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Starlike and convex properties for Poisson
distribution series
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Abstract. In this paper, we find the necessary and sufficient conditions, inclusion
relations for Poisson distribution series belonging to the classes S ∗(α, β) and
C ∗(α, β). Further, we consider an integral operator related to Poisson Distribu-
tion series.
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1. Introduction

Let A denote the class of functions of the form

f(z) = z +

∞∑
n=2

anz
n (1.1)

which are analytic and univalent in the open disc U = {z : z ∈ C |z| < 1}. Let T be
a subclass of A consisting of functions whose non-zero coefficients from second on is
give by

f(z) = z −
∞∑
n=2

|an|zn, z ∈ U. (1.2)

In 2014, Porwal [4] introduced a power series whose coefficients are probabilities of
Poisson distribution

K (m, z) := z +

∞∑
n=2

mn−1

(n− 1)!
e−mzn, z ∈ U,

where m > 0. By ratio test the radius of convergence of the above series is infinity.
Further, Porwal [4] defined a series

F (m, z) = 2z −K (m, z) = z −
∞∑
n=2

mn−1

(n− 1)!
e−mzn, z ∈ U.
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Corresponding to the series K (m, z) using the Hadamard product for f ∈ A , Porwal
and Kumar [5] introduced a new linear operator I (m) : A → A defined by

I (m)f(z) : = K (m, z) ∗ f(z)

= z +

∞∑
n=2

mn−1

(n− 1)!
e−manz

n, z ∈ U,

where ∗ denotes the convolution (or Hadamard product) of two series

f(z) =

∞∑
n=0

anz
n and g(z) =

∞∑
n=0

bnz
n

is defined by

(f ∗ g)(z) =

∞∑
n=0

anbnz
n.

Let S ∗(α, β) be the subclass of T consisting of functions which satisfy the condition:∣∣∣∣∣∣
zf ′(z)
f(z) − 1

zf ′(z)
f(z) + 1− 2α

∣∣∣∣∣∣ < β, z ∈ U,

where 0 ≤ α < 1 and 0 < β ≤ 1.
Also, let C ∗(α, β) be the subclass of T consisting of functions which satisfy the

condition: ∣∣∣∣∣∣
zf ′′(z)
f ′(z)

zf ′′(z)
f ′(z) + 2(1− α)

∣∣∣∣∣∣ < β, z ∈ U,

where 0 ≤ α < 1 and 0 < β ≤ 1.
The classes S ∗(α, β) and C ∗(α, β), were introduced and studied by Gupta and

Jain [2] (see [3]). Also, we note that for β = 1 the classes S ∗(α, β) and C ∗(α, β)
reduce to the class of starlike and convex functions of order α(0 ≤ α < 1) (see [6]).

A function f ∈ A is said to be in the class Rτ (A,B), (τ ∈ C \ {0}, −1 ≤ B <
A ≤ 1), if it satisfies the inequality∣∣∣∣ f ′(z)− 1

(A−B)τ −B[f ′(z)− 1]

∣∣∣∣ < 1, z ∈ U.

This class was introduced by Dixit and Pal [1].

Lemma 1.1. [2] A function f(z) of the form (1.2) is in S ∗(α, β) if and only if
∞∑
n=2

[n(1 + β)− 1 + β(1− 2α)] |an| ≤ 2β(1− α). (1.3)

Lemma 1.2. [2] A function f(z) of the form (1.2) is in C ∗(α, β) if and only if
∞∑
n=2

n[n(1 + β)− 1 + β(1− 2α)] |an| ≤ 2β(1− α). (1.4)

To obtain our main results, we need the following lemmas:
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Lemma 1.3. [1] If f ∈ Rτ (A,B) is of the form (1.1), then

|an| ≤ (A−B)
|τ |
n
, n ∈ N \ {1}. (1.5)

In the present investigation, inspired by the works of Porwal [4] and Porwal and
Kumar [5], we find the necessary and sufficient conditions for F (m, z) belonging to
the classes S ∗(α, β) and C ∗(α, β). Also, we obtain inclusion relations for aforecited
classes with Rτ (A,B).

