there exists ρ ∈ (0, 1) such
that

inf
B̄ρ(0)

E < 0 < inf
∂Bρ(0)

E.
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Let {wn} ⊂ B̄ρ(u) be a minimizing sequence for E|B̄ρ(0), i.e., E(wn) →
infB̄ρ(0)E, as n→∞. Passing, if necessary, to a subsequence we may assume that

E(wn) < inf
B̄ρ(0)

E +
1

n
, ∀n ≥ 1. (3.6)

Applying Ekeland’s variational principle with ε := 1
n and λ :=

√
n we get that there

exists {un} ⊂ B̄ρ(0) such that

E(un) ≤ E(wn), ∀n ≥ 1, (3.7)

and

− 1√
n
‖v − un‖ ≤ E(v)− E(un), ∀v ∈ B̄ρ(0). (3.8)

The sequence {un} is clearly bounded, hence there exists u ∈ B̄ρ(0) and a subsequence
{unk} of {un} such that

unk ⇀ u in W 1,H
0 (Ω) and unk → u in Lr(Ω).

For any t ∈ (0, 1) the element vt := unk + t(u− unk) lies in B̄ρ(0) and using (3.8) we
have

− t√
n
‖u− unk‖ ≤ E(unk + t(u− unk))− E(unk).

Dividing the last relation by t > 0 then taking the lim sup as t↘ 0 we obtain

− 1√
n
≤ lim sup

t↘0

[
I(unk + t(u− unk))− I(unk)

t

+
(−F )(unk + t(u− unk))− (−F )(unk)

t

]
≤〈I ′(unk), u− unk〉+ (−F )0(unk ;u− unk),

which can be rewritten as

〈I ′(unk), unk − u〉 ≤
1√
n

+ F 0(unk ;unk − u), ∀n ≥ 1.

Taking the lim sup as n→∞ and using Proposition 2.8 we have

lim sup
n→∞

〈I ′(unk , unk − u)〉 ≤ F 0(u; 0) = 0.

Keeping in mind that I ′ of type (S)+ (see, e.g., [9, Proposition 3.1]) we infer that

unk → u in W 1,H
0 (Ω).

But, due to (3.6) and (3.7), we conclude

E(u) = lim
n→∞

E(unk) = inf
B̄ρ(0)

E < 0,

which shows that u is a nonzero local minimizer of E, and, according to Remark 2.12
a nontrivial critical point. �
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tial Differential Equations in Anisotropic Musielak-Orlicz Spaces, Springer Monographs
in Mathematics, Springer, 2021.

[3] Clarke, F.H., Optimization and Nonsmooth Analysis, Classics in Applied Mathematics,
Society for Industrial and Applied Mathematics, 1990.

[4] Colasuonno, F., Squassina, M., Eigenvalues for double phase integrals, Ann. Mat. Pura
Appl., 195(2016), 1917-1959.
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