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theorem of Bahyrycz, Páles and Piszczek
on Cauchy differences to generalized cocycles
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Abstract. We prove some straightforward analogues and generalizations of a re-
cent asymptotic stability theorem of A. Bahyrycz, Zs. Páles and M. Piszczek on
Cauchy differences to semi-cocycles and pseudo-cocycles introduced in a former
paper by the present author.
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1. Introduction

The first results on a certain stability property of the Cauchy functional equation

f(x+ y) = f(x) + f(y) (1.1)

were proved by Pólya and Szegő [63, p. 171 ] in 1925 and Hyers [38] in 1941.

In particular, Pólya and Szegő proved the following statement in two rather
difficult ways.

Theorem 1.1. Suppose that the number sequence a1, a2, a3, . . . satisfies the condition

am + an − 1 < am+n < am + an + 1.

Then, there exists the limit

lim
n→∞

an
n

= ω;

and even more ω is finite, and for all n = 1, 2, 3, . . . there holds

ωn− 1 < an < ωn+ 1.
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Remark 1.2. The significance of this theorem was not recognized either by Pólya and
Szegő or the mathematical community for a long time. It was first cited by Kuczma
[50, p. 424] in 1985 at the suggestion of R. Ger. However, in contrast to [5, 11], several
authors have still not been mentioning it.

By R. Ger [34, p. 4] and some communications with Ger and M. Laczkovich, his
attention to this theorem was first drawn by Laczkovich, at an undetectable confer-
ence, who indicated that the real-valued particular case of Hyers’s stability theorem
can be derived from it. His proof, reconstructed with the help of Ger and M. Sablik,
can be found in [77, p. 633].

Hyers, giving a partial answer to a general problem proposed by S. M. Ulam
before the Mathematics Club of the University of Wisconsin in 1940, proved the
following fundamental theorem in a quite simple way.

An obvious generalization of his theorem to a function of a commutative semi-
group to a Banach space [30, p. 216] already includes Theorem 1.1. Moreover, by
Remark 1.2 and [30, Theorem 3], the two theorems are actually equivalent.

Theorem 1.3. Let E and E′ be Banach spaces and let f(x) be a δ-linear transformation
of E into E′. Then the limit l(x) = limn→∞ f(2nx)/2n exists for each x in E, l(x) is
a linear transformation, and the inequality ‖f(x)− l(x)‖ ≤ δ is true for all x in E.

Remark 1.4. Moreover, Hyers also stated that l(x) is the only linear transformation
satisfying this inequality.

Here, in contrast to the recent terminology, Hyers used the term ”linear” instead
of ”additive”. Thus, his δ–linearity of f(x) means only that

‖f(x+ y)− f(x)− f(y)‖ ≤ δ for all x, y ∈ E.

Now, because of l(nx) = nl(x), we also have

‖f(nx)/n− l(x)‖ = ‖f(nx)− l(nx)‖/n ≤ δ/n

for all n ∈ N and x ∈ E. Therefore, analogously to Theorem 1.1 of Pólya and Szegő,
we can also state that l(x) = limn→∞ f(nx)/n for all x ∈ X.

The above basic Theorem 1.3 of Hyers has been generalized, in one direction, by
Aoki [6], Th. M. Rassias [65], J. M. Rassias [64], Gǎvruţǎ [32] (see also [43]), and in
other directions by several further mathematicians.

Moreover, some counterexamples, showing the necessity of certain extra assump-
tions in the corresponding stability theorems, such as commutativity and completeness
for instance, have also been provided.

The interested reader can get a rapid overview on this enormous subject by
consulting some of the numerous survey papers [39, 34, 31, 66, 67, 68, 69, 82, 56, 70,
71, 23, 21, 12, 17, 57] and the fundamental books [40, 44, 22, 49, 46].

The above works show that some local, restricted, asymptotic, super and hyper
stability results have also been proved for the Cauchy equation. Moreover, some close
relationships with invariant means, sandwich and fixed point theorems have also been
established. And, quite early, some set-valued generalizations have also been given.
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These set-valued generalizations show that Hyers’s stability theorem is actually
an additive selection theorem for a subadditive relation. Therefore, some of its gen-
eralizations should be derived from those of the Hahn–Banach extension theorems.
(For some ideas in this respect, see [22, Chapter 34] and [35, 77, 36].)

