Multiplicity theorems involving functions with non-convex range

Biagio Ricceri

> Dedicated to the memory of Professor Csaba Varga, with nostalgia

Abstract. Here is a sample of the results proved in this paper: Let $f: \mathbf{R} \rightarrow \mathbf{R}$ be a continuous function, let $\rho>0$ and let $\omega:[0, \rho[\rightarrow[0,+\infty[$ be a continuous increasing function such that

$$
\lim _{\xi \rightarrow \rho^{-}} \int_{0}^{\xi} \omega(x) d x=+\infty
$$

Consider $C^{0}([0,1]) \times C^{0}([0,1])$ endowed with the norm

$$
\|(\alpha, \beta)\|=\int_{0}^{1}|\alpha(t)| d t+\int_{0}^{1}|\beta(t)| d t .
$$

Then, the following assertions are equivalent:
(a) the restriction of f to $\left[-\frac{\sqrt{\rho}}{2}, \frac{\sqrt{\rho}}{2}\right]$ is not constant;
(b) for every convex set $S \subseteq C^{0}([0,1]) \times C^{0}([0,1])$ dense in $C^{0}([0,1]) \times C^{0}([0,1])$, there exists $(\alpha, \beta) \in S$ such that the problem

$$
\left\{\begin{array}{l}
-\omega\left(\int_{0}^{1}\left|u^{\prime}(t)\right|^{2} d t\right) u^{\prime \prime}=\beta(t) f(u)+\alpha(t) \text { in }[0,1] \\
u(0)=u(1)=0 \\
\int_{0}^{1}\left|u^{\prime}(t)\right|^{2} d t<\rho
\end{array}\right.
$$

has at least two classical solutions.
Mathematics Subject Classification (2010): 49J35, 34B10, 41A50, 41A55, 90C26.
Keywords: Minimax, global minimum, multiplicity, non-convex sets, Chebyshev sets, Kirchhoff-type problems.

1. Introduction

Let H be a real Hilbert space. A very classical result of Efimov and Stechkin ([3]) states that if X is a non-convex sequentially weakly closed subset of H, then there exists $y_{0} \in H$ such that the restriction to X of the function $x \rightarrow\left\|x-y_{0}\right\|$ has at least two global minima. A more precise version of such a result was obtained by I.G. Tsar'kov in [10]. Actually, he proved that any convex set dense in H contains a point y_{0} with the above property.

In the present paper, as a by product of a more general result, we get the following:

Theorem 1.1. Let $X \subset H$ be a non-convex sequentially weakly closed set and let $u_{0} \in \operatorname{conv}(X) \backslash X$.

Then, if we put

$$
\delta:=\operatorname{dist}\left(u_{0}, X\right)
$$

and, for each $r>0$,

$$
\rho_{r}:=\sup _{\|y\|<r}\left(\left(\operatorname{dist}\left(u_{0}+y, X\right)\right)^{2}-\|y\|^{2}\right)
$$

for every convex set $S \subseteq H$ dense in H, for every bounded sequentially weakly lower semicontinuous function $\varphi: X \rightarrow \mathbf{R}$ and for every r satisfying

$$
r>\frac{\rho_{r}-\delta^{2}+\sup _{X} \varphi-\inf _{X} \varphi}{2 \delta}
$$

there exists $y_{0} \in S$, with $\left\|y_{0}-u_{0}\right\|<r$, such that the function $x \rightarrow\left\|x-y_{0}\right\|^{2}+\varphi(x)$ has at least two global minima in X.

So, with respect to the Efimov-Stechkin-Tsar'kov result, Theorem 1.1 gives us two remarkable additional informations: a precise localization of the point y_{0} and the validity of the conclusion not only for the function $x \rightarrow\left\|x-y_{0}\right\|^{2}$, but also for suitable perturbations of it.

Let us recall the most famous open problem in this area: if X is a subset of H such that, for each $y \in H$, the restriction of the function $x \rightarrow\|x-y\|$ to X has a unique global minimum, is it true that the set X is convex? So, Efimov-Stechkin's result provides an affirmative answer when X is sequentially weakly closed. However, it is a quite common feeling that the answer, in general, should be negative ([1], [2], [5], [8]). In the light of Theorem 1.1, we posit the following problem:

Problem 1.1. Let X be a subset of H for which there exists a bounded sequentially weakly lower semicontinuous function $\varphi: X \rightarrow \mathbf{R}$ such that, for each $y \in H$, the function $x \rightarrow\|x-y\|^{2}+\varphi(x)$ has a unique global minimum in X. Then, must X be convex?

What allows us to reach the advances presented in Theorem 1.1 is our particular approach which is entirely based on the minimax theorem established in [9]. So, also the present paper can be regarded as a further ring of the chain of applications and consequences of that minimax theorem.

2. Results

In the sequel, X is a topological space and E is real normed space, with topological dual E^{*}.

For each $S \subseteq E^{*}$, we denote by $\mathcal{A}(X, S)$ (resp. $\mathcal{A}_{s}(X, S)$) the class of all pairs (I, ψ), with $I: X \rightarrow \mathbf{R}$ and $\psi: X \rightarrow E$, such that, for each $\eta \in S$ and each $s \in \mathbf{R}$, the set

$$
\{x \in X: I(x)+\eta(\psi(x)) \leq s\}
$$

is closed and compact (resp. sequentially closed and sequentially compact).
Let us start establishing the following useful proposition. E^{\prime} denotes the algebraic dual of E.
Proposition 2.1. Let $I: X \rightarrow \mathbf{R}$, let $\psi: X \rightarrow E$ and let $x_{1}, \ldots, x_{n} \in X, \lambda_{1}, \ldots, \lambda_{n} \in$ $[0,1]$, with $\sum_{i=1}^{n} \lambda_{i}=1$.

