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Abstract. In the present note we study a semilinear elliptic Dirichlet problem
involving a singular term with variable exponent of the following type −∆u = f(x)

uγ(x)
, in Ω

u > 0, in Ω
u = 0, on ∂Ω

(P)

Existence and uniqueness results are proved when f ≥ 0.
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1. Introduction

In the present note we consider the following semilinear singular elliptic problem −∆u = f(x)
uγ(x)

, in Ω
u > 0, in Ω
u = 0, on ∂Ω

(P)

where Ω is a bounded domain of RN (N > 2) with smooth boundary, f ∈ Lp(Ω)
(p > N

2 ) is a nonnegative function and γ ∈ C1(Ω) is positive. Singular nonlinear
problems were introduced by Fulks and Maybee [10] as a mathematical model for
describing the heat conduction in an electric medium and received a considerable
attention after the seminal paper of Crandall, Rabinowitz and Tartar [8]. There is a
wide literature dealing with singular term of the type u−γ (i.e. γ(x) = const.) when
0 < γ < 1. In such a case one can associate to the problem an energy functional
which, although not continuously Gâteaux differentiable, is strictly convex. Its global
minimum turns out to be the unique (weak) solution of (P) and variational methods
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apply (see for example [9, 11, 17] where the singular term is perturbed by suitable
nonlinearities). When γ ≥ 1 such kind of problems are less investigated. Notice in fact
that the energy functional (when γ > 1) in general is not defined on the whole space
H1

0 (Ω). However, one may still prove existence results in the framework of variational
setting by constructing suitable approximation sequences or employing techniques
from non smooth analysis (see for instance [3, 4, 5, 6, 13, 15, 16]).

As far as we know, the variable exponent case has been treated recently in [7].
Using Schauder’s fixed point theorem, the authors prove the existence of an increasing
sequence of solutions of non-singular approximating problems which converges to a
weak solution of (P) in the natural energy space H1

0 (Ω) or to a function of H1
loc(Ω)

according to the behaviour of γ on the boundary of Ω.

In the present note we will complete the result of [7] showing the uniqueness of
the solution of (P). For general variable exponent we don’t expect to have solutions in
H1

0 (Ω) (notice that in [2], where the uniqueness issue is addressed, the authors assume
the solutions to be in H1

0 (Ω)). As in [4], a weak solution is meant in the following
sense:

Definition 1.1. A weak solution of (P) is a function u ∈ H1
loc(Ω) such that u > 0 in

Ω, (u− ε)+ ∈ H1
0 (Ω) for every ε > 0,

f(x)

uγ(x)
∈ L1

loc(Ω),

and ∫
Ω

∇u∇ϕ dx =

∫
Ω

f(x)

uγ(x)
ϕ dx for all ϕ ∈ C1

c (Ω).

Our result reads as follows:

Theorem 1.2. Assume that f ∈ Lp(Ω) (p > N
2 ) is a nonnegative function and γ ∈

C1(Ω) is a positive function. Then, problem (P) has a unique weak solution.

2. Proof of Theorem 1.2

Existence of solution of (P). The existence of a solution has been already proved in
[7]. We propose here a slightly different approach which is purely variational and does
not make use of the Schauder fixed point theorem. Denote by g : Ω × (0,+∞) → R
and gn : Ω× R→ R the functions

g(x, t) =
f(x)

tγ(x)
, and

gn(x, t) = g(x, t+ +
1

n
) for every n ∈ N+.

For every n ∈ N+, gn is a Carathéodory function and if Gn : Ω × R → R is its
primitive, i.e.

Gn(x, t) =

∫ t

0

gn(x, s)ds,



On a singular elliptic problem with variable exponent 45

the following inequalities hold:

0 < gn(x, t) ≤ f(x)n‖γ‖∞

|Gn(x, t)| ≤ f(x)n‖γ‖∞ |t|

Denote by En : H1
0 (Ω)→ R the functional

En(u) =
1

2
‖u‖2 −

∫
Ω

Gn(x, u(x))

which is well defined, coercive, sequentially weakly lower semicontinuous. Let un be
its global minimum.

Since the functional En is of class C1(H1
0 (Ω)) with derivative at u given by

E ′n(u)(ϕ) =

∫
Ω

∇u∇ϕ−
∫

Ω

gn(x, u)ϕ for every ϕ ∈ H1
0 (Ω)

un turns out to be a weak solution of{
−∆u = gn(x, u), in Ω
u = 0, on ∂Ω.

(Pn)

Thus, in particular,∫
Ω

∇un∇ϕ =

∫
Ω

gn(x, un)ϕ for all ϕ ∈ H1
0 (Ω). (2.1)

Testing the above equality with ϕ = u−n we obtain at once that un ≥ 0. By classical
regularity results, un ∈ C1,α(Ω) for some α ∈ (0, 1) and by the strong maximum
principle, un > 0 in Ω. Moreover, since the function gn(x, ·) is decreasing, in a standard
way one can prove that un is the unique solution to (Pn).

