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1. Preliminaries on complex Lie groups

Let G be a complex Lie group of dimension n. Its Lie algebra, g, has as underlying
vector space the holomorphic tangent space T 1,0

e G at the identity e ∈ G. As known,
an element A ∈ T 1,0

e G determines a unique left invariant vector field which takes the
value A at e; moreover, these vector fields are the elements of g.

Following the ideas from [1], let {Eα}, α = 1, . . . , n, be a base of the Lie alge-
bra g and χα, α = 1, . . . , n the dual base for the 1-forms of Maurer-Cartan, that is,
χα(Eβ) = δαβ , (α, β = 1, . . . , n). It is known ([11], Lemma 1.6) that Eα are holomor-

phic vector fields (as they are left-invariant) and also χα are holomorphic left-invariant
1-forms.

A differential form η is said to be left-invariant if it is invariant by every left
translation La, (a ∈ G), that is, if L∗aη = η for every a ∈ G, where L∗a is the
holomorphic cotangent map of La. It follows that any left invariant form must be
holomorphic. For an element U ∈ g and an element η in the dual space g∗, η(U) is
constant on G. Since

∂η(U, V ) = Uη(V )− V η(U)− η([U, V ]),

where d = ∂ + ∂̄ is the usual decomposition of the exterior derivative, one obtains

∂η(U, V ) = −η([U, V ]), (1.1)
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where U, V are elements of g and η is any element of the dual space. By setting

[Eβ , Eγ ] = C α
β γEα, (1.2)

the relation (1.1) yields

∂χα = −1

2
C α
β γχ

β ∧ χγ . (1.3)

The complex constants C α
β γ are called the constants of structure of g with respect

to the holomorphic base {E1, . . . , En}. These constants are not arbitrary since they
must satisfy the relations

[Eα, Eβ ] + [Eβ , Eα] = 0 (1.4)

and

[Eα, [Eβ , Eγ ]] + [Eβ , [Eγ , Eα]] + [Eγ , [Eα, Eβ ]] = 0 (1.5)

for all α, β, γ = 1, . . . , n, that is

C α
β γ + C α

γ β = 0 (1.6)

and

C ρ
α βC

δ
γ ρ + C ρ

β γC
δ
α ρ + C ρ

γ αC
δ
β ρ = 0. (1.7)

Equations (1.3) are called the holomorphic Maurer-Cartan equations.
Equation (1.2) indicates that the structure constants are the components of a

holomorphic tensor on T 1,0
e G of type (1, 2). A new holomorphic tensor on T 1,0

e G can
be defined by setting

Cαβ = C ρ
α σC

σ
ρ β (1.8)

with respect to the holomorphic left invariant base {Eα} (α = 1, . . . , n) of g. It is
easily verified that this holomorphic tensor is symmetric. Also, it can be shown that
a necessary and sufficient condition for the complex Lie group G to be semi-simple is
that the complex matrix (Cαβ)n×n is invertible.

The holomorphic tensor defined by the equations (1.8) can now be used to raise
and lower indices and, for this purpose, the inverse matrix (Cαβ)n×n will be consid-
ered.

In terms of a system of local complex coordinates (u1, . . . , un) on G, the holo-

morphic vector fields Eα, α = 1, . . . , n, can be expressed as Eα = χiα
∂

∂ui
. Since G is

complex parallelizable (see [14]), the n×n matrix (χiα) has rank n and so, by setting

gij = χiαχ
j
βC

αβ , (1.9)

a positive definite and symmetric matrix (gij)n×n is obtained. Hence, a holomorphic
Riemannian metric g on G can be defined by means of the complex quadratic form

ds2 = gjkdu
j ⊗ duk, (1.10)

where (gjk)n×n denotes the matrix inverse to (gjk)n×n, that is, gjk = Cβγχ
β
j χ

γ
k .

