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On Fryszkowski’s problem

Andrei Comăneci

Abstract. In this paper we give two partial answers to Fryszkowski’s problem
which can be stated as follows: given α ∈ (0, 1), an arbitrary non-empty set
Ω and a set-valued mapping F : Ω → 2Ω, find necessary and (or) sufficient
conditions for the existence of a (complete) metric d on Ω having the property
that F is a Nadler set-valued α-contraction with respect to d. More precisely, on
the one hand, we provide necessary and sufficient conditions for the existence of
a complete and bounded metric d on Ω having the property that F is a Nadler
set-valued α-contraction with respect to d, in the case that α ∈ (0, 1

2
) and there

exists z ∈ Ω such that F (z) = {z} and, on the other hand, we give a sufficient
condition for the existence of a complete metric d on Ω having the property that
F is a Nadler set-valued α-contraction with respect to d, in the case that Ω is
finite.
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1. Introduction

The first version of a converse of the Banach-Caccioppoli-Picard principle is due
to C. Bessaga (see [2]). For an application of Bessaga’s converse see [20] and for some
other converses of the contraction principle see [3], [7], [9], [12] and [17]. For more
results along this line of research one can consult [1], [8], [13], [14], [15] and [23].

An extension of the contraction principle to set-valued mappings is due to J. T.
Markin and S. B. Nadler Jr. (see [11] and [16]). For more information on this topic
see [4], [5], [10], [18], [19], [21], and [22].

The last section of [6] consists of the following problem formulated by Professor
Andrzej Fryszkowski at the 2nd Symposium on Nonlinear Analysis in Toruń, Septem-
ber 13-17, 1999, which asks for a converse of the contraction principle for set-valued
mappings: Given α ∈ (0, 1), an arbitrary non-empty set Ω and a set-valued mapping
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F : Ω→ 2Ω, find necessary and (or) sufficient conditions for the existence of a (com-
plete) metric d on Ω having the property that F is a Nadler set-valued α-contraction
with respect to d.

In this paper we give two partial answers to the above mentioned problem.
Our first result provides necessary and sufficient conditions for the existence of

a complete and bounded metric d on Ω having the property that F is a Nadler set-
valued α-contraction with respect to d, in the case that α ∈ (0, 1

2 ) and there exists
z ∈ Ω such that F (z) = {z}.

Our second result gives a sufficient condition for the existence of a complete
metric d on Ω having the property that F is a Nadler set-valued α-contraction with
respect to d, in the case that Ω is finite.

2. Preliminaries

Definition 2.1. For a metric space (X, d), we consider the generalized Hausdorff-
Pompeiu metric H : 2X × 2X → [0,+∞] described by

H(A,B) = max{sup
x∈A

( inf
y∈B

d(x, y)), sup
x∈B

( inf
y∈A

d(x, y))},

for every A,B ∈ 2X .

Definition 2.2. Given α ∈ (0, 1), an arbitrary non-empty set Ω and a metric d on Ω, a
set-valued function F : Ω→ 2Ω is called Nadler set-valued α-contraction with respect
to d if H(F (x), F (y)) ≤ αd(x, y) for all x, y ∈ Ω.

Definition 2.3. Given an arbitrary non-empty set Ω and a set-valued function F :
Ω→ 2Ω, z ∈ Ω is called a fixed point of F if z ∈ F (z).

Definition 2.4. Given an arbitrary non-empty set Ω and a set-valued function F :

Ω→ 2Ω, one can consider the function F̂ : 2Ω → 2Ω given by

F̂ (P ) =
⋃
x∈P

F (x)

for every P ∈ 2Ω.

Definition 2.5. Given an arbitrary non-empty set Ω, a function f : Ω→ Ω and n ∈ N,
by fn we mean the composition of f by itself n times, with the convention that
f0 = IdΩ.