However, it is now more important to note that recently Bahyrycz, Páles and
Piszczek [9] have proved a new type, asymptotic stability theorem for the Cauchy
functional equation by using metric Abelian groups instead of normed spaces.

They called a triple (X,+, d) to be a metric abelian group if (X,+) is an abelian
group and d is a translation invariant metric on X in the sense that

d(x+ z, y + z) = d(x, y) for all x, y, z ∈ X.

In this case, they defined ‖x‖d = d(x, 0) for all x ∈ X, and noticed that ‖ ‖d is an
even subadditive function function onX which is not, in general, even 2–homogeneous.

In [74, 83, 13, 48], metric groups and groupoids have been used in different senses.
From Remarks 3.1 of [83, 13], we can see that a metric d on a group X is translation
invariant if and only if d(x+ y, z + w) ≤ d(x, z) + d(y, w) for all x, y, z, w ∈ X.

Thus, if in particular d is a translation invariant metric on a group X, then the
addition in X is continuous. Moreover, in this case we can also note that

d(−x,−y) = d(0, x− y) = d(y, x) = d(x, y) for all x, y ∈ X.

Thus, in particular the inversion in X is also continuous.
In particular, in [9], Bahyrycz, Páles and Piszczek have proved the following

asymptotic stability theorem.

Theorem 1.5. Let (X,+, d) and (Y,+, ρ) be metric abelian groups such that X is
unbounded by d. Let ε ≥ 0 and assume that f : X → Y possesses the asymptotic
stability property

lim sup
min(‖x‖d,‖y‖d)→∞

‖f(x+ y)− f(x)− f(y)‖ρ ≤ ε,

then

‖f(x+ y)− f(x)− f(y)‖ρ ≤ 5ε for all x, y ∈ X.

Remark 1.6. Moreover, by taking ε > 0 and x0 ∈ X \ {0}, and defining

f(x0) = 3ε and f(x) = ε for x ∈ X \ {x0},

they have also proved that 5 is the smallest possible constant in the above theorem.

The most closely related related results to Theorem 1.5 are [52, Theorem 1] of
Losonczi with the same constant 5, and the results of Jung, Moslehian, and Sahoo
[45, 47] and Chung [18, 19, 20] with some other natural constants in the concluded
estimates.

The origins of these investigations go back to Skof [72, 73], Hyers, Isac and
Rassias [41] and Gǎvruţǎ [33]. (See also [54].) In the real-valued case, Volkmann [84]
proved the best estimate.

From Theorem 1.5, by taking ε = 0, Bahyrycz, Páles and Piszczek could imme-
diately derive the following asymptotic hyperstability result.
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Corollary 1.7. Let (X,+, d) and (Y,+, ρ) be metric abelian groups such that X is
unbounded by d. If f : X → Y satisfies

lim sup
min(‖x‖d,‖y‖d)→∞

‖f(x+ y)− f(x)− f(y)‖ρ = 0,

then

f(x+ y) = f(x) + f(y), x, y ∈ X.

Hyperstability results, for the Cauchy equation and its generalizations, have also
been proved by Maksa and Páles [53], Najati and Rassias [59], Alimohammady and
Sadeghi [3], and Brzdek [14, 15, 16], Piszczek [61, 62], Almahalebi, Charifi and Kabbaj
[4], Bahyrycz and Olko [7, 8], Aiemsomboon and Sintunavarat [1, 2], Molaei, Najati
and Park [55, 58].

Moreover, several interesting asymptotic stability and hyperstability theorems
for additive functions have also been proved by using some other functional equations
than the Cauchy and generalized Cauchy ones.

In the present paper, we shall improve and generalize Theorem 1.5 of Bahyrycz,
Páles and Piszczek. For this, we shall use preseminormed groups instead of the metric
ones. Moreover, we shall use generalized cocycles introduced in [78], instead of the
Cauchy difference

F (x, y) = f(x+ y)− f(x)− f(y). (1.2)

Some basic definitions and results on these fundamental objects, which are cer-
tainly unfamiliar to the reader, will be briefly laid out in the next preparatory section.

2. A few basic facts on preseminorms and generalized cocycles

Motivated by the corresponding definitions of [76, 80] and the proofs of our
forthcoming theorems, an even subadditive function ‖ ‖ of a group X to R will be
called a preseminorm on X.