Moreover, the holomorphic metric tensor g can be also used to raise and lower
indices in the usual manner, and this holomorphic metric is completely determined
by the complex Lie group G.
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In the following, we define n holomorphic covariant vector fields χα (α =
1, . . . , n) on G, with local components χαi (i = 1, . . . , n) given by

χαi = Cαβχjβgij . (1.11)

It easily follows that

χiαχ
α
j = δij and χiαχ

β
i = δαβ . (1.12)

Also, we consider the set of n2 linear holomorphic 1-forms ωij = Γ i
jkdu

k defined locally
by setting

Γ i
jk = χiα

∂χαj
∂uk

. (1.13)

By virtue of the equations (1.12), the holomorphic coefficients Γ i
jk can also be ex-

pressed as

Γ i
jk = −χαj

∂χiα
∂uk

(1.14)

and they represent the local coefficients of a left invariant holomorphic connection ∇
on G, that is, ∇ is absolutely parallel with respect to every left-invariant holomorphic
vector field U = UαEα ∈ g.

It is easily verified that in the overlap U∩U ′ of two local charts, the holomorphic
1-forms ωij change by the rule

∂u′k

∂uj
ω′ik =

∂u′i

∂uk
ωkj −

∂2u′i

∂ul∂uj
dul.

The next natural step is to consider the torsion of this connection. As in the
case of real Lie groups (see [1, 13]), the holomorphic torsion tensor will be written as

T i
jk =

1

2
χiα

(
∂χαj
∂uk

− ∂χαk
∂uj

)
. (1.15)

Since the equations (1.2) can be expressed in terms of the local coordinates (ui) in
the form

χrβ
∂χiγ
∂ur

− χrγ
∂χiβ
∂ur

= C α
β γχ

i
α, (1.16)

by using the holomorphic Maurer-Cartan equations (1.3) it easily follows that

T i
jk =

1

2
C α
β γχ

i
αχ

β
j χ

γ
k . (1.17)

Also, if we consider the local coefficients of the holomorphic Levi-Civita connection
◦
∇ with respect to the holomorphic metric g = ds2 from (1.10) on G, they can be
expressed as

◦
Γ

i
jk =

1

2
χiα

(
∂χαj
∂uk

+
∂χαk
∂uj

)
, (1.18)

from which follows that

Γ i
jk =

◦
Γ

i
jk + T i

jk. (1.19)

We have

Lemma 1.1. The elements of the Lie algebra g of G define holomorphic translations
in G.
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Proof. It follows in a similar manner to the case of real Lie groups, see [1]. �

2. Laplace operators for holomorphic functions on G

In this section, we introduce the Laplace operator acting on holomorphic func-
tions on the complex Lie group G, depending on the given holomorphic metric tensor
on G.

Denote by ω = χ1∧· · ·∧χn, where χi, i = 1, . . . , n are the elements of the base of
holomorphic 1-forms defined in Section 1. Then ω is a nowhere vanishing holomorphic
left-invariant n-form, called the holomorphic volume element, and it can be used to
define the divergence of a holomorphic vector field U = UαEα by setting

div(U)ω = ∂(iUω). (2.1)

Note that the divergence can also be defined by means of the Lie derivative LU
with respect with a left invariant holomorphic vector field U :

div(U)ω = LUω, (2.2)

where

LUη =
d

dt

∣∣∣∣
t=0

(ϕtU )∗η

for an arbitrary holomorphic tensor η. The equivalence between definitions (2.1) and
(2.2) is due to Cartan’s formula LUη = ∂(iUη) + iU∂η for η = ω. The first definition
is more convenient for computations, though. Another property of the divergence is

div(fU) = Uf + f divU

for a holomorphic vector field U and a holomorphic function f defined on G.