3. Main results

Lemma 3.1. Given α ∈ (0, 1), an arbitrary non-empty set Ω and a set-valued function
F : Ω→ 2Ω having a fixed point z such that F (z) = {z}, the following statements are
equivalent:

a) there exists a complete metric d on Ω such that F is a Nadler set-valued
α-contraction with respect to d;

b) there exists a function ϕ : Ω → [0,∞) such that ϕ−1({0}) = {z} and
sup

t∈F (x)

ϕ(t) ≤ αϕ(x) for all x ∈ Ω.
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Proof. a)⇒b) We consider the function ϕ : Ω→ [0,∞) given by ϕ(x) = d(x, z) for all
x ∈ Ω. It is clear that ϕ−1({0}) = {z}. Moreover, we have

sup
t∈F (x)

ϕ(t) = sup
t∈F (x)

d(t, z) ≤ H(F (x), {z}) = H(F (x), F (z)) ≤ αd(x, z) = αϕ(x)

for all x ∈ Ω.

b)⇒a) Considering the metric d : Ω× Ω→ [0,∞), given by

d(x, y) =

{
ϕ(x) + ϕ(y), if x 6= y

0, if x = y
,

we have

sup
t∈F (x)

d(t, F (y)) = sup
t∈F (x)

inf
u∈F (y)

d(t, u) ≤ sup
t∈F (x)

inf
u∈F (y)

(ϕ(t) + ϕ(u))

= sup
t∈F (x)

(ϕ(t) + inf
u∈F (y)

ϕ(u)) = sup
t∈F (x)

ϕ(t) + inf
u∈F (y)

ϕ(u)

≤ α(ϕ(x) + ϕ(y)) = αd(x, y)

for all x, y ∈ Ω, x 6= y. In a similar way we get sup
t∈F (y)

d(t, F (x)) ≤ αd(x, y) for all

x, y ∈ Ω, x 6= y. Consequently we infer that

H(F (x), F (y)) = max{ sup
t∈F (x)

d(t, F (y)), sup
t∈F (y)

d(t, F (x))} ≤ αd(x, y)

for all x, y ∈ Ω, x 6= y. Note that the last inequality is true for x = y. The proof of
the fact that d is complete is identical to the one presented in Lemma 1 from [6]. �

Corollary 3.2. If α ∈ (0, 1), (Ω, d) is a complete metric space and F : Ω → 2Ω is
a Nadler set-valued α-contraction with respect to d having a fixed point z such that
F (z) = {z}, then z is the unique fixed point of F .

Proof. Let us suppose that y is another fixed point of F . Then, from Lemma 3.1,
we obtain ϕ(y) ≤ sup

x∈F (y)

ϕ(x) ≤ αϕ(y), so ϕ(y) = 0, i.e. y ∈ ϕ−1({0}) = {z}. Hence

y = z. �

Theorem 3.3. Given α ∈ (0, 1
2 ), an arbitrary non-empty set Ω and a set-valued func-

tion F : Ω→ 2Ω having a fixed point z such that F (z) = {z}, the following statements
are equivalent:

a)
⋂
n∈N

F̂n(Ω) = {z};

b) there exists a bounded function ϕ : Ω→ [0,∞) such that ϕ−1({0}) = {z} and
sup

t∈F (x)

ϕ(t) ≤ αϕ(x) for all x ∈ Ω;

c) there exists a complete and bounded metric d on Ω such that F is a Nadler
set-valued α-contraction with respect to d.
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Proof. a)⇒b) Let us consider the bounded function ϕ : Ω→ [0,∞) given by ϕ(x) =

αnx for every x ∈ Ω, where nx = sup{n ∈ N | x ∈ F̂n(Ω)} and we use the convention
α∞ = 0. In the view of the hypothesis, nx ∈ N for x 6= z and nz =∞, so ϕ−1({0}) =

{z}. Moreover, since, for t ∈ F (x), we have t ∈ F̂ (F̂nx(Ω)) = F̂nx+1(Ω), so nt ≥ nx+1,
we infer that

sup
t∈F (x)

ϕ(t) = sup
t∈F (x)

αnt ≤ sup
t∈F (x)

αnx+1 = α · αnx = αϕ(x)

for all x ∈ Ω.
b)⇒c) The proof is the same with the one of b)⇒a) from Lemma 3.1, with the

remark that

diam(Ω) = sup
x,y∈Ω

d(x, y) ≤ sup
x,y∈Ω

(ϕ(x) + ϕ(y)) ≤ 2 sup
x∈Ω

ϕ(x).

c)⇒a) According to our hypothesis, we have {z} ⊆
⋂
n∈N

F̂n(Ω).