Thus, under the notation ‖x‖ = ‖ ‖(x), we have ‖0‖ = ‖0 + 0‖ ≤ ‖0‖+ ‖0‖, and
thus 0 ≤ ‖0‖. And more generally, ‖0‖ = ‖x+(−x)‖ ≤ ‖x‖+‖−x‖ = 2‖x‖, and thus
0 ≤ ‖x‖ for all x ∈ X.

Therefore, if ‖0‖ 6= 0, then by defining ‖x‖? = 0 for x = 0, and ‖x‖? = ‖x‖ for
x ∈ X \ {0}, we can obtain a new preseminorm ‖ ‖? on X such that ‖0‖? = 0 already
holds.

By using induction and the corresponding definitions, we can also easily see that
‖nx‖ ≤ n‖x‖, and thus ‖(−n)x‖ = ‖n(−x)‖ ≤ n‖ − x‖ = n‖x‖ for all n ∈ N and
x ∈ X.

Therefore, the preseminorm ‖ ‖ may be naturally called a seminorm if n‖x‖ ≤
‖nx‖ for all x ∈ X. Namely, thus we have ‖kx‖ = |k|‖x‖ for all x ∈ X and k ∈ Z\{0}.
(If ‖0‖ = 0, then this also holds for k = 0.)

Note that a nonzero seminorm cannot be bounded. While, if ‖ ‖ is a seminorm
(preseminorm) on X, then for instance the function defined by ‖x‖∗ = min{1, ‖x‖}
for all x ∈ X is a bounded preseminorm on X.
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Now, a seminorm (preseminorm) ‖ ‖ on X may be naturally called a norm
(prenorm) if ‖x‖ = 0 implies x = 0 for all x ∈ X. If X = Zx for all x ∈ X \ {0}, then
each nonzero preseminorm on X is a prenorm.

In [79, Remark 3.14], with the help of G. Horváth, it was proved that the latter
condition is equivalent to the requirement that the cardinality of X is prime, or
equivalently X has no nontrival proper subgroup.

Now, for instance, an ordered pair X(‖ ‖) = (X, ‖ ‖) consisting a group X and
a preseminorm ‖ ‖ on X, may be naturally called a preseminormed group. And, we
may simply write X instead of X(‖ ‖).

If X is a preseminormed group, then because of the subadditivity and evenness
of the corresponding preseminorm, for any x, y ∈ X, we have

‖x‖ = ‖x+ y − y‖ ≤ ‖x+ y‖+ ‖ − y‖ = ‖x+ y‖+ ‖y‖
and

‖y‖ = ‖ − x+ x+ y‖ ≤ ‖ − x‖+ ‖x+ y‖ = ‖x‖+ ‖x+ y‖.
Therefore,∣∣‖x‖ − ‖y‖∣∣ ≤ ‖x+ y‖ and

∣∣‖x‖ − ‖y‖∣∣ =
∣∣‖x‖ − ‖ − y‖∣∣ ≤ ‖x− y‖.

However, it is now more important to note that Bahyrycz, Páles and Piszczek,
in the proof of their Theorem 1.5, have used, but not explicitly stated, the equality

f(x+ y)− f(x)− f(y) = f(x− u) + f(u)− f(x)

+ f(y − v) + f(v)− f(y) + f(x+ y − u− v)− f(x− u)− f(y − v)

+ f(u+ v)− f(u)− f(v) + f(x+ y)− f(x+ y − u− v)− f(u+ v). (2.1)

In a former paper [78], by using the Cauchy difference (1.2), we have noticed
that, instead of equation (2.1), it is more convenient to consider the equation

F (x, y) = F (u, v)− F (x− u, u)− F (y − v, v)

+ F (x− u, y − v) + F (x+ y − u− v, u+ v). (2.2)

Namely, thus Theorem 1.5 can be easily extended to the solutions of (2.2). More-
over, we can prove that every symmetric cocycle F on X to Y is a solution of this
equation.