Also, for a given holomorphic vector field U = UαEα on G, we have

divU = Eα(Uα). (2.3)

Let G be a semi-simple complex Lie group with the holomorphic Riemannian
metric

g = gijdu
i ⊗ duj , gij = Cαβχ

α
i χ

β
j . (2.4)

A simple computation gives g(Eα, Eβ) = Cαβ and the holomorphic metric tensor
g will now be used to define the gradient of a holomorphic function f on G. If grad f =
V βEβ is a holomorphic vector field defined in a local chart, then the classical definition

g(U, grad f) = Uf

for U = UαEα yields V β = Cβα(Eαf), hence

grad f = Cβα(Eαf)Eβ . (2.5)

A Laplace operator for holomorphic functions on G can now be introduced by

∆f = (div ◦ grad)f = CβαEβ(Eαf). (2.6)
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In local coordinates, this reads

∆f = Cβαχiβ
∂

∂ui

(
χjα

∂f

∂uj

)
= Cβαχiβ

∂χjα
∂ui

∂f

∂uj
+ Cβαχiβχ

j
α

∂2f

∂ui∂uj
.

But

χiβ
∂χjα
∂ui

= −χiβχkαΓ j
ki,

where Γ i
jk = −χβj

∂χiβ
∂uk

are the coefficients of the holomorphic connection written in

the form (1.14), such that

∆f = gij
(

∂2f

∂ui∂uj
− Γ k

ji

∂f

∂uk

)
. (2.7)

Since
∂2f

∂ui∂uj
− Γ k

ji

∂f

∂uk
= ∇i∇jf,

where ∇k is the covariant derivative with respect to the left invariant holomorphic
connection ∇ defined in the previous section, this leads to the following formula for
the Laplace operator of holomorphic functions on G:

∆f = gij∇i∇jf. (2.8)

Remark 2.1. If G is not semi-simple then a holomorphic Riemannian metric on G can
be defined by setting

h = hijdu
i ⊗ duj , hij = δαβχ

α
i χ

β
j , (2.9)

and similar computations as above lead to the following local expression of the Lapla-
cian:

∆f = E2
αf = hij∇i∇jf. (2.10)

Let us compute the local expression of the Laplacian in two particular cases.

Example 2.2. Consider the standard 4-dimensional complex manifold C4 with the
holomorphic coordinates (z1, z2, z3, z4) and the following multiplication rule:

(z1, z2, z3, z4)·(w1, w2, w3, w4) = (2.11)

=(z1eλw
3

+ w1, z2e−λw
3

+ w2, z3 + w3, z4 + w4 − λz1w2eλw
3

),

where λ is a nonzero complex parameter. The above multiplication rule endows C4

with a non-abelian complex Lie structure. For λ = 0, we obtain the usual abelian Lie
group C4, therefore we will consider here λ 6= 0. We denote by G the non-abelian
complex Lie group C4 endowed with the multiplication rule (2.11).

It is easy to see that the following left-invariant holomorphic vector fields given
by

Z1 =
∂

∂z1
, Z2 =

∂

∂z2
− λz1 ∂

∂z4
, Z3 = λz1

∂

∂z1
− λz2 ∂

∂z2
+

∂

∂z3
, Z4 =

∂

∂z4
(2.12)
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form a basis of the holomorphic Lie algebra g of G. If we compute the Lie brackets of
these holomorphic vector fields, we obtain

[Z1, Z2] = −λZ4, [Z1, Z3] = λZ1, [Z2, Z3] = −λZ2,

[Z1, Z4] = [Z2, Z4] = [Z3, Z4] = 0,

therefore, the components of the Lie brackets are constant. Hence, they are the struc-
ture constants of g with respect to the basis {Z1, Z2, Z3, Z4}. We have C γ

αβ = 0,

α, β, γ = 1, 4 with the following exceptions:

C 4
12 = −λ, C 1

13 = λ, C 2
23 = −λ.

