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Abstract. The aim of this paper is to introduce some classes of set-valued func-
tions that preserve the convexity of sets by direct and inverse images. In particu-
lar, we show that the so-called set-valued ratios of affine functions represent such
a class. To this aim, we characterize them in terms of vector-valued selections
that are ratios of affine functions in the classical sense of Rothblum.
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1. Introduction

Various classes of fractional type real-valued or vector-valued functions have
been introduced in the literature, being nowadays well recognized for their important
applications in scalar and vector optimization (see, e.g., Avriel et al. [2], Cambini and
Martein [4], Göpfert et al. [6], Stancu-Minasian [13], and the references therein).

According to Rothblum [11], a vector-valued function f : D → Rm, defined
on a nonempty convex set D ⊆ Rn, is said to be a ratio of affine functions if there
exist a vector-valued affine function g : Rn → Rm and a real-valued affine function
h : Rn → R, such that

D ⊆ {x ∈ Rn | h(x) > 0}
and

f(x) =
g(x)

h(x)
, ∀x ∈ D. (1.1)

These functions are known to preserve the convexity of sets by direct and inverse
images. Moreover, they transform the line segments in line segments (possibly de-
generated into singletons). This concept along with the above mentioned convexity-
preserving properties can be naturally extended for vector-valued functions acting
between general real linear spaces.
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Recently, Orzan [10] investigated a class of set-valued ratios of affine functions,
defined similarly to (1.1), by replacing g with a set-valued function that is affine in
the sense of Tan [14]. As shown in [10], these functions preserve the convexity of sets
by direct images. A natural question is whether they preserve the convexity of sets
by inverse images too. The aim of this paper is not only to give a positive answer to
this question, but also to identify some broader classes of set-valued functions that
preserve the convexity of sets by direct and inverse images.

We start by recalling some basic definitions of set-valued and convex analysis
in Section 2. The concept of set-valued affine function, as defined by Tan [14], is
investigated in Section 3. In particular, we show that the inverse of such a function is
affine as well (in contrast to other concepts of affine set-valued functions, cf. Kuroiwa
et al. [7, Ex. 2]). Section 4 is devoted to the ratios of affine functions. In Section
4.1 we briefly present how the classical results of Rothblum [11] can be extended
from finite-dimensional Euclidean spaces to general linear spaces. Subsection 4.2 is
devoted to our main results. First we introduce the class of set-valued ratios of affine
functions, by refining the definition proposed in [10]. Theorem 4.8 gives an explicit
representation of these functions, which plays a key role in establishing the convexity-
preserving properties of the set-valued ratios of affine functions. Moreover, Theorems
4.10 and 4.11 show that these properties are still valid in some broader classes of
set-valued functions. We conclude the paper by rising an interesting open question in
Section 5.

2. Preliminaries

Throughout this paper we assume that X and Y are two real linear spaces. As
usual in set-valued analysis (see, e.g., Aubin and Frankowska [1]), for any set-valued
function F : X → P(Y ) we denote by

domF = {x ∈ X | F (x) 6= ∅}

the domain of F . We say that F is proper if domF 6= ∅. The (direct) image of a set
A ⊆ X by F is defined as

F (A) =
⋃
x∈A

F (x).

There are different manners to define the inverse image of a set B ⊆ Y by a set-valued
map F , two of them being currently used in set-valued analysis [1], namely:

F−1(B) = {x ∈ X | F (x) ∩B 6= ∅}, (2.1)

F+1(B) = {x ∈ X | F (x) ⊆ B}. (2.2)

The set F−1(B) is called the inverse image of B by F and F+1(B) is called the core
of B by F (also known as the lower inverse image and the upper inverse image of B
by F , respectively). They are related by

F+1(B) = X \ F−1(Y \B). (2.3)
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Remark 2.1. Let F : X → P(Y ) be a set-valued function. Given a set B ⊆ Y we have

F−1(B) ⊆ domF, (2.4)

F+1(B) = {x ∈ domF | F (x) ⊆ B} ∪ (X \ domF ). (2.5)

Notice that, instead of (2.2), Berge [3] defined a slightly different concept of up-
per inverse image of B, namely {x ∈ domF | F (x) ⊆ B}, which actually means
F+1(B) ∩ domF .