2. Necessary and sufficient conditions

Theorem 2.1. If m > 0, 0 ≤ α < 1 and 0 < β ≤ 1, then F (m, z) ∈ S ∗(α, β) if and
only if

emm(1 + β) ≤ 2β(1− α). (2.1)

Proof. Since

F (m, z) = z −
∞∑
n=2

mn−1

(n− 1)!
e−mzn,

in view of Lemma 1.1, it is enough to show that
∞∑
n=2

[n(1 + β)− 1 + β(1− 2α)]
mn−1

(n− 1)!
e−m ≤ 2β(1− α).

Let

T1 =

∞∑
n=2

[n(1 + β)− 1 + β(1− 2α)]
mn−1

(n− 1)!
e−m.

Now,

T1 =

∞∑
n=2

[n(1 + β)− 1 + β(1− 2α)]
mn−1

(n− 1)!
e−m

= e−m
∞∑
n=2

[(n− 1)(1 + β) + 2β(1− α)]
mn−1

(n− 1)!

= e−m

[
(1 + β)

∞∑
n=2

mn−1

(n− 2)!
+ 2β(1− α)

∞∑
n=2

mn−1

(n− 1)!

]
= e−m [(1 + β)mem + 2β(1− α)(em − 1)]

= (1 + β)m+ 2β(1− α)(1− e−m).

But this last expression is bounded by 2β(1 − α), if and only if (2.1) holds. This
completes the proof of Theorem 2.1. �

Theorem 2.2. If m > 0, 0 ≤ α < 1 and 0 < β ≤ 1, then F (m, z) ∈ C ∗(α, β) if and
only if

em
[
(1 + β)m2 + 2(1 + β(2− α))m

]
≤ 2β(1− α). (2.2)
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Proof. Since

F (m, z) = z −
∞∑
n=2

mn−1

(n− 1)!
e−mzn,

in view of Lemma 1.2, it is enough to show that

∞∑
n=2

n[n(1 + β)− 1 + β(1− 2α)]
mn−1

(n− 1)!
e−m ≤ 2β(1− α).

Let

T2 =

∞∑
n=2

n[n(1 + β)− 1 + β(1− 2α)]
mn−1

(n− 1)!
e−m.

Therefore,

T2 = e−m

[ ∞∑
n=2

(n− 1)(n− 2)(1 + β)
mn−1

(n− 1)!

+

∞∑
n=2

(n− 1)[3(1 + β)− 1 + β(1− 2α)]
mn−1

(n− 1)!
+

∞∑
n=2

2β(1− α)
mn−1

(n− 1)!

]

= e−m

[
(1 + β)

∞∑
n=3

mn−1

(n− 3)!

+2[1 + β(2− α)]

∞∑
n=2

mn−1

(n− 2)!
+ 2β(1− α)

∞∑
n=2

mn−1

(n− 1)!

]
= e−m

[
(1 + β)m2em + 2(1 + β(2− α))mem + 2β(1− α)(em − 1)

]
= (1 + β)m2 + 2(1 + β(2− α))m+ 2β(1− α)(1− e−m).

But this last expression is bounded by 2β(1 − α), if and only if (2.2) holds. This
completes the proof of Theorem 2.2. �

3. Inclusion results

Theorem 3.1. Let m > 0, 0 ≤ α < 1 and 0 < β ≤ 1. If f ∈ Rτ (A,B), then
I (m)f ∈ S ∗(α, β) if and only if

(A−B)|τ |
[
(1 + β)(1− e−m) +

(β(1− 2α)− 1)

m
(1− e−m −me−m)

]
≤ 2β(1− α).

(3.1)

Proof. In view of Lemma 1.1, it suffices to show that

P1 =

∞∑
n=2

[n(1 + β)− 1 + β(1− 2α)]
mn−1

(n− 1)!
e−m|an| ≤ 2β(1− α).
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Since f ∈ Rτ (A,B), then by Lemma 1.3, we have

|an| ≤
(A−B)|τ |

n
.

Therefore,

P1 ≤
∞∑
n=2

[n(1 + β)− 1 + β(1− 2α)]
mn−1

(n− 1)!
e−m

(A−B)|τ |
n

= (A−B)|τ |e−m
∞∑
n=2

[n(1 + β)− 1 + β(1− 2α)]
mn−1

n!

= (A−B)|τ |e−m
[

(1 + β)

∞∑
n=2

mn−1

(n− 1)!
+

(β(1− 2α)− 1)

m

∞∑
n=2

mn

n!