The tensor field introduced by (1.8) will consequently vanish, i.e., Cαβ = 0 for all
α, β = 1, 4, which means that G is not semi-simple. Then, according to (2.10), the
Laplace operator ∆ acting on holomorphic functions f ∈ Hol(C4) is

∆f =
∑
α

Z2
αf = Z2

1f + Z2
2f + Z2

3f + Z2
4f.

Now, a basic computation using (2.12) gives

∆f =
(
1 + λ2(z1)2

) ∂2f

∂(z1)2
+
(
1 + λ2(z2)2

) ∂2f

∂(z2)2
+

∂2f

∂(z3)2

+
(
1 + λ2(z1)2

) ∂2f

∂(z4)2
− 2λ2z1z2

∂2f

∂z1∂z2
+ 2λz1

∂2f

∂z1∂z3

− 2λz2
∂2f

∂z2∂z3
− 2λz1

∂2f

∂z2∂z4
+ λ2z1

∂f

∂z1
+ λ2z2

∂f

∂z2
.

Example 2.3. Let G = C∗ × C with the multiplication

(z1, z2) ◦ (w1, w2) =
(
z1w1,

1

2
wz1w2 + z2(w1)2

)
and consider the vector fields Z1 = z1

∂

∂z1
+ 2z2

∂

∂z2
, Z2 = z1

∂

∂z2
. Then, (G, ◦) is a

complex Lie group with the holomorphic Lie algebra g = span{Z1, Z2}. Moreover, G
is not semi-simple, as it can be easily shown by computating the tensor Cαβ , as in the
previous example. We therefore have ∆f = Z2

1f +Z2
2f , which yields the Laplacian in

the form

∆f = (z1)2
∂2f

∂(z1)2
+
(
(z1)2 + 4(z2)2

) ∂2f

∂(z2)2

+ 4z1z2
∂2f

∂z1∂z2
+ z1

∂f

∂z1
+ 4z2

∂f

∂z2
.

We will use this example later for illustrating another property of the Laplace oper-
ator.

A straightforward computation gives an interesting property of the Laplacian
introduced above in the general case.
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Proposition 2.4. The following identity holds:

[∆, Eα] = 2(hijχkα − hikχjα)Γ l
jk

∂2

∂ui∂ul
, (2.13)

where hij = δαβχiαχ
j
β and Γ l

jk are the local coefficients of the holomorphic connection
∇.

Let us check the result in the case of the Lie group G = C∗ × C from Example 2.3.

Example 2.5. First, we compute

[∆, Z1]f = 2(z1)2
∂2f

∂(z2)2
; (2.14)

[∆, Z2]f = −2(z1)2
∂2f

∂z1∂z2
− 4z1z2

∂2f

∂(z2)2
.

Then, from Zα = χiα
∂

∂zi
we get

χ1
1 = z1, χ2

1 = 2z2, χ1
2 = 0, χ2

2 = z1,

such that, using (1.13), we can compute the coefficients Γ l
jk:

Γ 1
11 = − 1

z1
, Γ 1

12 = Γ 1
21 = Γ 1

22 = 0,

Γ 2
11 =

2z2

(z1)2
, Γ 2

12 = − 2

z1
, Γ 2

21 = − 1

z1
, Γ 2

22 = 0.

We also need hij = δαβχiαχ
j
β , that is,

h11 = (z1)2, h12 = h21 = 2z1z2, h22 = (z1)2 + 4(z2)2.

Hence, replacing the nonzero terms in the left-hand side of the first identity (2.14)
and doing a straightforward computation yields

[∆, Z1]f = 2(hijχk1 − hikχ
j
1)Γ l

jk

∂2

∂zi∂zl

= 2
[
(h11χ2

1 − h12χ1
1)Γ 2

12 + (h12χ1
1 − h11χ2

1)Γ 2
21

] ∂2f

∂z1∂z2

+ 2
[
(h21χ2

1 − h22χ1
1)Γ 2

12 + (h22χ1
1 − h21χ2

1)Γ 2
21

] ∂2f

∂(z2)2

= 2(z1)2
∂2f

∂(z2)2
,

since the first term vanishes. The second identity from (2.14) follows analogously.