Remark 2.2. Let F : X → P(Y ) be a set-valued function. Then, for all sets A ⊆ X
and B ⊆ Y , the following equivalence holds:

A ⊆ F+1(B) ⇐⇒ F (A) ⊆ B.

Remark 2.3. According to [1], the inverse of F is the set-valued function F−1 : Y →
P(X) defined for any y ∈ Y by

F−1(y) := {x ∈ X | y ∈ F (x)}.
Notice that domF−1 = F (X) and F−1(Y ) = domF . Also, for every set B ⊆ Y , we
have

F−1(B) =
⋃
y∈B

F−1(y) = {x ∈ X | F (x) ∩B 6= ∅}. (2.6)

It is important to notice that, according to (2.1) and (2.6), one can use without any
confusion the same notation, F−1(B), for both the lower inverse image of B by F
and the direct image of B by F−1.

Remark 2.4. Every vector-valued function f : D → Y defined on a nonempty set
D ⊆ X can be identified with a set-valued function F : X → P(Y ),

F (x) =

{
{f(x)} if x ∈ D
∅ if x ∈ X \D.

Obviously, domF = D and, for all A ⊆ X and B ⊆ Y , we have

F (A) = f(A ∩D) := {f(x) | x ∈ A ∩D},
F−1(B) = f−1(B) := {x ∈ D | f(x) ∈ B},
F+1(B) = f−1(B) ∪ (X \D), i.e., F+1(B) ∩D = f−1(B).

In particular, the second relation shows that one can define the set-valued function
f−1 : Y → P(X) as f−1(y) := F−1(y) for all y ∈ Y .

The aim of this paper is to study some classes of set-valued functions that
preserve the convexity of sets by direct and inverse images. Therefore we will adopt
the following conventional notations in a real linear space V (in particular, X or Y ).
Given S, S′ ⊆ V , λ ∈ R and v0 ∈ V , we set:

S + S′ := {v + v′ | (v, v′) ∈ S × S′}, v0 + S := {v0}+ S,

λS := {λv | v ∈ S}, and
S

λ
:=

1

λ
S whenever λ 6= 0.
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Recall that a set S ⊆ V is called convex if (1 − t)S + tS ⊆ S for all t ∈ [0, 1]. The
convex hull of a set S, i.e., the smallest convex subset of V that contains S, will be
denoted by convS. For convenience, when the convex hull applies only to the first
term of a sum of two sets we will simply write convS+S′ instead of (convS) +S′. A
set S ⊆ X is called affine if (1− t)S+ tS ⊆ S for all t ∈ R. If S is nonempty, then S is
affine if and only if there exists a (unique) linear subspace L of V such that S = v+L
for all v ∈ S.

3. Affine set-valued functions

Recall that a vector-valued function, a : E → Y , defined on a nonempty affine
set E ⊆ X, is said to be affine if for any x1, x2 ∈ E and t ∈ R we have

a((1− t)x1 + tx2) = (1− t)a(x1) + ta(x2).

This concept has been generalized for set-valued affine functions in different ways
(see, e.g. Deutsch and Singer [5], Nikodem and Popa [9], Tan [14], and the references
therein). The following definition, inspired from [14], is suitable for the purposes of
our paper.

Definition 3.1. A set-valued function G : X → P(Y ) is said to be affine if

G((1− t)x1 + tx2) = (1− t)G(x1) + tG(x2) (3.1)

for all x1, x2 ∈ domG and t ∈ R.

Remark 3.2. It can be easily seen that if G : X → P(Y ) is a set-valued affine function,
then domG is affine, since for any x1, x2 ∈ domG and t ∈ [0, 1], the equality (3.1)
implies G((1 − t)x1 + tx2) 6= ∅, i.e., (1 − t)x1 + tx2 ∈ domG. Moreover, for every
x ∈ X, the set G(x) is affine. Indeed, letting x1 = x2 = x in (3.1) we get

G(x) = G((1− t)x+ tx) = (1− t)G(x) + tG(x)

for all t ∈ R, hence G(x) is affine.

Example 3.3. Let g : E → Y be a vector-valued affine function, defined on a nonempty
affine set E ⊆ X. In view of Remark 2.4, we can identify g with the set-valued function
G : X → P(Y ), given by

G(x) =

{
{g(x)} if x ∈ E
∅ if x ∈ X \ E.

It is easy to check that G is affine.