Then, one has

$$
\sup _{\eta \in E^{\prime}} \inf _{x \in X}\left(I(x)+\eta\left(\psi(x)-\sum_{i=1}^{n} \lambda_{i} \psi\left(x_{i}\right)\right)\right) \leq \max _{1 \leq i \leq n} I\left(x_{i}\right) .
$$

Proof. Fix $\eta \in E^{\prime}$. Clearly, for some $j^{\prime} \in\{1, \ldots, n\}$, we have

$$
\begin{equation*}
\eta\left(\psi\left(x_{j^{\prime}}\right)-\sum_{i=1}^{n} \lambda_{i} \psi\left(x_{i}\right)\right) \leq 0 \tag{2.1}
\end{equation*}
$$

Indeed, if not, we would have

$$
\eta\left(\psi\left(x_{j}\right)\right)>\sum_{i=1}^{n} \lambda_{i} \eta\left(\psi\left(x_{i}\right)\right)
$$

for each $j \in\{1, \ldots, n\}$. So, multiplying by λ_{j} and summing, we would obtain

$$
\sum_{j=1}^{n} \lambda_{j} \eta\left(\psi\left(x_{j}\right)\right)>\sum_{i=1}^{n} \lambda_{i} \eta\left(\psi\left(x_{i}\right)\right)
$$

a contradiction. In view of (2.1), we have

$$
\begin{aligned}
\inf _{x \in X}\left(I(x)+\eta\left(\psi(x)-\sum_{i=1}^{n} \lambda_{i} \psi\left(x_{i}\right)\right)\right) & \leq I\left(x_{j^{\prime}}\right)+\eta\left(\psi\left(x_{j^{\prime}}\right)-\sum_{i=1}^{n} \lambda_{i} \psi\left(x_{i}\right)\right) \\
& \leq I\left(x_{j^{\prime}}\right) \leq \max _{1 \leq i \leq n} I\left(x_{i}\right)
\end{aligned}
$$

and so we get the conclusion due to the arbitrariness of η.
Our main result is as follows:
Theorem 2.1. Let $I: X \rightarrow \mathbf{R}$, let $\psi: X \rightarrow E$, let $S \subseteq E^{*}$ be a convex set dense in E^{*} and let $u_{0} \in E$.

Then, for every bounded function $\varphi: X \rightarrow \mathbf{R}$ such that $(I+\varphi, \psi) \in \mathcal{A}(X, S)$ and for every r satisfying

$$
\begin{equation*}
\sup _{X} \varphi-\inf _{X} \varphi<\inf _{x \in X}\left(I(x)+\left\|\psi(x)-u_{0}\right\| r\right)-\sup _{\|\eta\|_{E^{*}<r}} \inf _{x \in X}\left(I(x)+\eta\left(\psi(x)-u_{0}\right)\right), \tag{2.2}
\end{equation*}
$$

there exists $\tilde{\eta} \in S$, with $\|\tilde{\eta}\|_{E^{*}}<r$, such that the function $I+\tilde{\eta} \circ \psi+\varphi$ has at least two global minima in X.
Proof. Consider the function $g: X \times E^{*} \rightarrow \mathbf{R}$ defined by

$$
g(x, \eta)=I(x)+\eta\left(\psi(x)-u_{0}\right)
$$

for all $(x, \eta) \in X \times E^{*}$. Let B_{r} denote the open ball in E^{*}, of radius r, centered at 0 . Clearly, for each $x \in X$, we have

$$
\begin{equation*}
\left.\sup _{\eta \in B_{r}} \eta\left(\psi(x)-u_{0}\right)\right)=\left\|\psi(x)-u_{0}\right\| r \tag{2.3}
\end{equation*}
$$

Then, from (2.2) and (2.3), it follows

$$
\begin{equation*}
\sup _{X} \varphi-\inf _{X} \varphi<\inf _{X} \sup _{B_{r}} g-\sup _{B_{r}} \inf _{X} g . \tag{2.4}
\end{equation*}
$$

Now, consider the function $f: X \times\left(S \cap B_{r}\right) \rightarrow \mathbf{R}$ defined by

$$
f(x, \eta)=g(x, \eta)+\varphi(x)
$$

for all $(x, \eta) \in X \times\left(S \cap B_{r}\right)$. Since S is dense in E^{*}, the set $S \cap B_{r}$ is dense in B_{r}. Hence, since $g(x, \cdot)$ is continuous, we obtain

$$
\begin{equation*}
\inf _{X} \sup _{S \cap B_{r}} g=\inf _{X} \sup _{B_{r}} g . \tag{2.5}
\end{equation*}
$$

Then, taking (2.4) and (2.5) into account, we have

$$
\begin{align*}
\sup _{S \cap B_{r}} \inf _{X} f & \leq \sup _{B_{r}} \inf _{X} f \leq \sup _{B_{r}} \inf _{X} g+\sup _{X} \varphi<\inf _{X} \sup _{B_{r}} g+\inf _{X} \varphi \\
& \leq \inf _{x \in X}\left(\sup _{\eta \in S \cap B_{r}} g(x, \eta)+\varphi(x)\right)=\inf _{X} \sup _{S \cap B_{r}} f \tag{2.6}
\end{align*}
$$

Now, since $(I+\varphi, \psi) \in \mathcal{A}(X, S)$ and f is concave in $S \cap B_{r}$, we can apply Theorem 1.1 of [9]. Therefore, since (by (2.6)) $\sup _{S \cap B_{r}} \inf _{X} f<\inf _{X} \sup _{S \cap B_{r}} f$, there exists of $\tilde{\eta} \in S \cap B_{r}$ such that the function $f(\cdot, \tilde{\eta})$ has at least two global minima in X which, of course, are global minima of the function $I+\tilde{\eta} \circ \psi+\varphi$.