As in [8], let n > m and denote by w = un − um. Then w ∈ C1
0 (Ω) and

−∆w =
f(x)(

un + 1
n

)γ(x)
− f(x)(

um + 1
m

)γ(x)
.

Using w− ∈ H1
0 (Ω) as test function in the above equality, we deduce that

−‖w−‖2 =

∫
{x∈Ω : un<um}

(
f(x)(

un + 1
n

)γ(x)
− f(x)(

um + 1
m

)γ(x)

)
w− ≥ 0,

which implies w− = 0, i.e. un(x) ≥ um(x) for every x ∈ Ω.

Put now z = um+ 1
m −

(
un + 1

n

)
. Then, z ∈ C1(Ω) and z− ∈ H1

0 (Ω) (recall that
n > m) so, using z− as test function in

−∆z =
f(x)(

um + 1
m

)γ(x)
− f(x)(

un + 1
n

)γ(x)
,

we obtain

−‖z−‖2 =

∫
{x∈Ω : um+ 1

m<un+ 1
n}

(
f(x)(

um + 1
m

)γ(x)
− f(x)(

un + 1
n

)γ(x)

)
z− ≥ 0,
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which implies z− = 0, i.e. un(x) + 1
n ≤ um(x) + 1

m for every x ∈ Ω. In conclusion, if
n > m then

0 ≤ un(x)− um(x) ≤ 1

m
− 1

n
for all x ∈ Ω.

Hence, there exists u ∈ C0(Ω) such that un ⇒ u in Ω and

un ≤ u ≤ un +
1

n
for every n ∈ N. (2.2)

Let us prove that u is a solution of (P). It is clear that u > 0 in Ω. Moreover if K ⊂ Ω
is a compact set, then, for suitable constants c0, c1, c2 > 0,

u(x) ≥ c0 for all x ∈ K,

0 ≤ f(x)

u(x)γ(x)
≤ c1f(x) and 0 ≤ f(x)

un(x)γ(x)
≤ c2f(x) for all x ∈ K,

thus in particular, f(x)
uγ(x)

is in L1
loc(Ω).

Let δ be a positive number and denote

Ωδ = {x ∈ Ω : d(x, ∂Ω) < δ}.
We distinguish two cases. Assume that ‖γ‖L∞(Ωδ) ≤ 1. Following [7], the se-

quence {un} is bounded in H1
0 (Ω) (for completeness we give the details). For a suitable

constant c we obtain

‖un‖2 =

∫
Ωδ

f(x)

(un + 1
n )γ(x)

un +

∫
Ω\Ωδ

f(x)

(un + 1
n )γ(x)

un

≤
∫

Ωδ

f(x)u1−γ(x)
n + c

∫
Ω\Ωδ

f(x)un

≤
∫

Ω

f(x)(1 + (1 + c)un) = ‖f‖1 + S(1 + c)‖f‖ 2N
N+2
‖un‖,

being S the embedding constant of H1
0 (Ω) ↪→ L2?(Ω).

Thus, u turns out to be also the limit in the weak topology of H1
0 (Ω) of {un}.

Being u ∈ H1
0 (Ω), for every ε > 0, (u − ε)+ ∈ H1

0 (Ω). Let ϕ ∈ C1
c (Ω) and denote by

c1 the positive constant such that un ≥ c1 on suppϕ. Since

gn(x, un(x))ϕ(x)→ f(x)

u(x)γ(x)
ϕ(x) for all x ∈ Ω

and

0 ≤ gn(x, un(x))ϕ(x) ≤ f(x)

c
γ(x)
1

ϕ(x) ∈ L1(Ω),

passing to the limit in∫
Ω

∇un∇ϕ =

∫
Ω

gn(x, un)ϕ for all n ∈ N

we obtain ∫
Ω

∇u∇ϕ =

∫
Ω

f(x)

u(x)γ(x)
ϕ,



On a singular elliptic problem with variable exponent 47

as we claimed.

Otherwise, ‖γ‖L∞(Ωδ) > 1. Set γ∗ = ‖γ‖L∞(Ωδ). In this case we prove that{
u
γ∗+1

2
n

}
is bounded in H1

0 (Ω). Since

∫
Ω

∇un∇uγ
∗

n = γ∗
∫

Ω

uγ
∗−1
n |∇un|2 = γ∗

(
2

γ∗ + 1

)2 ∫
Ω

∣∣∣∣∇u γ∗+1
2

n

∣∣∣∣2 ,
using uγ

∗

n as test function in (2.1), we obtain∫
Ω

|∇u
γ∗+1

2
n |2 =

4γ∗

(γ∗ + 1)2

∫
Ω

gn(x, un)uγ
∗

n

≤ 4γ∗

(γ∗ + 1)2

(∫
Ωδ

f(x)uγ
∗−γ(x)
n + c0

∫
Ω\Ωδ

f(x)uγ
∗

n

)

≤ 4γ∗

(γ∗ + 1)2

(∫
Ω

f(x)(1 + (1 + c0)uγ
∗

n )

)
=

4γ∗

(γ∗ + 1)2
‖f‖1 +

4γ∗

(γ∗ + 1)2
(1 + c0)

∫
Ω

f(x)uγ
∗

n .