Proposition 3.4. For any set-valued function G : X → P(Y ) the following assertions
are equivalent:

1◦ G is affine.
2◦ For all x1, x2 ∈ domG and t ∈ R we have

(1− t)G(x1) + tG(x2) ⊆ G((1− t)x1 + tx2).
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Proof. The implication 1◦ =⇒ 2◦ is obvious, while 2◦ =⇒ 1◦ can be seen as a partic-
ular instance of a known result by Nikodem and Popa [9, Prop. 2.11], applied to the
restriction of G to E := domG, which is an affine set in view of Remark 3.2. �

Remark 3.5. In the paper by Tan [14] the set-valued affine functions are defined on
a nonempty affine set E ⊆ X taking values in P0(Y ) := P(Y ) \ {∅}. Actually, if
G : X → P(Y ) is a proper set-valued affine function, then the set E := domG is
nonempty and affine, therefore the restriction of G to E, i.e., G|domG : E → P0(Y ),
is affine in the sense of Tan.

Theorem 3.6. Let G : X → P(Y ) be a set-valued affine function. Then the inverse of
G, i.e., the set-valued function G−1 : Y → P(X), is affine.

Proof. According to Proposition 3.4, we just need to show that for any y1, y2 ∈
domG−1 = G(X) and t ∈ R the following inclusion holds:

(1− t)G−1(y1) + tG−1(y2) ⊆ G−1((1− t)y1 + ty2). (3.2)

To this aim, let x ∈ (1 − t)G−1(y1) + tG−1(y2). Then there exist x1 ∈ G−1(y1) and
x2 ∈ G−1(y1) such that x = (1− t)x1 + tx2. In view of (2.4), we have x1, x2 ∈ domG.
Taking into account that function G is affine, we deduce that

(1− t)y1 + ty2 ∈ (1− t)G(x1) + tG(x2) = G((1− t)x1 + tx2) = G(x),

which entails x ∈ G−1((1− t)y1 + ty2). Thus (3.2) holds. �

Corollary 3.7. If g : E → Y is a vector-valued affine function, defined on a nonempty
affine set E ⊆ X, then the set-valued function g−1 : Y → P(X) is affine.

Proof. Follows by Theorem 3.6, in view of Remark 2.4. �

The following two results are based on Tan [14, Props. 4 and 5].

Proposition 3.8. If G : X → P(Y ) is a proper set-valued affine function, then there
is a unique linear subspace M ⊆ Y such that

G(x) = y +M (3.3)

for all x ∈ domG and y ∈ G(x).

Proposition 3.9. If G : X → P(Y ) is a proper set-valued affine function, then
G possesses an affine selection, i.e., there exists a vector-valued affine function
g : domG→ Y such that, for all x ∈ domG,

g(x) ∈ G(x).

Corollary 3.10. If G : X → P(Y ) is a proper set-valued affine function, then there
exist a vector-valued affine function g : domG → Y and a linear subspace M ⊆ Y
such that, for all x ∈ domG,

G(x) = g(x) +M.

Proof. It is a straightforward consequence of Propositions 3.8 and 3.9. �
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Remark 3.11. If Y = R, then there are only two types of proper set-valued affine
functions G : R → P(R), namely: (i) G(x) = {g(x)} for all x ∈ domG, where
g : domG→ R is an affine function, or (ii) G(x) = R for all x ∈ domG. In particular,
when X = R the domain domG is either a singleton or the entire R, in view of
Remark 3.2.

4. Ratios of affine functions

4.1. Vector-valued ratios of affine functions

We begin this section by extending the notion of vector-valued ratios of affine
functions, originally introduced by Rothblum [11] within finite-dimensional Euclidean
spaces, to the framework of general real linear spaces.

Definition 4.1. A vector-valued function f : D → Y, defined on a nonempty convex
set D ⊆ X, is said to be a ratio of affine functions if there exist a vector-valued affine
function g : X → Y and a real-valued affine function h : X → R, such that

D ⊆ {x ∈ X | h(x) > 0}

and

f(x) =
g(x)

h(x)
, ∀x ∈ D. (4.1)

Remark 4.2. Since D is assumed to be nonempty in Definition 4.1, it is understood
that the set {x ∈ X | h(x) > 0} is nonempty.