That is, if F is a function of X2 to Y such that F (x, y) = F (y, x) and

F (x, y) + F (x+ y, z) = F (x, y + z) + F (y, z) (2.3)

for all x, y, z ∈ X, then (2.2) also holds for all x, y, u, v ∈ X.
It is well-known that every Cauchy–difference is a symmetric cocycle. Moreover,

Davison and Ebanks [24, Lemma 2] have proved that if F is a symmetric cocycle on
X to Y , then

F (x+ y, u+ v) = F (x+ u, y + v) + F (x, u) + F (y, v)− F (x, y)− F (u, v) (2.4)

also holds for all x, y, u, v ∈ X.
At first seeing, I considered equations (2.2) and (2.4) to be very similar, but still

quite independent. However, Gyula Maksa, my close colleague, has noticed that they
are actually equivalent.
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Namely, (2.4) can be immediately derived from (2.2) by replacing x by x+u and
y by y + v. And conversely, (2.2) can be immediately derived from (2.4) by replacing
x by x− u and y by y − v. Thus, equation (2.1) is a consequence of (2.4) too.

Inspired by the above observations, in our former paper [78], we have also con-
sidered the more difficult equations

F (x, y) + F (u, y + v) + F (x+ y, u+ v)

= F (x, u) + F (y, u+ v) + F (x+ u, y + v) (2.5)

and

F (x, y) + F (x− u, u) + F (y − v, u) + F (y − v, v)

= F (u, v) + F (u, y − v) + F (x− u, y − v) + F (x+ y − u− v, u+ v). (2.6)

Note that if in particular F is symmetric, then equation (2.6) is equivalent to
(2.2), which is in turn equivalent to (2.4). Moreover, it can be easily shown that if F
is additive in its second variable, then equations (2.5) and (2.6) are also equivalent.

In our former paper [78], by using some more difficult computations, we have
also proved that equations (2.5) and (2.6) are also natural generalizations of (2.3) too.
Therefore, their solutions may be naturally called semi-cocycles and pseudo-cocycles,
respectively.

In the light of the above observations, it seems to be a reasonable research pro-
gram to extend some of the basic theorems on cocycles to these generalized cocycles.
And, to establish some deeper relationships among the various generalizations of co-
cycles mentioned in [78].

However, in the sequel, we shall only prove some straightforward analogues and
generalizations of Theorem 1.5 to semi-cocycles and pseudo–cocycles.

3. Analogues of Theorem 1.5 for generalized cocycles

Notation 3.1. In the sequel, we shall assume that F is a function of an unbounded,
commutative preseminormed group X to a commutative preseminormed group Y .

Remark 3.2. Note that now, by defining

(x, y) + (u, v) = (x+ u, y + v)

and

‖(x, y)‖ = ‖x‖ ∨ ‖y‖ = max
{
‖x‖, ‖y‖

}
for all x, y, u, v ∈ X, the set X2 can also be turned into an unbounded commutative
preseminormed group.

Thus, by using a more simple argument than that used by Bahyrycz, Páles and
Piszczek in [9], we can prove the following natural analogue of Theorem 1.5.

Theorem 3.3. If F is a semi-cocycle and

ε = lim
‖z‖→+∞

‖F (z)‖,
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then
‖F (z)‖ ≤ 5ε

for all z ∈ X2.

Proof. By the corresponding definitions, for any η > ε, we have

inf
r>0

sup
‖z‖>r

‖F (z)‖ < η.

Therefore, there exists r > 0 such that sup‖z‖>r ‖F (z)‖ < η, and thus

‖F (z)‖ < η

for all z ∈ X2 with ‖z‖ > r.
Hence, since ‖z‖ = ‖(z1, z2)‖ ≥ ‖zi‖ for i = 1, 2, it is clear that in particular

we have
‖F (s, t)‖ < η

for all s, t ∈ X with either ‖s‖ > r or ‖t‖ > r.
Now, by taking x, y ∈ X and using equation (2.5), we can see that

‖F (x, y)‖ = ‖F (x, u) + F (y, u+ v)− F (u, y + v)

+ F (x+ u, y + v)− F (x+ y, u+ v)‖
≤ ‖F (x, u)‖+ ‖F (y, u+ v)‖+ ‖F (u, y + v)‖
+ ‖F (x+ u, y + v)‖+ ‖F (x+ y, u+ v)‖ < 5η

whenever for instance u, v ∈ X such that

‖u‖ > r, ‖u+ v‖ > r, ‖x+ u‖ > r.