Claim. d(x, y) ≤ (2α)n diam(Ω) for all n ∈ N∗, x, y ∈ F̂n(Ω).
Justification of the claim. We are going to prove the claim by using the method of

mathematical induction. If x, y ∈ F̂ (Ω), then there exist u, v ∈ Ω such that x ∈ F (u)
and y ∈ F (v), so

d(x, y) ≤ d(x, z) + d(z, y) = d(x, F (z)) + d(y, F (z))

≤ H(F (u), F (z)) +H(F (v), F (z))

≤ αd(u, z) + αd(z, y) ≤ 2α diam(Ω).

Thus the statement is valid for n = 1. Now, given n ∈ N∗, we suppose that the

statement is valid for n−1 and prove that it is true also for n. Indeed, if x, y ∈ F̂n(Ω),

then there exist u, v ∈ F̂n−1(Ω) such that x ∈ F (u) and y ∈ F (v), so

d(x, y) ≤ d(x, z) + d(z, y) = d(x, F (z)) + d(y, F (z))

≤ H(F (u), F (z)) +H(F (v), F (z))

≤ αd(u, z) + αd(v, z).

Because u, v, z ∈ F̂n−1(Ω), we get

d(u, z) ≤ (2α)n−1 diam(Ω) and d(v, z) ≤ (2α)n−1 diam(Ω).

So d(x, y) ≤ αd(u, z)+αd(v, z) ≤ (2α)n diam(Ω). Consequently, the statement is valid
for n. The proof of the claim is done.

Based on the claim, we conclude that lim
n→∞

diam(F̂n(Ω)) = 0, so
⋂
n∈N

F̂n(Ω) is a

singleton, namely
⋂
n∈N

F̂n(Ω) = {z}. �

Theorem 3.4. Let α ∈ (0, 1), an arbitrary non-empty finite set Ω, F : Ω → 2Ω a set-

valued function and z ∈ Ω such that {z} is the unique fixed point for F̂ . Then there
exists a complete metric d on Ω such that F is a Nadler set-valued α-contraction with
respect to d.
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Proof. We have the following chain of inclusions:

Ω = F̂ 0(Ω) ⊇ F̂ 1(Ω) = F̂ (Ω) ⊇ F̂ 2(Ω) ⊇ ... ⊇ F̂n(Ω) ⊇ ...,

where n ∈ N and z ∈
⋂
n∈N

F̂n(Ω). Note that F̂n(Ω) = F̂n+1(Ω) if and only if F̂n(Ω) =

{z}. There exists n ∈ N such that F̂n(Ω) = {z} otherwise we would get the following
strictly decreasing sequence of non-negative integers:

|Ω| >
∣∣∣F̂ (Ω)

∣∣∣ > ∣∣∣F̂ 2(Ω)
∣∣∣ > ... >

∣∣∣F̂n(Ω)
∣∣∣ > ...

where n ∈ N. This yields a contradiction with the fact that N is well-ordered. Thus

we can consider the smallest p ∈ N having the property that F̂ p(Ω) = {z}. To every

x ∈ Ω r {z} we associate nx = max{n ∈ N | x ∈ F̂n(Ω)} < p. Moreover, we define

nz =∞. Note that for t ∈ F (x), we have t ∈ F̂ (F̂nx(Ω)) = F̂nx+1(Ω), so nt ≥ nx + 1.
Considering the function ϕ : Ω → [0,∞) given by ϕ(x) = αnx for every x ∈ Ω, with
the convention α∞ = 0, we have

sup
t∈F (x)

ϕ(t) = sup
t∈F (x)

αnt ≤ sup
t∈F (x)

αnx+1 = α · αnx = αϕ(x)

for all x ∈ Ω and ϕ−1({0}) = {z}. Hence, the conclusion follows using Lemma 3.1. �
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