If we renounce to the very detailed informations contained in its conclusion, we can state Theorem 2.1 in an extremely simplified form.
Theorem 2.2. Let $I: X \rightarrow \mathbf{R}$, let $\psi: X \rightarrow E$ and let $S \subset E^{*}$ be a convex set weakly-star dense in E^{*}. Assume that $\psi(X)$ is not convex and that $(I, \psi) \in \mathcal{A}(X, S)$.

Then, there exists $\tilde{\eta} \in S$ such that the function $I+\tilde{\eta} \circ \psi$ has at least two global minima in X.
Proof. Fix $u_{0} \in \operatorname{conv}(\psi(X)) \backslash \psi(X)$ and consider the function $g: X \times E^{*} \rightarrow \mathbf{R}$ defined by

$$
g(x, \eta)=I(x)+\eta\left(\psi(x)-u_{0}\right)
$$

for all $(x, \eta) \in X \times E^{*}$. By Proposition 2.1, we know that

$$
\sup _{E^{*}} \inf _{X} g<+\infty
$$

On the other hand, for each $x \in X$, since $\psi(x) \neq u_{0}$, we have

$$
\sup _{\eta \in E^{*}} \eta\left(\psi(x)-u_{0}\right)=+\infty
$$

Hence, since S is weakly-star dense in E^{*} and $g(x, \cdot)$ is weakly-star continuous, we have

$$
\sup _{\eta \in S} g(x, \eta)=+\infty
$$

Therefore

$$
\begin{equation*}
\sup _{S} \inf _{X} g<\inf _{X} \sup _{S} g \tag{2.7}
\end{equation*}
$$

Now, taken into account that $(I, \psi) \in \mathcal{A}(X, S)$, we can apply Theorem 1.1 of [9] to $g_{\left.\right|_{X \times S}}$. So, in view of (2.7), there exists $\tilde{\eta} \in S$ such that the function $g(\cdot, \tilde{\eta})$ (and so $I+\tilde{\eta} \circ \psi$) has at least two global minima in X, as claimed.

The next result is a sequential version of Theorem 1.1 of [9].
Theorem 2.3. Let X be a topological space, E a topological vector space, $Y \subseteq E$ a nonempty separable convex set and $f: X \times Y \rightarrow \mathbf{R}$ a function satisfying the following conditions:
(a) for each $y \in Y$, the function $f(\cdot, y)$ is sequentially lower semicontinuous, sequentially inf-compact and has a unique global minimum in X;
(b) for each $x \in X$, the function $f(x, \cdot)$ is continuous and quasi-concave.

Then, one has

$$
\sup _{Y} \inf _{X} f=\inf _{X} \sup _{Y} f .
$$

Proof. The pattern of the proof is the same as that of Theorem 1.1 of [9]. We limit ourselves to stress the needed changes. First, for every $n \in \mathbf{N}$, one proves the result when $E=\mathbf{R}^{n}$ and $Y=S_{n}:=\left\{\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in\left(\left[0,+\infty[)^{n}: \lambda_{1}+\ldots+\lambda_{n}=1\right\}\right.\right.$. In this connection, the proof agrees exactly with that of Lemma 2.1 of [9], with the only difference of using the sequential version of Theorem 1.A of [9] instead of such a result itself (see Remark 2.1 of [9]). Next, we fix a sequence $\left\{x_{n}\right\}$ dense in Y. For each $n \in \mathbf{N}$, set

$$
P_{n}=\operatorname{conv}\left(\left\{x_{1}, \ldots, x_{n}\right\}\right)
$$

Consider the function $\eta: S_{n} \rightarrow P$ defined by

$$
\eta\left(\lambda_{1}, \ldots, \lambda_{n}\right)=\lambda_{1} x_{1}+\ldots+\lambda_{n} x_{n}
$$

for all $\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in S_{n}$. Plainly, the function $\left(x, \lambda_{1}, \ldots, \lambda_{n}\right) \rightarrow f\left(x, \eta\left(\lambda_{1}, \ldots, \lambda_{n}\right)\right)$ satisfies in $X \times S_{n}$ the assumptions of Theorem A, and so, by the case previously proved, we have

$$
\sup _{\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in S_{n}} \inf _{x \in X} f\left(x, \eta\left(\lambda_{1}, \ldots, \lambda_{n}\right)\right)=\inf _{x \in X} \sup _{\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in S_{n}} f\left(x, \eta\left(\lambda_{1}, \ldots, \lambda_{n}\right)\right) .
$$

Since $\eta\left(S_{n}\right)=P_{n}$, we then have

$$
\sup _{P_{n}} \inf _{X} f=\inf _{X} \sup _{P_{n}} f .
$$

Now, set

$$
D=\bigcup_{n \in \mathbf{N}} P_{n}
$$

In view of Proposition 2.2 of [9], we have

$$
\sup _{D} \inf _{X} f=\inf _{X} \sup _{D} f
$$

Finally, by continuity and density, we have

$$
\sup _{y \in D} f(x, y)=\sup _{y \in Y} f(x, y)
$$

for all $x \in X$, and so

$$
\inf _{X} \sup _{Y} f=\inf _{X} \sup _{D} f=\sup _{D} \inf _{X} f \leq \sup _{Y} \inf _{X} f \leq \inf _{X} \sup _{Y} f
$$

and the proof is complete.
Reasoning as in the proof of Theorem 2.1 and using Theorem 2.3, we get
Theorem 2.4. Let the assumptions of Theorem 2.1 be satisfied. In addition, assume that E^{*} is separable.