Therefore, if such u and v exist, then

‖F (x, y)‖ < 5η, and thus ‖F (x, y)‖ ≤ 5ε

Now, to complete the proof, it remains to show only that the required u and v
exist. For this, we can note that, because of the assumed unboundedness of X, there
exist u, v ∈ X such that

‖u‖ > r + ‖x‖ and ‖v‖ > r + ‖u‖.
Thus, we evidently have ‖u‖ > r. Moreover, by using the inequality ‖s+t‖ ≥ ‖t‖−‖s‖,
we can also see that

‖x+ u‖ ≥ ‖u‖ − ‖x‖ > r + ‖x‖ − ‖x‖ = r

and
‖u+ v‖ ≥ ‖v‖ − ‖u‖ > r + ‖u‖ − ‖u‖ = r. �

From equation (2.6) and the proof of Theorem 3.3, it is clear that we also have

Theorem 3.4. If F is a pseudo-cocycle and

ε = lim
‖z‖→+∞

‖F (z)‖,

then
‖F (z)‖ ≤ 7ε

for all z ∈ X2.
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Now, as an immediate consequence of the above two theorems, we can also state

Corollary 3.5. If Y is prenormed, F is either a semi or pseudo cocycle, and

lim
‖z‖→+∞

‖F (z)‖ = 0,

then F (z) = 0 for all z ∈ X2.

Remark 3.6. However, from Theorems 3.3 and 3.4 we cannot get proper generaliza-
tions of Theorem 1.5. Therefore, in the next section we shall prove some modification
and improvement of Theorem 3.4.

4. Proper and partial generalizations of Theorem 1.5 to
pseudo-cocycles

Remark 4.1. Because of the condition of Theorem 1.5, in the sequel we shall also use
the quantity

∦ (x, y) ∦= ‖x‖ ∧ ‖y‖ = min
{
‖x‖, ‖y‖

}
,

for all (x, y) ∈ X2 instead of the natural preseminorm considered in Remark 3.2.
Thus, the function ∦ ∦ is not a preseminorm on X2. However, despite this, it can be
well used to measure the magnitude of the points of X2.

Moreover, it can as well be used to prove the following proper and partial gene-
ralizations of Theorem 1.5 to pseudo-cocycles. The proof of the first one is quite
similar to the second one. Therefore, it will be omitted.

Theorem 4.2. If F is a symmetric pseudo-cocycle and

ε = lim
∦z∦→+∞

‖F (z)‖,

then

‖F (z)‖ ≤ 5ε

for all z ∈ X2.

The proof of the following theorem is again quite similar, but a little more
readable, than the one given by Bahyrycz, Páles and Piszczek in [9].

Theorem 4.3. If F is a pseudo-cocycle and

ε = lim
∦z∦→+∞

‖F (z)‖,

then

‖F (z)‖ ≤ 7ε

for all z ∈ X2.
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Proof. By the corresponding definitions, for any η > ε, we have

inf
r>0

sup
∦z∦>r

‖F (z)‖ < η.

Therefore, there exists r > 0 such that sup∦z∦>r ‖F (z)‖ < η, and thus

‖F (z)‖ < η

for all z ∈ X2 with ∦ z ∦> r.
Hence, since ∦ z ∦ = ∦ (z1, z2) ∦ = min{‖z1‖, ‖z2‖}, it is clear that in particular

we have

‖F (s, t)‖ < η

for all s, t ∈ X with ‖s‖ > r and ‖t‖ > r.
Now, by taking x, y ∈ X and using equation (2.6), we can see that

‖F (x, y)‖ = ‖F (u, v) + F (u, y − v)− F (y − v, u)

− F (x− u, u)− F (y − v, v) + F (x− u, y − v) + F (x+ y − u− v, u+ v)‖
≤ ‖F (u, v)‖+ ‖F (u, y − v)‖+ ‖F (y − v, u)‖
+ ‖F (x− u, u)‖+ ‖F (y − v, v)|+ ‖F (x− u, y − v)‖
+ ‖F (x+ y − u− v, u+ v)‖ < 7η

whenever u, v ∈ X such that

‖u‖ > r, ‖v‖ > r, ‖x− u‖ > r, ‖y − v‖ > r,

‖u+ v‖ > r, ‖x+ y − u− v‖ > r.