We shall also illustrate the property from Proposition 2.4 in the case of the
complex Lie group GL(n,C).

Example 2.6. As dim(GL(n,C)) = n2, all the indices from the general case will be

replaced by pairs of indices, for instance α becomes
(
α
β

)
, i becomes

(
i
m

)
, etc. As a



22 Alexandru Ionescu

convention, these pairs will be rewritten in a manner that should be clear from the
text below.

First, let u ∈ GL(n,C) be a complex matrix with elements {Aαi }, such that a
left-invariant holomorphic vector field will be denoted by

Eβα := E(αβ) = χ
( im)
(αβ)

∂

∂u(
i
m)

=: χiβαm
∂

∂uim
,

where χiβαm
∂

∂uim
= δiαA

β
m (see [7] for more details). The holomorphic Riemannian

metric is

h( im)(jn) =: hijmn = δαβδνµχ
iν
αmχ

jµ
βn

(the group GL(n,C) is not semi-simple). The local coefficients of the holomorphic
connection defined in Section 1 are

Γ
(lq)

(jn) (kp)
=: Γlnpjkq = χεnjτ

∂χlτεq
∂ukp

.

These yield

[∆, Eγ ]f = 2
(
hijmnχ

kσ
γp − hikmpχjσγn

)
Γlnpjkq

∂2f

∂uim∂u
l
q

= −2
(
δαβδνµχ

iν
αmχ

jµ
βnχ

kσ
γp − δαβδνµχiναmχ

kµ
βpχ

jσ
γn

)
χεnjτ

∂χlτεq
∂ukp

∂2f

∂uim∂u
l
q

= −2

(
δαβδνµδ

i
αA

ν
mδ

j
βA

µ
nδ
k
γA

σ
pδ
ε
jA

n
τ δ
l
ε

∂Aτq
∂ukp

− δαβδνµδiαAνmδkβAµpδjγAσnδεjAnτ δlε
∂Aτq
∂ukp

)
∂2f

∂uim∂u
l
q

= 2

(
δνµA

ν
mA

σ
p

∂Aµq
∂ukp

− δνµAνmAµp
∂Aσq
∂ukp

)
∂2f

∂uim∂u
l
q

.

Remark 2.7. Denoting by
◦
∇ the covariant derivative with respect to the Levi-Civita

connection, the substitution of (1.19) in (2.7) yields

∆f = gij
(

∂2f

∂ui∂uj
−
◦
Γ

k
ji

∂f

∂uk

)
− T kji

∂f

∂uk

= gij
◦
∇i
◦
∇j f − T kji

∂f

∂uk
,

such that a harmonic holomorphic function f on G must satisfy the identity

T kji
∂f

∂uk
= gij

◦
∇i
◦
∇j f. (2.15)

Note that T ijk is the holomorphic torsion tensor of the holomorphic connection from

(1.13).
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3. Holomorphic last multipliers for holomorphic vector fields on G

The holomorphic volume element ω on G defined in Section 2 will now be used
to introduce the notion of holomorphic last multipliers. The computations are similar
to the case of smooth manifolds, [2, 3, 4, 5], or complex manifolds [6]. More precisely,

consider a holomorphic vector field of the form U = U i
∂

∂ui
, θ = iUω and let

dui

dt
= U i(u1(t), . . . , un(t)), 1 ≤ i ≤ n, t ∈ R

be a complex ODE system on G defined by the holomorphic vector field U . The
classical definition of a last multiplier function for a vector field on smooth manifolds,
[2, 3], can now be applied to the case of the complex Lie group G.