Then, the conclusion of Theorem 2.1 holds with $\mathcal{A}_{s}(X, S)$ instead of $\mathcal{A}(X, S)$.
Analogously, the sequential version of Theorem 2.2 is as follows:
Theorem 2.5. Let $I: X \rightarrow \mathbf{R}$, let $\psi: X \rightarrow E$ and let $S \subset E^{*}$ be a convex set weaklystar separable and weakly-star dense in E^{*}. Assume that $\psi(X)$ is not convex and that $(I, \psi) \in \mathcal{A}_{s}(X, S)$.

Then, there exists $\tilde{\eta} \in S$ such that the function $I+\tilde{\eta} \circ \psi$ has at least two global minima in X.

Here is a consequence of Theorem 2.1:
Theorem 2.6. Let E be a Hilbert space, let $\psi: X \rightarrow E$ be a weakly continuous function and let $S \subseteq E$ be a convex set dense in E. Assume that $\psi(X)$ is not convex and that the function $\|\psi(\cdot)\|$ is inf-compact. Let $u_{0} \in \operatorname{conv}(\psi(X)) \backslash \psi(X)$.

Then, for every bounded function $\varphi: X \rightarrow \mathbf{R}$ such that $\|\psi(\cdot)\|^{2}+\varphi(\cdot)$ is lower semicontinuous and for every r satisfying

$$
\begin{equation*}
r>\frac{\sup _{\|y\|<r}\left(\left(\operatorname{dist}\left(u_{0}+y, \psi(X)\right)\right)^{2}-\|y\|^{2}\right)-\left(\operatorname{dist}\left(u_{0}, \psi(X)\right)\right)^{2}+\sup _{X} \varphi-\inf _{X} \varphi}{2 \operatorname{dist}\left(u_{0}, \psi(X)\right)} \tag{2.8}
\end{equation*}
$$

there exists $\tilde{y} \in S$, with $\left\|\tilde{y}-u_{0}\right\|<r$, such that the function $\|\psi(\cdot)-\tilde{y}\|^{2}+\varphi(\cdot)$ has at least two global minima in X.
Proof. First, we observe that the set $\psi(X)$ is sequentially weakly closed (and so norm closed). Indeed, let $\left\{x_{n}\right\}$ be a sequence in X such that $\left\{\psi\left(x_{n}\right)\right\}$ converges weakly to $y \in E$. So, in particular, $\left\{\psi\left(x_{n}\right)\right\}$ is bounded and hence, since $\|\psi(\cdot)\|$ is inf-compact, there exists a compact set $K \subseteq X$ such that $x_{n} \in K$ for all $n \in \mathbf{N}$. Since ψ is weakly
continuous, the set $\psi(K)$ is weakly compact and hence weakly closed. Therefore, $y \in \psi(K)$, as claimed. This remark ensures that $\operatorname{dist}\left(u_{0}, \psi(X)\right)>0$. Now, we apply Theorem 2.1 identifying E with E^{*} and taking

$$
I(x)=\frac{1}{2}\left\|\psi(x)-u_{0}\right\|^{2}
$$

for all $x \in X$. Of course, we have

$$
\begin{equation*}
I(x)+\left\langle\psi(x)-u_{0}, y\right\rangle=\frac{1}{2}\left(\left\|\psi(x)-u_{0}+y\right\|^{2}-\|y\|^{2}\right) \tag{2.9}
\end{equation*}
$$

for all $y \in E$. In view of (2.8) and (2.9), we have

$$
\begin{align*}
& \frac{1}{2}\left(\sup _{X} \varphi-\inf _{X} \varphi\right)<\frac{1}{2}\left(\operatorname{dist}\left(u_{0}, \psi(X)\right)\right)^{2}+r \operatorname{dist}\left(u_{0}, \psi(X)\right) \\
&- \frac{1}{2} \sup _{\|y\|<r}\left(\left(\operatorname{dist}\left(u_{0}-y, \psi(X)\right)\right)^{2}-\|y\|^{2}\right) \\
& \leq \inf _{x \in X}\left(I(x)+\left\|\psi(x)-u_{0}\right\| r\right)-\frac{1}{2} \sup _{\|y\|<r}\left(\left(\operatorname{dist}\left(u_{0}-y, \psi(X)\right)\right)^{2}-\|y\|^{2}\right) \\
&=\inf _{x \in X}\left(I(x)+\left\|\psi(x)-u_{0}\right\| r\right)-\sup _{\|y\|<r} \inf _{x \in X}\left(I(x)+\left\langle\psi(x)-u_{0}, y\right\rangle\right) . \tag{2.10}
\end{align*}
$$

Let us show that $\left(I+\frac{1}{2} \varphi, \psi\right) \in \mathcal{A}(X, E)$. So, fix $y \in E$. Since ψ is weakly continuous, $\langle\psi(\cdot), v\rangle$ is continuous in X for all $v \in E$. Observing that

$$
I(x)+\frac{1}{2} \varphi(x)+\langle\psi(x), y\rangle=\frac{1}{2}\left(\|\psi(x)\|^{2}+\varphi(x)\right)+\left\langle\psi(x), y-u_{0}\right\rangle+\frac{1}{2}\left\|u_{0}\right\|^{2},
$$

we infer that $I(\cdot)+\frac{1}{2} \varphi(\cdot)+\langle\psi(\cdot), y\rangle$ is lower semicontinuous since $\|\psi(\cdot)\|^{2}+\varphi(\cdot)$ is so by assumption. Now, let $s \in \mathbf{R}$. We readily have

$$
\begin{gather*}
\left\{x \in X: I(x)+\frac{1}{2} \varphi(x)+\langle\psi(x), y\rangle \leq s\right\} \\
\subseteq\left\{x \in X:\|\psi(x)\|^{2}-2\left\|y-u_{0}\right\|\|\psi(x)\| \leq 2 s-\inf _{X} \varphi\right\} \tag{2.11}
\end{gather*}
$$