Therefore, if such u and v exist, then

‖F (x, y)‖ < 7η, and thus ‖F (x, y)‖ ≤ 7ε.

Now, to complete the proof, it remains only to show that the required u and
v exist. For this, following the arguments given [9], we can note that because of the
assumed unboundedness of X there exist u, v ∈ X such that

‖u‖ > r + ‖x‖ and ‖v‖ > r + ‖x‖+ ‖y‖+ ‖u‖.

Thus, we evidently have ‖u‖ > r and ‖v‖ > r. Moreover, by using the facts that
‖s+ t‖ ≥ ‖t‖ − ‖s‖ and ‖ − t‖ = ‖t‖, we can also see that

‖x− u‖ ≥ ‖u‖ − ‖x‖ > r + ‖x‖ − ‖x‖ = r,

‖y − v‖ ≥ ‖v‖ − ‖y‖ > r + ‖x‖+ ‖y‖+ ‖u‖ − ‖x‖ = r + ‖y‖+ ‖u‖ ≥ r,
and

‖u+ v‖ ≥ ‖v‖ − ‖u‖ > r + ‖x‖+ ‖y‖+ ‖u‖ − ‖u‖ = r + ‖x‖+ ‖y‖ ≥ r,

‖x+ y − u− v‖ ≥ ‖u+ v‖ − ‖x+ y‖ > r + ‖x‖+ ‖y‖ − ‖x‖ − ‖y‖ = r.

Namely, because of the inequality ‖x‖+ ‖y‖ ≥ ‖x+ y‖, we also have

−‖x+ y‖ ≥ −‖x‖ − ‖y‖. �

From this theorem, we can immediately derive
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Corollary 4.4. If Y is prenormed, F is a pseudo-cocycle and

lim
∦z∦→+∞

‖F (z)‖ = 0,

then F (z) = 0 for all z ∈ X2.

Remark 4.5. Recall that a Cauchy-difference is a symmetric cocycle. Moreover, a
cocycle is both a semi-cocycle and a pseudo-cocycle.

Therefore, in Theorem 4.2, F may, in particular, be a Cauchy-difference or a
symmetric cocycle. While, in Theorems 3.3, 3.4 and 4.3 and their corollaries, F may
already be an arbitrary cocycle.

5. Some supplementary notes

Remark 5.1. If for instance f is a function of X to Y and ε ≥ 0 such that there exists
r > 0 such that

‖f(x+ y)− f(x)− f(y)‖ ≤ ε
for all x, y ∈ X with ‖x‖, ‖y‖ > r, then by Remark 4.1 and the definition of the upper
limit we have

lim
∦(x,y)∦→+∞

‖f(x+ y)− f(x)− f(y)‖ ≤ ε.

Thus, by Remark 4.5 and Theorem 4.2, we can state that

‖f(x+ y)− f(x)− f(y)‖ ≤ 5ε

for all x, y ∈ X. Therefore, Theorem 1.5 follows from Theorem 4.2.
Now, if in particular Y is the additive group of a Banach space, then by using

a slight generation of Theorem 1.3 we can also state that there exists an additive
function g of X to Y such that

‖f(x)− g(x)‖ ≤ 5ε

for all x ∈ X.

Remark 5.2. While, if f is an arbitrary and g is an additive function of X to Y such
that

‖f(x)− g(x)‖ ≤ 5ε

for all x ∈ X, then we can only state that

‖f(x+ y)− f(x)− f(y)‖ = ‖f(x+ y)− g(x+ y) + g(x)− f(x) + g(y)− f(y)‖
≤ ‖f(x+ y)− g(x+ y)‖+ ‖g(x)− f(x)‖+ ‖g(y)− f(y)‖
≤ 15ε

for all x, y ∈ X. Therefore, Theorem 1.5 is sharper than the one derivable from the
usual asymptotic stability theorems.