The following propositions extend to the framework of general real linear spaces some
results obtained within Rn by Rothblum (see [11, Props. 1, 2 and 3] along with
subsequent remarks). Their proofs are omitted, since they follow the main lines in [11].

Proposition 4.3. Given a vector-valued function f : D → Y defined on a nonempty
convex set D ⊆ X, the following assertions are equivalent:

1◦ conv f(S) ⊆ f(convS) for every set S ⊆ D.
2◦ f(A) is convex for every convex set A ⊆ D, i.e., f preserves the convexity of

sets by direct images.

Proposition 4.4. Given a vector-valued function f : D → Y defined on a nonempty
convex set D ⊆ X, the following assertions are equivalent:

1◦ f(convS) ⊆ conv f(S) for every set S ⊆ D.
2◦ f−1(B) is convex for every convex set B ⊆ Y , i.e., function f preserves the

convexity of sets by inverse images.

Proposition 4.5. Let D ⊆ X be a nonempty convex set. If f : D → Y is a vector-valued
ratio of affine functions, then

conv f(S) = f(convS) for every set S ⊆ D.

Therefore f preserves the convexity of sets by direct and inverse images.
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4.2. Set-valued ratios of affine functions

In this section we introduce a class of set-valued ratios of affine functions, by
slightly modifying the one proposed by us in [10, Def. 3.3].

Definition 4.6. Let F : X → P(Y ) be a set-valued function, whose domain domF =:
D ⊆ X is a nonempty convex set. We say that F is a ratio of affine functions if
there exist a proper set-valued affine function G : X → P(Y ) and a real-valued affine
function h : X → R, such that

D ⊆ {x ∈ X | h(x) > 0} ∩ domG

and

F (x) =


G(x)

h(x)
if x ∈ D

∅ if x ∈ X \D.
(4.2)

Remark 4.7. As we have pointed out in Remark 4.2, since D is nonempty, the set
{x ∈ X | h(x) > 0} is nonempty as well. In particular, we deduce that any proper
set-valued affine function F : X → P(Y ) is a ratio of affine functions of type (4.2).
Indeed, in this case, D := domF is a nonempty affine hence convex set, G(x) = F (x)
and h(x) = 1 for all x ∈ X.

Theorem 4.8. Let F : X → P(Y ) be a set-valued ratio of affine functions defined by
(4.2). Then there exist a vector-valued ratio of affine functions f : D → Y and a
linear subspace M ⊆ Y , such that

F (x) =

 f(x) +M if x ∈ D

∅ if x ∈ X \D.
(4.3)

Proof. In view of Corollary 3.10, we can find a vector-valued affine function g : X →
Y and a linear subspace M ⊆ Y , such that G(x) = g(x) + M for any x ∈ D.
Consequently, we get

F (x) =
G(x)

h(x)
=
g(x) +M

h(x)
=
g(x)

h(x)
+

M

h(x)
=
g(x)

h(x)
+M, ∀x ∈ D.

Thus, we can define a vector-valued ratio of affine functions, f : D → Y , by

f(x) :=
g(x)

h(x)
, ∀x ∈ D,

which satisfies (4.3). �

The following result is a set-valued counterpart of Proposition 4.5 and recovers
a similar result obtained in [10, Th. 3.1].

Corollary 4.9. Let F : X → P(Y ) be a set-valued ratio of affine functions defined by
(4.2). Then, for any set S ⊆ D we have

convF (S) = F (convS). (4.4)
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Proof. According to Theorem 4.8, there exist a vector-valued ratio of affine functions
f : D → Y and a linear subspace M ⊆ Y such that F has the form (4.3). Consider
an arbitrary set S ⊆ D. On the one hand, we have F (S) = f(S) +M , hence

convF (S) = conv (f(S) +M). (4.5)

On the other hand, we have F (convS) = f(convS)+M , which in view of Proposition
4.5 means

F (convS) = conv f(S) +M. (4.6)

Taking into account that M is convex, it is a simple exercise to check that

conv f(S) +M = conv (f(S) +M). (4.7)

Thus, (4.4) follows by (4.5), (4.6) and (4.7). �

In what follows we will show that, similarly to vector-valued ratios of affine
functions, the set-valued ratios of affine functions preserve the convexity of sets by
direct and inverse images. To this aim we establish two preliminary results for more
general classes of set-valued functions.