Since $\|\psi(\cdot)\|$ is inf-compact, the set in the right-hand side of (2.11) is compact and hence so is the set in left-hand right, as claimed. Since the set $u_{0}-S$ is convex and dense in E, in view of (2.10), Theorem 2.1 ensures the existence of $\tilde{v} \in u_{0}-S$, with $\|\tilde{v}\|<r$, such that the function $I(\cdot)+\langle\psi(\cdot), \tilde{v}\rangle+\frac{1}{2} \varphi(\cdot)$ has at least two global minima in X. Consequently, since

$$
I(x)+\langle\psi(x), \tilde{v}\rangle+\frac{1}{2} \varphi(x)=\frac{1}{2}\left(\left\|\psi(x)+\tilde{v}-u_{0}\right\|^{2}+\varphi(x)\right)-\frac{1}{2}\left(\left\|u_{0}\right\|^{2}-\left\|\tilde{v}-u_{0}\right\|^{2}\right)
$$

if we put

$$
\tilde{y}:=u_{0}-\tilde{v}
$$

we have $\tilde{y} \in S,\left\|\tilde{y}-u_{0}\right\|<r$ and the function $\|\psi(\cdot)-\tilde{y}\|^{2}+\varphi(\cdot)$ has at least two global minima in X. The proof is complete.
Remark 2.1. Of course, Theorem 1.1 is an immediate corollary of Theorem 2.6: take $E=H$, consider X equipped with the relative weak topology, take $\psi(x)=x$ and
observe that if $\varphi: X \rightarrow \mathbf{R}$ is sequentially weakly lower semicontinuous, then $\|\cdot\|^{2}+\varphi(\cdot)$ is weakly lower semicontinuous in view of the Eberlein-Smulyan theorem.

Here is an application of Theorem 2.2. An operator T between two Banach spaces F_{1}, F_{2} is said to be sequentially weakly continuous if, for every sequence $\left\{x_{n}\right\}$ in F_{1} weakly convergent to $x \in F_{1}$, the sequence $\left\{T\left(x_{n}\right)\right\}$ converges weakly to $T(x)$ in F_{2}.

Theorem 2.7. Let V be a reflexive real Banach space, let $x_{0} \in V$, let $r>0$, let X be the open ball in V, of radius r, centered at x_{0}, let $\gamma:\left[0, r\left[\rightarrow \mathbf{R}\right.\right.$, with $\lim _{\xi \rightarrow r^{-}} \gamma(\xi)=+\infty$, let $I: X \rightarrow \mathbf{R}$ and $\psi: X \rightarrow E$ be two Gâteaux differentiable functions. Moreover, assume that I is sequentially weakly lower semicontinous, that ψ is sequentially weakly continuous, that $\psi(X)$ is bounded and non-convex, and that

$$
\gamma\left(\left\|x-x_{0}\right\|\right) \leq I(x)
$$

for all $x \in X$.
Then, for every convex set $S \subseteq E^{*}$ weakly-star dense in E^{*}, there exists $\tilde{\eta} \in S$ such that the equation

$$
I^{\prime}(x)+(\tilde{\eta} \circ \psi)^{\prime}(x)=0
$$

has at least two solutions in X.
Proof. We apply Theorem 2.2 considering X equipped with the relative weak topology. Let $\eta \in E^{*}$. Since $\psi(X)$ is bounded, we have $c:=\inf _{x \in X} \eta(\psi(x))>-\infty$. Let $s \in \mathbf{R}$. We have

$$
\begin{align*}
\{x \in X: I(x)+\eta(\psi(x)) \leq s\} & \subseteq\{x \in X: I(x) \leq s-c\} \\
& \subseteq\left\{x \in X: \gamma\left(\left\|x-x_{0}\right\|\right) \leq s-c\right\} \tag{2.12}
\end{align*}
$$

Since $\lim _{\xi \rightarrow r^{-}} \gamma(t)=+\infty$, there is $\left.\delta \in\right] 0, r[$, such that $\gamma(\xi)>s-c$ for all $\xi \in] \delta, r[$. Consequently, from (2.12), we obtain

$$
\begin{equation*}
\{x \in X: I(x)+\eta(\psi(x)) \leq s\} \subseteq\left\{x \in V:\left\|x-x_{0}\right\| \leq \delta\right\} \tag{2.13}
\end{equation*}
$$

From the assumptions, it follows that the function $I+\eta \circ \psi$ is sequentially weakly lower semicontinuous in X. Hence, from (2.13), since $\delta<r$ and V is reflexive, we infer that the set $\{x \in X: I(x)+\eta(\psi(x)) \leq s\}$ is sequentially weakly compact and hence weakly compact, by the Eberlein-Smulyan theorem. In other words, $(I, \psi) \in$ $\mathcal{A}\left(X, E^{*}\right)$. Therefore, we can apply Theorem 2.2 . Accordingly, there exists $\tilde{\eta} \in S$ such that the function $I+\tilde{\eta} \circ \psi$ has at least two global minima in X which are critical points of it since X is open.