This clearly reveal that the corresponding theorems on restricted and assymp-
totic stabilities have to split into two parts. This idea is also apparent from the proofs
of those theorems.
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Remark 5.3. Concerning our former results, it is also worth mentioning that in The-
orems 3.3 and 3.4 and Corollary 3.5, instead of the ”supremum preseminorm”

‖(x, y)‖ = ‖(x, y)‖∞ = max
{
‖x‖, ‖y‖

}
considered in Remark 3.2, we may also naturally use an ”Lp–preseminorm”, defined
by

‖(x, y)‖ = ‖(x, y)‖p =
(
‖x‖p + ‖y‖p

)1/p
for some 1 ≤ p < +∞ and all (x, y) ∈ X2. Namely, this also has the important
property that ‖zi‖ ≤ ‖z‖ for i = 1, 2, whenever z ∈ X2.

Remark 5.4. Moreover, we can also note that ‖z‖ ≥∦ z ∦ for all z ∈ X2. Therefore,{
F (z) : ∦ z ∦> r

}
⊆
{
F (z) : ‖z‖ > r

}
,

and thus
sup

∦z∦>r
‖F (z)‖ ≤ sup

‖z‖>r
‖F (z)‖

for all r > 0. Consequently,

lim
∦z∦→+∞

‖F (z)‖ = inf
r>0

sup
∦z∦>r

‖F (z)‖ ≤ inf
r>0

sup
‖z‖>r

‖F (z)‖ = lim
‖z‖→+∞

‖F (z)‖.

Therefore, the results obtained with ‖ ‖ are usually much weaker than that obtained
with ∦ ∦. However, the former ones are, in a certain sense, still more natural since ∦ ∦
is not a preseminorm on X2.

6. Suggestions for further investigations

Cauchy differences, in the theory of functional equations, were first characterized
by Kurepa [51] and Erdős [29] with the help of the equation

F (x, y) + F (x+ y, z) = F (x, y + z) + F (y, z) (6.1)

(For the algebraic origins and several further developments on this cocycle equation,
see the book [75] by Stetkaer.)

Quadratic differences were first characterized by Székelyhidi [81] with the help
of the equation

F (x+ y, z) + F (x− y, z)− 2F (y, z) = F (x, y + z) + F (x, y − z)− 2F (x, y). (6.2)

(For some closely related results, see also Ebanks and Ng [25, 28].)
Some results on equations (6.1) and (6.2) were extended by Páles [60] to the

more attractive equation

F (x, y) +
1

n

n∑
i=1

F
(
x+ φi(y), z

)
=

1

n

n∑
i=1

F
(
x, y + φi(z)

)
+ F (y, z). (6.3)

(Later, this important equation has only been studied by Maksa and Páles [53].)
Recently, Leibniz differences has been characterized by Ebanks [27] with the help

of the equation
F (xy, z) + xF (x, y) = F (x, yz) + xF (y, z). (6.4)
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(For some earlier results, see Jessen, Karpf and Thorup [42], Ebanks [26] and Gsel-
mann and Páles [37].)

Moreover, affine differences has been characterized by Boros [10] with the help
of the equation

F
(
s, rx+ (1− r)y, tx+ (1− t)y

)
= F

(
sr + (1− s)t, x, y

)
− sF (r, x, y)− (1− s)F (t, x, y). (6.5)

Thus, it is certainly true that several further important differences, such as for
instance the Jensen one, can also be characterized with the help of some functional
equations containing a little more variables than the corresponding differences.

Therefore, it seems to be a reasonable research program to prove some counter-
parts of the results of Bahyrycz, Páles and Piszczek [9] and the present author for such
equations and their generalizations. First of all, some analogues and generalizations
of [9, Theorem 2] could be proved.

Added in Proof. The original version of this paper (Tech. Rep., Inst. Math., Univ.
Debrecen 20016/2, 12 pp.) was planned to be published in the Proceedings of the
Conference on Ulam’s Type Stability, 2016, Cluj-Napoca, Romania. However, it was
later submitted to the present journal.

Here, to improve the presentation, some useful changes have been suggested by
the referee and the editor. In particular, according to a general regulation of the
journal, all items of References have to be cited in the text. Therefore, my original
manuscript has been substantially rewritten.
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[32] Gǎvruţǎ, P., A generalization of the Hyers–Ulam–Rassias stability of approximately ad-
ditive mappings, J. Math. Anal. Appl., 184(1994), 431–436
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[76] Száz, Á., Preseminormed spaces, Publ. Math. Debrecen, 30(1983), 217–224.
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[78] Száz, Á., Two natural generalizations of cocycles, J. Int. Math. Virtual Inst., 6(2016),
66–86.
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