Theorem 4.10. Consider a set-valued function F : X → P(Y ) of type (4.3), where
D ⊆ X and M ⊆ Y are nonempty convex sets, while f : D → Y is a vector-valued
function that preserves the convexity of sets by direct images. Then, for every convex
set A ⊆ X, the set F (A) is convex, i.e., F preserves the convexity of sets by direct
images.

Proof. Let A ⊆ X be a convex set. Since domF = D, we have

F (A) = F (A ∩D) ∪ F (A \D) = F (A ∩D) = f(A ∩D) +M.

By hypothesis, f(A ∩D) is convex as being the image of the convex set A ∩D by f .
Since M is convex too, we conclude that F (A) is convex. �

Theorem 4.11. Consider a set-valued function F : X → P(Y ) of type (4.3), where
D ⊆ X and M ⊆ Y are nonempty convex sets, while f : D → Y is a vector-valued
function that preserves the convexity of sets by inverse images. Then, for every convex
set B ⊆ Y , the sets F−1(B) and F+1(B) ∩ domF are convex, i.e., F preserves the
convexity of sets by lower inverse images as well as by upper inverse images in the
sense of Berge.

Proof. First notice that domF = D. For every convex set B ⊆ Y we have

F−1(B) = {x ∈ X | F (x) ∩B 6= ∅}
= {x ∈ D | (f(x) +M) ∩B 6= ∅}
=

⋃
m∈M

{x ∈ D | f(x) +m ∈ B}

=
⋃

m∈M
f−1(B −m)

= f−1(B −M).
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Since B − M is convex (by convexity of B and M), its inverse image by f , i.e.,
f−1(B −M), is convex as well. Consequently, the set F−1(B) is convex.
In order to prove that F+1(B) ∩ domF , i.e., F+1(B) ∩D, is convex, let

x1, x2 ∈ F+1(B) ∩D.
We have to show that

conv {x1, x2} ⊆ F+1(B) ∩D.
Since D is convex set, we just have to check that conv {x1, x2} ⊆ F+1(B). In view of
Remark 2.2, this actually means that F (conv {x1, x2}) ⊆ B, which by (4.3) reduces
to

f(conv {x1, x2}) +M ⊆ B. (4.8)

Observe that, by applying Proposition 4.4 for S := {x1, x2}, we have

f(conv {x1, x2}) +M ⊆ conv f({x1, x2}) +M

= conv {f(x1), f(x2)}+M.

Taking into account that M is convex, we can deduce that

conv {f(x1), f(x2)}+M = conv
(
(f(x1) +M) ∪ (f(x2) +M)

)
= conv

(
F (x1) ∪ F (x2)

)
.

Finally, recalling that x1, x2 ∈ F+1(B), we have F (x1) ∪ F (x2) ⊆ B, which by con-
vexity of B yields

conv
(
F (x1) ∪ F (x2)

)
⊆ B.

Hence, the desired inclusion (4.8) holds. �

As a direct consequence of Theorems 4.8, 4.10 and 4.11 we obtain the following result.

Corollary 4.12. If F : X → P(Y ) is a set-valued ratio of affine functions defined by
(4.2), then the following assertions hold:

1◦ F preserves the convexity of sets by direct images.
2◦ F preserves the convexity of sets by lower inverse images.
3◦ F preserves the convexity of sets by upper inverse images in the sense of Berge.

Remark 4.13. Corollary 4.12 (1◦) extends a result obtained in [10, Cor. 3.1].

Remark 4.14. Assertions 2◦ and 3◦ of Corollary 4.12, can be interpreted in terms
of generalized convexity. They actually show that the restriction F |domF : D →
P0(Y ) of any set-valued ratio of affine functions defined by (4.2) is quasiconvex and
quasiconcave in the sense of Nikodem [8, Th. 7.2]. Assertion 3◦ also means that F is
(u1)-type {0Y }-quasiconvex in the sense of Seto, Kuroiwa and Popovici [12, Def. 3.3],
where 0Y stands for the origin of Y . Actually, the more general set-valued functions
involved in Theorem 4.11 also satisfy these generalized convexity properties as well.

Remark 4.15. In contrast to Corollary 4.12 (3◦), if F : X → P(Y ) is a set-valued
(even single-valued) ratio of affine functions defined by (4.2), the upper inverse image
F+1(B) of a convex set B ⊆ Y in the sense of Aubin-Frankowska is not necessarily
convex, as the following example shows.
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Example 4.16. Let X = Y = R and D = [0, 1]. Let F : R → P(R) be the set-valued
function defined as

F (x) =

{
{x} if x ∈ [0, 1]

∅ if x /∈ [0, 1].