Definition 3.1. A holomorphic function µ on G is called a holomorphic last multiplier
of the complex ODE system generated by U (or holomorphic last multiplier for U) if

∂(µθ) := ∂µ ∧ θ + µ · ∂θ = 0. (3.1)

Note that for every holomorphic function µ on G, ∂µ∧ω = 0, such that for every
holomorphic vector field U on G we have

0 = iU (∂µ ∧ ω) = (iU∂µ) · ω − ∂µ ∧ (iUω)

or, equivalently,
U(µ) · ω = ∂µ ∧ (iUω) = ∂µ ∧ θ.

Now, definitions (2.1) and (3.1) yield the following result.

Proposition 3.2. A holomorphic function µ on G is a holomorphic last multiplier for
the holomorphic vector field U if and only if

U(µ) + µ · divU = 0. (3.2)

Remark 3.3. Relation (3.2) indicates that if ν is a holomorphic non-zero function on
G which satisfies the equation

LU (ν) := U(ν) = (divU) · ν, (3.3)

then 1/ν is a holomorphic last multiplier for U and the holomorphic function ν which
satisfies (3.3) will be called an inverse holomorphic multiplier for U .

Proposition 3.4. Let µ be a holomorphic function on G. The set of holomorphic vector
fields for which µ is a holomorphic last multiplier is a Lie subalgebra in the algebra
of holomorphic vector fields on G.

Proof. The proof follows as in [6]. �

It is now interesting to search for a holomorphic last multiplier for a holomorphic
vector field U of divergence type, that is, µ = div V for some holomorphic vector field
V on G. From (3.2),

U(div V ) + div V · divU = 0. (3.4)

Multiplying (3.4) by ω gives

LU (div V ) · ω + div V · LUω = 0
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or, equivalently,
LU (div V · ω) = LULV ω = 0.

Hence, we have

Proposition 3.5. If V is a holomorphic vector field which satisfies LULV ω = 0, then
µ = div V is a holomorphic last multiplier for the holomorphic vector field U .

The next step is to study holomorphic last multipliers for holomorphic gradient
vector fields on the complex Lie group G endowed with a holomorphic Riemannian
metric (for instance g or h from Section 2). Such a metric g defines a holomorphic
metric volume form ωg (see [10]), as a holomorphic n-form on G such that

ωg(U1, . . . , Un) = ±1,

where {Ui}, i = 1, . . . , n, is an orthonormal holomorphic frame on (G, g), that is,
g(Uj , Uk) = δjk, j, k = 1, . . . , n. As a complex manifold, if (G, g) admits such a
volume element, it admits precisely two of them.

If f is a holomorphic function on G, U = grad f is the gradient vector field of f
defined in Section 2 and α is a holomorphic last multiplier for U , then relation (3.2)
becomes

g(grad f, gradµ) + µ∆f = 0. (3.5)

A straightforward computation in local complex coordinates on G yields a similar
identity to the case of holomorphic Riemannian manifolds, [6]:

g(grad f, gradµ) =
1

2

(
∆(fµ)− f∆µ− µ∆f

)
. (3.6)

Hence,
∆(fα) + µ∆f = f∆α, (3.7)

which leads to the following result.

Proposition 3.6. Let G be a complex Lie group endowed with a holomorphic metric g.
If f, µ are holomorphic functions on G such that f is a holomorphic last multiplier
for gradµ and µ is a holomorphic last multiplier for grad f , then fα is a holomorphic
harmonic function on G.

Corollary 3.7. If G is a complex Lie group endowed with a holomorphic metric g
and f is a holomorphic function on G, then µ is a holomorphic last multiplier for
U = gradµ if and only if µ2 is a holomorphic harmonic function on G.

Corollary 3.8. If G is a complex Lie group endowed with a holomorphic metric g and
f is a holomorphic function on G, then µ2 is a holomorphic harmonic function on G
if and only if

µ∆µ+ g(gradµ, gradµ) = 0.
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[3] Crâşmăreanu, M., Last multipliers as autonomous solutions of the Liouville equation of
transport, Houston J. Math., 34(2008), no. 2, 455–466.
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