Here is an application of Theorem 1.1:
Theorem 2.8. Let H be a Hilbert space and let $I, J: H \rightarrow \mathbf{R}$ be two C^{1} functionals with compact derivative such that $2 I-J^{2}$ is bounded. Moreover, assume that $J(0) \neq 0$ and that there is $\hat{x} \in H$ such that $J(-\hat{x})=-J(\hat{x})$.

Then, for every convex set $S \subseteq H \times \mathbf{R}$ dense in $H \times \mathbf{R}$ and for every r satisfying

$$
r>\frac{\|\hat{x}\|^{2}+|J(\hat{x})|^{2}-\inf _{x \in H}\left(\|x\|^{2}+|J(x)|^{2}\right)+\sup _{H}\left(2 I-J^{2}\right)-\inf _{X}\left(2 I-J^{2}\right)}{2 \inf _{x \in H} \sqrt{\|x\|^{2}+|J(x)|^{2}}},
$$

there exists $\left(y_{0}, \mu_{0}\right) \in S$, with $\left\|y_{0}\right\|^{2}+\left|\mu_{0}\right|^{2}<r^{2}$, such that the equation

$$
x+I^{\prime}(x)+\mu_{0} J^{\prime}(x)=y_{0}
$$

has at least three solutions.
Proof. We consider the Hilbert space $E:=H \times \mathbf{R}$ with the scalar product

$$
\langle(x, \lambda),(y, \mu)\rangle_{E}=\langle x, y\rangle+\lambda \mu
$$

for all $(x, \lambda),(y, \mu) \in E$. Take

$$
X=\{(x, \lambda) \in E: \lambda=J(x)\}
$$

Since J^{\prime} is compact, the functional J turns out to be sequentially weakly continuous ([11], Corollary 41.9). So, the set X is sequentially weakly closed. Moreover, notice that $(0,0) \notin X$, while the antipodal points $(\hat{x}, J(\hat{x}))$ and $-(\hat{x}, J(\hat{x}))$ lie in X. So, $(0,0) \in \operatorname{conv}(X)$. Now, with the notations of Theorem 1.1, taking, of course, $u_{0}=$ $(0,0)$, we have

$$
\delta=\inf _{x \in X} \sqrt{\|x\|^{2}+|J(x)|^{2}}
$$

and

$$
\rho_{r}=\sup _{\|y\|^{2}+|\mu|^{2}<r^{2}} \inf _{x \in X}\left(\|x\|^{2}+|J(x)|^{2}-2\langle(x, J(x)),(y, \mu)\rangle_{E}\right) .
$$

Then, from Proposition 2.1, we infer that

$$
\rho_{r} \leq\|\hat{x}\|^{2}+|J(\hat{x})|^{2}
$$

Now, consider the function $\varphi: X \rightarrow \mathbf{R}$ defined by

$$
\varphi(x, \lambda)=2 I(x)-\lambda^{2}
$$

for all $(x, \lambda) \in X$. Notice that φ is sequentially weakly continuous and r satisfies the inequality of Theorem 1.1. Consequently, there exists $\left(y_{0}, \mu_{0}\right) \in S$ such that the functional

$$
(x, \lambda) \rightarrow\|(x, \lambda)\|_{E}^{2}-2\left\langle(x, \lambda),\left(y_{0}, \mu_{0}\right)\right\rangle_{E}+2 I(x)-\lambda^{2}
$$

has at least two global minima in X. Of course, if $(x, \lambda) \in X$, we have

$$
\begin{gathered}
\|(x, \lambda)\|_{E}^{2}-2\left\langle(x, \lambda),\left(y_{0}, \mu_{0}\right)\right\rangle_{E}+2 I(x)-\lambda^{2} \\
=\|x\|^{2}+J^{2}(x)-2\left\langle x, y_{0}\right\rangle-2 \mu_{0} J(x)+2 I(x)-J^{2}(x) .
\end{gathered}
$$

In other words, the functional

$$
x \rightarrow\|x\|^{2}-2\left\langle x, y_{0}\right\rangle-2 \mu_{0} J(x)+2 I(x)
$$

has two global minima in H. Since the functional

$$
x \rightarrow-2\left\langle x, y_{0}\right\rangle-2 \mu_{0} J(x)+2 I(x)
$$

has a compact derivative, a well know result ([11], Example 38.25) ensures that the functional

$$
x \rightarrow\|x\|^{2}-2\left\langle x, y_{0}\right\rangle-2 \mu_{0} J(x)+2 I(x)
$$

has the Palais-Smale property and so, by Corollary 1 of [6], it possesses at least three critical points. The proof is complete.
Remark 2.2. In Theorem 2.8, apart from being C^{1} with compact derivative, the truly essential assumption on J is, of course, that its graph is not convex. This amounts to
say that J is not affine. The current assumptions are made to simplify the constants appearing in the conclusion. Actually, from the proof of Theorem 2.8, the following can be obtained:

Theorem 2.9. Let H be a Hilbert space and let $I, J: H \rightarrow \mathbf{R}$ be two C^{1} functionals with compact derivative such that $2 I-J^{2}$ is bounded. Moreover, assume that J is not affine.

Then, for every convex set $S \subseteq H \times \mathbf{R}$ dense in $H \times \mathbf{R}$, there exists $\left(y_{0}, \lambda_{0}\right) \in S$ such that the equation

$$
x+I^{\prime}(x)+\lambda_{0} J^{\prime}(x)=y_{0}
$$

has at least three solutions.
Remark 2.3. For $I=0$, the conclusion of Theorem 2.9 can be obtained from Theorem 4 of [7] (see also [4]) provided that, for some $r \in \mathbf{R}$, the set $J^{-1}(r)$ is not convex. Therefore, for instance, the fact that, for any non-constant bounded C^{1} function $J: \mathbf{R} \rightarrow \mathbf{R}$, there are $a, b \in \mathbf{R}$ such that the equation

$$
x+a J^{\prime}(x)=b
$$

has at least three solutions, follows, in any case, from Theorem 2.9, while it follows from Theorem 4 of [7] only if J is not monotone.