By the assumption, f ∈ L
N(γ∗+1)
N+2γ∗ and applying Hölder inequality we obtain∫

Ω

f(x)un(x)γ
∗
≤

(∫
Ω

f(x)
N(γ∗+1)
N+2γ∗

) N+2γ∗
N(γ∗+1)

(∫
Ω

un(x)
N(γ∗+1)
N−2

)N(γ∗+1)
(N−2)γ∗

≤ ‖f‖N(γ∗+1)
N+2γ∗

‖u
γ∗+1

2
n ‖

γ∗+1
2γ∗

2∗ ≤ ‖f‖N(γ∗+1)
N+2γ∗

(1 + S‖u
γ∗+1

2
n ‖).

Thus, for suitable constants one has

‖u
γ∗+1

2
n ‖2 ≤ c1 + c2‖u

γ∗+1
2

n ‖,

that is our claim. Thus, u
γ∗+1

2 ∈ H1
0 (Ω) and from [5, Theorem 1.3], it follows that

(u− ε)+ ∈ H1
0 (Ω) for every ε > 0.

Moreover, if K ⊂ Ω is a compact set, there exists a constant c > 0 such that
uγ
∗−1
n ≥ c uniformly on K. Since

c

∫
K

|∇un|2 ≤
∫
K

uγ
∗−1
n |∇un|2 =

4

(γ∗ + 1)2

∫
K

|∇u
γ∗+1

2
n |2 ≤ const,

we deduce at once that {un} is bounded in H1
loc(Ω), thus u ∈ H1

loc(Ω). We conclude
as above.

Uniqueness of solution of (P).
In order to prove the uniqueness of the solution we follow [6] and prove that

inequality (2.2) holds for every solution u of (P).
Let u ∈ H1

loc(Ω) be a solution of (P), n ∈ N+ and un be the solution of (Pn).
Let us prove that un ≤ u ≤ un + 1

n . We first prove that u ≤ un + 1
n .
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Fix a sequence {ϕk} ⊂ C1
c (Ω) converging in H1

0 (Ω) to
(
u− un − 1

n

)+
and let

ϕ̃k = min{ϕk,
(
u− un − 1

n

)+}. Thus, {ϕ̃k} ⊂ C1
c (Ω) still converges in H1

0 (Ω) to(
u− un − 1

n

)+
and suppϕ̃k ⊆ supp

(
u− un − 1

n

)+ ⊆ supp(u− 1
n )+. Then,∫

Ω

∇u∇ϕ̃k =

∫
Ω

f(x)

uγ(x)
ϕ̃k.

Since u is H1(supp
(
u− 1

n

)+
), passing to the limit one has also that∫

Ω

∇u∇ϕ̃k →
∫

Ω

∇u∇
(
u− un −

1

n

)+

.

From the definition of ϕ̃k and Fatou lemma, one also has∫
Ω

f(x)

uγ(x)
ϕ̃k →

∫
Ω

f(x)

uγ(x)

(
u− un −

1

n

)+

.

Combining the above outcomes,∫
Ω

∇u∇
(
u− un −

1

n

)+

=

∫
Ω

f(x)

uγ(x)

(
u− un −

1

n

)+

.

Since un is a solution of (Pn),∫
Ω

∇un∇
(
u− un −

1

n

)+

=

∫
Ω

f(x)(
un + 1

n

)γ(x)

(
u− un −

1

n

)+

,

and subtracting one has∥∥∥∥∥
(
u− un −

1

n

)+
∥∥∥∥∥

2

=

∫
Ω

f(x)

(
1

uγ(x)
− 1(

un + 1
n

)γ(x)

)(
u− un −

1

n

)+

≤ 0,

which implies the claim.

Let us prove now that u ≥ un. Let ε ≤ 1
n . Put ψε = (un − u− ε)+

for every
n ∈ N. Notice that ψε has compact support since un ≤ ε in a neighborhood of the
boundary. Thus, ∫

Ω

∇u∇ (un − u− ε)+
=

∫
Ω

f(x)

uγ(x)
(un − u− ε)+

,

and ∫
Ω

∇un∇ (un − u− ε)+
=

∫
Ω

f(x)(
un + 1

n

)γ(x)
(un − u− ε)+

.

Subtracting,∥∥∥(un − u− ε)+
∥∥∥2

=

∫
Ω

f(x)

(
1(

un + 1
n

)γ(x)
− 1

uγ(x)

)
(un − u− ε)+ ≤ 0,

which implies un ≤ u+ ε. Letting ε→ 0 we obtain the desired inequality.
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The proof of uniqueness follows at once: let u, v be solutons of (P). Then, for
every n ∈ N+ one has

u ≤ v +
1

n
,

which implies, passing to the limit that u ≤ v. Analogously we get the converse
inequality. �
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Università degli Studi di Catania
e-mail: ffaraci@dmi.unict.it