In view of Remarks 3.11 and 4.7, F is a set-valued ratio of affine functions of type
(4.2), where G(x) = {x} and h(x) = 1 for all x ∈ R. Consider the convex set B = {0}.
Although F+1(B) ∩ domF = {0} is convex, the set F+1(B) = R \ ]0, 1] is not convex.

Remark 4.17. Let F : X → P(Y ) be a proper set-valued affine function, whose domain
is the affine set D := domF . Notice that F is a set-valued ratio of affine functions,
in view of Remark 4.7. Then, for every convex set B ⊆ Y , the sets

F−1(B) and F+1(B) ∩D
are convex, according to Corollary 4.12 (2◦ and 3◦).

On the other hand, by Theorem 3.6, the inverse of F , i.e., the set-valued function
F−1 : Y → P(X), is also affine with domF−1 = F (X) = F (D). Thus, by applying
the above arguments to F−1 in the role of F , we deduce that for any convex set
A ⊆ X the sets

(F−1)−1(A) and (F−1)+1(A) ∩ F (D)

are convex. Of course, the convexity of (F−1)−1(A) is simply recovered by Corollary
4.12 (1◦) applied to F−1 in the role of F , since (F−1)−1(A) = F (A). However, the con-
vexity of (F−1)+1(A)∩F (D) is not a simple consequence of the convexity-preserving
properties of F . Indeed, by applying (2.3) for F−1 in the role of F , we get

(F−1)+1(A) = Y \ F (X \A) = Y \ F (D \A),

hence

(F−1)+1(A) ∩ F (D) = (Y \ F (D \A)) ∩ F (D)

= F (D) \ F (D \A).

Notice that F (D) \ F (D \ A) ⊆ F (D ∩ A) and F (D ∩ A) is convex, according to
Corollary 4.12 (1◦), since D ∩A is convex. However, F (D) \F (D \A) 6= F (D ∩A) in
general, as for instance when F : R → P(R) is the constant ratio of affine functions
defined by F (x) = {1} for all x ∈ R and A = {0} ⊆ D = R.

5. Conclusions

Theorem 4.8 gives a useful characterization of the set-valued ratios of affine
functions, as reflected in its Corollaries 4.9 and 4.9. Actually, the special structure of
these functions, given by Theorem 4.8, suggested us to consider in Theorems 4.10 and
4.11 some broader classes of set-valued functions that enjoy the convexity-preserving
properties of the set-valued ratios of affine functions pointed out in Corollary 4.9.
An interesting question arises, namely whether it would be possible to extend these
classes by replacing the convex set M in Theorems 4.10 and 4.11 (which can be
seen as a constant affine set-valued function) by appropriate set-valued functions.
In general, this is not true even if M is replaced by a single-valued function that
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preserves the convexity of sets by direct and inverse images. For instance, consider
D = [0, 1] ⊆ X = R, Y = R2 and let F : R → P(R2) be the set-valued function
defined as

F (x) =

{
f(x) +M(x) if x ∈ [0, 1]

∅ if x /∈ [0, 1],

where f : [0, 1]→ R2 is a vector-valued ratio of affine functions given by

f(x) =
g(x)

h(x)
=

(1, 1)

x+ 1
for all x ∈ [0, 1]

and M : R→ P(R2) is a single-valued affine function, given by

M(x) = {(x,−x)} for all x ∈ R.

Consider the convex sets A = [0, 1] and B = convF ({0, 1}). It is easy to check that
B is a line segment with end points (1, 1) and (3/2,−1/2), while F (A) is an arc of
hyperbola joining these points. On the other hand, we have F−1(B) = {0, 1} and
F+1(B) = R\ ]0, 1[. Obviously, the sets F (A), F−1(B) and F+1(B) are not convex. It
is worth to mention that similar examples, where F preserves the convexity of sets by

direct and inverse images, can be given by considering ratios af affine functions f =
g

h

and M =
G

h
with the same denominator. However, such a configuration always leads

to the trivial case where F itself is a ratio of affine functions satisfying the properties
in demand by virtue of Corollary 4.9.
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