We conclude presenting an application of Theorem 2.7 to a class of Kirchhofftype problems.

Theorem 2.10. Let $f: \mathbf{R} \rightarrow \mathbf{R}$ be a continuous function, let $\rho>0$ and let $\omega:[0, \rho[\rightarrow$ $[0,+\infty[$ be a continuous increasing function such that

$$
\lim _{\xi \rightarrow \rho^{-}} \int_{0}^{\xi} \omega(x) d x=+\infty
$$

Consider $C^{0}([0,1]) \times C^{0}([0,1])$ endowed with the norm

$$
\|(\alpha, \beta)\|=\int_{0}^{1}|\alpha(t)| d t+\int_{0}^{1}|\beta(t)| d t
$$

Then, the following assertions are equivalent:
(a) the restriction of f to $\left[-\frac{\sqrt{\rho}}{2}, \frac{\sqrt{\rho}}{2}\right]$ is not constant;
(b) for every convex set $S \subseteq C^{0}([0,1]) \times C^{0}([0,1])$ dense in $C^{0}([0,1]) \times C^{0}([0,1])$, there exists $(\alpha, \beta) \in S$ such that the problem

$$
\left\{\begin{array}{l}
-\omega\left(\int_{0}^{1}\left|u^{\prime}(t)\right|^{2} d t\right) u^{\prime \prime}=\beta(t) f(u)+\alpha(t) \text { in }[0,1] \\
u(0)=u(1)=0 \\
\int_{0}^{1}\left|u^{\prime}(t)\right|^{2} d t<\rho
\end{array}\right.
$$

has at least two classical solutions.

Proof. Consider the Sobolev space $H_{0}^{1}(] 0,1[)$ with the usual scalar product

$$
\langle u, v\rangle=\int_{0}^{1} u^{\prime}(t) v^{\prime}(t) d t
$$

Let $B_{\sqrt{\rho}}$ be the open ball in $H_{0}^{1}(] 0,1[$, of radius $\sqrt{\rho}$, centered at 0 . Let $g:[0,1] \times \mathbf{R} \rightarrow \mathbf{R}$ be a continuous function. Consider the functionals $I, J_{g}: B_{\sqrt{\rho}} \rightarrow \mathbf{R}$ defined by

$$
\begin{gathered}
I(u)=\frac{1}{2} \tilde{\omega}\left(\int_{0}^{1}\left|u^{\prime}(t)\right|^{2} d t\right) \\
J_{g}(u)=\int_{0}^{1} \tilde{g}(t, u(t)) d t
\end{gathered}
$$

for all $u \in B_{\sqrt{\rho}}$, where $\tilde{\omega}(\xi)=\int_{0}^{\xi} \omega(x) d x, \tilde{g}(t, \xi)=\int_{0}^{\xi} g(t, x) d x$. By classical results, taking into account that if $\omega(x)=0$ then $x=0$, it follows that the classical solutions of the problem

$$
\left\{\begin{array}{l}
-\omega\left(\int_{0}^{1}\left|u^{\prime}(t)\right|^{2} d t\right) u^{\prime \prime}=g(t, u) \text { in }[0,1] \\
u(0)=u(1)=0 \\
\int_{0}^{1}\left|u^{\prime}(t)\right|^{2} d t<\rho
\end{array}\right.
$$

are exactly the critical points in $B_{\sqrt{\rho}}$ of the functional $I-J_{g}$.
Let us prove that $(a) \rightarrow(b)$. We are going to apply Theorem 2.7 taking $V=H_{0}^{1}(] 0,1[)$, $x_{0}=0, r=\sqrt{\rho}, I$ as above, $\gamma(\xi)=\frac{1}{2} \tilde{\omega}\left(\xi^{2}\right), E=C^{0}([0,1]) \times C^{0}([0,1])$ and $\psi: B_{\sqrt{\rho}} \rightarrow$ E defined by

$$
\psi(u)(\cdot)=(u(\cdot), \tilde{f}(u(\cdot)))
$$

for all $u \in B_{\sqrt{\rho}}$, where $\tilde{f}(\xi)=\int_{0}^{\xi} f(x) d x$. Clearly, the functional I is continuous and strictly convex (and so weakly lower semicontinuous), while the operator ψ is Gâteaux differentiable and sequentially weakly continuous due to the compact embedding of $H_{0}^{1}(] 0,1[)$ into $C^{0}([0,1])$. Recall that

$$
\max _{[0,1]}|u| \leq \frac{1}{2} \sqrt{\int_{0}^{1}\left|u^{\prime}(t)\right|^{2} d t}
$$

for all $u \in H_{0}^{1}(] 0,1[)$. As a consequence, the set $\psi\left(B_{\sqrt{\rho}}\right)$ is bounded and, in view of (a), non-convex. Hence, each assumption of Theorem 2.7 is satisfied. Now, consider the operator $T: E \rightarrow E^{*}$ defined by

$$
T(\alpha, \beta)(u, v)=\int_{0}^{1} \alpha(t) u(t) d t+\int_{0}^{1} \beta(t) v(t) d t
$$

for all $(\alpha, \beta),(u, v) \in E$. Of course, T is linear and the linear subspace $T(E)$ is total over E. Hence, $T(E)$ is weakly-star dense in E^{*}. Moreover, notice that T is continuous with respect to the weak-star topology of E^{*}. Indeed, let $\left\{\left(\alpha_{n}, \beta_{n}\right)\right\}$ be a sequence in E converging to some $(\alpha, \beta) \in E$. Fix $(u, v) \in E$. We have to show that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} T\left(\alpha_{n}, \beta_{n}\right)(u, v)=T(\alpha, \beta)(u, v) \tag{2.14}
\end{equation*}
$$