]

= (A−B)|τ |e−m
[
(1 + β)(em − 1) +

(β(1− 2α)− 1)

m
(em − 1−m)

]
= (A−B)|τ |

[
(1 + β)[1− e−m] +

(β(1− 2α)− 1)

m
(1− e−m −me−m)

]
.

But this last expression is bounded by 2β(1 − α), if (3.1) holds. This completes the
proof of Theorem 3.1. �

Theorem 3.2. Let m > 0, 0 ≤ α < 1 and 0 < β ≤ 1. If f ∈ Rτ (A,B), then
I (m)f ∈ C ∗(α, β) if and only if

(A−B)|τ |
[
m(1 + β) + 2β(1− α)(1− e−m)

]
≤ 2β(1− α). (3.2)

Proof. In view of Lemma 1.2, it suffices to show that

P2 =

∞∑
n=2

n[n(1 + β)− 1 + β(1− 2α)]
mn−1

(n− 1)!
e−m|an| ≤ 2β(1− α).

Since f ∈ Rτ (A,B), then by Lemma 1.3, we have

|an| ≤
(A−B)|τ |

n
.
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Therefore,

P2 ≤
∞∑
n=2

n[n(1 + β)− 1 + β(1− 2α)]
mn−1

(n− 1)!
e−m

(A−B)|τ |
n

= (A−B)|τ |e−m
∞∑
n=2

[n(1 + β)− 1 + β(1− 2α)]
mn−1

(n− 1)!

= (A−B)|τ |e−m
∞∑
n=2

[(n− 1)(1 + β) + 2β(1− α)]
mn−1

(n− 1)!

= (A−B)|τ |e−m
[ ∞∑
n=2

(1 + β)
mn−1

(n− 2)!
+ 2β(1− α)

∞∑
n=2

mn−1

(n− 1)!

]

= (A−B)|τ |e−m
[

(1 + β)

∞∑
n=2

mn−1

(n− 2)!
+ 2β(1− α)

∞∑
n=2

mn−1

(n− 1)!

]
= (A−B)|τ |e−m [mem(1 + β) + 2β(1− α)(em − 1)] .

But this last expression is bounded by 2β(1 − α), if (3.2) holds. This completes the
proof of Theorem 3.2. �

4. An integral operator

Theorem 4.1. If m > 0, 0 ≤ α < 1 and 0 < β ≤ 1, then

G (m, z) =

z∫
0

F (m, t)

t
dt

is in C ∗(α, β) if and only if inequality (2.1) is satisfied.

Proof. Since

G (m, z) = z −
∞∑
n=2

e−mmn−1

(n− 1)!

zn

n
= z −

∞∑
n=2

e−mmn−1

n!
zn

by Lemma 1.2, we need only to show that

∞∑
n=2

n[n(1 + β)− 1 + β(1− 2α)]
mn−1

n!
e−m ≤ 2β(1− α).

Let

Q1 =

∞∑
n=2

n[n(1 + β)− 1 + β(1− 2α)]
mn−1

n!
e−m.
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Now,

Q1 =

∞∑
n=2

[n(1 + β)− 1 + β(1− 2α)]
mn−1

(n− 1)!
e−m

= e−m
∞∑
n=2

[(n− 1)(1 + β) + 2β(1− α)]
mn−1

(n− 1)!

= e−m

[ ∞∑
n=2

(n− 1)(1 + β)
mn−1

(n− 1)!
+

∞∑
n=2

2β(1− α)
mn−1

(n− 1)!

]

= e−m

[
(1 + β)

∞∑
n=2

mn−1

(n− 2)!
+ 2β(1− α)

∞∑
n=2

mn−1

(n− 1)!

]
= e−m [(1 + β)mem + 2β(1− α)(em − 1)]

= (1 + β)m+ 2β(1− α)(1− e−m).

But this last expression is bounded by 2β(1 − α), if and only if (2.1) holds. This
completes the proof of Theorem 4.1. �

Theorem 4.2. If m > 0, 0 ≤ α < 1 and 0 < β ≤ 1, then

G (m, z) =

z∫
0

F (m, t)

t
dt

is in S ∗(α, β) if and only if

(1 + β)(1− e−m) +
(β(1− 2α)− 1)

m
(1− e−m −me−m) ≤ 2β(1− α).

The proof of Theorem 4.2 is lines similar to the proof of Theorem 4.1, so we
omitted the proof of Theorem 4.2.
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