Notice that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left(\int_{0}^{1}\left|\alpha_{n}(t)-\alpha(t)\right| d t+\int_{0}^{1}\left|\beta_{n}(t)-\beta(t)\right| d t\right)=0 \tag{2.15}
\end{equation*}
$$

On the other hand, we have

$$
\begin{aligned}
& \left|T\left(\alpha_{n}, \beta_{n}\right)(u, v)-T(\alpha, \beta)(u, v)\right|=\left|\int_{0}^{1}\left(\alpha_{n}(t)-\alpha(t)\right) u(t) d t+\int_{0}^{1}\left(\beta_{n}(t)-\beta(t)\right) v(t) d t\right| \\
& \quad \leq\left(\int_{0}^{1}\left|\alpha_{n}(t)-\alpha(t)\right| d t+\int_{0}^{1}\left|\beta_{n}(t)-\beta(t)\right| d t\right) \max \left\{\max _{[0,1]}|u|, \max _{[0,1]}|v|\right\}
\end{aligned}
$$

and hence (2.14) follows in view of (2.15).
Finally, fix a convex set $S \subseteq C^{0}([0,1]) \times C^{0}([0,1])$ dense in $C^{0}([0,1]) \times C^{0}([0,1])$. Then, by the kind of continuity of T just now proved, the convex set $T(-S)$ is weakly-star dense in E^{*} and hence, thanks to Theorem 2.7, there exists $\left(\alpha_{0}, \beta_{0}\right) \in-S$ such that, if we put

$$
g(t, \xi)=\alpha_{0}(t)+\beta_{0}(t) f(\xi)
$$

the functional $I-J_{g}$ has at least two critical points in $B_{\sqrt{\rho}}$ which are the claimed solutions of the problem in (b), with $\alpha=-\alpha_{0}$ and $\beta=-\beta_{0}$.

Now, let us prove that $(b) \rightarrow(a)$. Assume that the restriction of f to $\left[-\frac{\sqrt{\rho}}{2}, \frac{\sqrt{\rho}}{2}\right]$ is constant. Let c be such a value. So, the classical solutions of the problem

$$
\left\{\begin{array}{l}
-\omega\left(\int_{0}^{1}\left|u^{\prime}(t)\right|^{2} d t\right) u^{\prime \prime}=c \beta(t)+\alpha(t) \text { in }[0,1] \\
u(0)=u(1)=0 \\
\int_{0}^{1}\left|u^{\prime}(t)\right|^{2} d t<\rho
\end{array}\right.
$$

are the critical points in $B_{\sqrt{\rho}}$ of the functional

$$
u \rightarrow \frac{1}{2} \tilde{\omega}\left(\int_{0}^{1}\left|u^{\prime}(t)\right|^{2} d t\right)-\int_{0}^{1}(c \alpha(t)+\beta(t)) u(t) d t
$$

But, since ω is increasing and non-negative, this functional is strictly convex and so it possesses a unique critical point. The proof is complete.

Acknowledgements. The author has been supported by the Gruppo Nazionale per l'Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM) and by the Università degli Studi di Catania, PIACERI 2020-2022, Linea di intervento 2, Progetto "MAFANE". Thanks are also due to Prof. Lingju Kong whose pertinent questions lead to a clarification of the proof of Theorem 2.10.

References

[1] Alimov, A.R., Tsar'kov, I.G., Connectedness and solarity in problems of best and nearbest approximation, Russian Math. Surveys, 71(2016), 1-77.
[2] Balaganskǐi, V.S., Vlasov, L.P., The problem of the convexity of Chebyshev sets, Russian Math. Surveys, 51(1996), 1127-1190.
[3] Efimov, N.V., Stec̆kin, S.B., Approximative compactness and Chebyshev sets, Dokl. Akad. Nauk SSSR, 140(1961), 522-524.
[4] Faraci, F., Iannizzotto, A., An extension of a multiplicity theorem by Ricceri with an application to a class of quasilinear equations, Studia Math., 172(2006), 275-287.
[5] Faraci, F., Iannizzotto, A., Well posed optimization problems and nonconvex Chebyshev sets in Hilbert spaces, SIAM J. Optim., 19(2008), 211-216.
[6] Pucci, P., Serrin, J., A mountain pass theorem, J. Differential Equations, 60(1985), 142149.
[7] Ricceri, B., A general multiplicity theorem for certain nonlinear equations in Hilbert spaces, Proc. Amer. Math. Soc., 133(2005), 3255-3261.
[8] Ricceri, B., A conjecture implying the existence of non-convex Chebyshev sets in infinitedimensional Hilbert spaces, Matematiche, 65(2010), 193-199.
[9] Ricceri, B., On a minimax theorem: an improvement, a new proof and an overview of its applications, Minimax Theory Appl., 2(2017), 99-152.
[10] Tsar'kov, I.G., Nonuniqueness of solutions of some differential equations and their connection with geometric approximation theory, Math. Notes, 75(2004), 259-271.
[11] Zeidler, E., Nonlinear Functional Analysis and its Applications, vol. III, Springer-Verlag, 1985.

Biagio Ricceri
Department of Mathematics and Informatics, University of Catania,
Viale A. Doria 6, 95125 Catania, Italy
e-mail: ricceri@dmi.unict.it

