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Abstract. The paper focuses on a nonstandard Dirichlet problem driven by the
operator −∆p+µ∆q, which is a competing (p, q)-Laplacian with lack of ellipticity
if µ > 0, and exhibiting a reaction term in the form of a convection (i.e., it
depends on the solution and its gradient) composed with the convolution of the
solution with an integrable function. We prove the existence of a generalized
solution through a combination of fixed-point approach and approximation. In
the case µ ≤ 0, we obtain the existence of a weak solution to the respective elliptic
problem.
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1. Introduction

In this paper we consider the following quasilinear problem with homogeneous
Dirichlet boundary condition on a bounded domain Ω ⊂ RN with the boundary ∂Ω,{

−∆pu+ µ∆qu = f(x, ρ ∗ u,∇(ρ ∗ u)) in Ω,
u = 0 on ∂Ω

(1.1)

for 1 < q < p < +∞, µ ∈ R, and ρ ∈ L1(RN ). To ease the exposition we assume
p < N mentioning that the complementary case p ≥ N can be handled along the
same lines.

In order to simplify the notation, for any real number r > 1, we set r′ = r/(r−1)
(the Hölder conjugate of r). In particular, we have p′ = p/(p− 1) < q′ = q/(q− 1). In
the left-hand side of equation (1.1) there are the negative p-Laplacian

−∆p : W 1,p
0 (Ω)→W−1,p′(Ω)
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expressed as

〈−∆pu, v〉 =

∫
Ω

|∇u(x)|p−2∇u(x) · ∇v(x) dx for all u, v ∈W 1,p
0 (Ω)

and the negative q-Laplacian −∆q : W 1,q
0 (Ω)→W−1,q′(Ω) expressed as

〈−∆qu, v〉 =

∫
Ω

|∇u(x)|q−2∇u(x) · ∇v(x) dx for all u, v ∈W 1,q
0 (Ω).

Hereafter, | · | stands for the Euclidean norm in RN . Since 1 < q < p < +∞, it

holds the continuous embedding W 1,p
0 (Ω) ↪→ W 1,q

0 (Ω), so the operator −∆p + µ∆q

is well defined on W 1,p
0 (Ω). In the sequel, p∗ stands for the Sobolev critical exponent

p∗ = Np/(N − p) (recall that we assume p < N).

The right-hand side of the equation in (1.1) is described by means of a
Carathéodory function f : Ω × R × RN → R (meaning that f(·, s, ξ) is measur-
able on Ω for all (s, ξ) ∈ R × RN and f(x, ·, ·) is continuous for a.e. x ∈ Ω) which is
composed with the convolution

ρ ∗ u(x) =

∫
RN
ρ(x− y)u(y) dy for a.e. x ∈ RN

of some ρ ∈ L1(RN ) and u ∈W 1,p
0 (Ω) ⊂W 1,p(RN ). Notice that the convolution ρ ∗u

is well defined.

There are two noticeable aspects related to the right-hand side of the equation
in (1.1). The first one is the fact that it exhibits dependence not only with respect
to the solution u but also with respect to its gradient ∇u. Such a term is usually
called convection and its presence prevents us to make use of variational methods. A
systematic study of problems with convection can be found in [4]. A second significant
feature related to the right-hand side of the equation in (1.1) is the fact that the
convection is composed with a convolution which is nonlocal operator. The study
of the problems involving the composition of convection and convolution has been
started in [6], specifically for problem (1.1) with µ ≤ 0. This study incorporates the
case where the operator is the p-Laplacian −∆p (for µ = 0) and the ordinary (p, q)-
Laplacian −∆p − ∆q (for µ = −1). The investigation of a (nonsmooth) version of
problem (1.1) for an arbitrary µ ∈ R, but without convection and convolution, was
initiated in [3]. Problem (1.1) with the “competing” (p, q)-Laplacian −∆p + ∆q (i.e.,
in the case where µ = 1) and convection but without convolution was addressed in
[5].

Let λ1,p > 0 denote the first eigenvalue of the negative p-Laplacian on W 1,p
0 (Ω),

which is given by the following variational characterization (see, e.g., [7, §9.2]),

λ1,p = min
{‖∇u‖p

Lp(Ω,RN )

‖u‖pLp(Ω)

: u ∈W 1,p
0 (Ω) \ {0}

}
. (1.2)

We assume that the following growth condition for f(x, s, ξ) is satisfied.
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Assumption 1.1. There holds

|f(x, s, ξ)| ≤ σ(x) + a1|s|p−1 + a2|ξ|p−1 (1.3)

for a.e. x ∈ Ω, all s ∈ R, and ξ ∈ RN , with a function σ ∈ Lr′(Ω) where r ∈ [1, p∗)
and constants a1, a2 ≥ 0 satisfying

‖ρ‖p−1
L1(RN )

(a1λ
−1
1,p + a2N

p−1λ
− 1
p

1,p ) < 1. (1.4)

Remark 1.2. The condition (1.4) in Assumption 1.1 can be expressed by saying that
the parameter ρ ∈ L1(RN ) in problem (1.1) is small enough with respect to its L1

norm.

Remark 1.3. (a) If the Carathéodory function f satisfies the growth condition

|f(x, s, ξ)| ≤ σ(x) + a1|s|p−1 + a2|ξ|β

as in (1.3) except that the exponent of |ξ| is some β ∈ [0, p− 1), then Assumption 1.1
is fulfilled provided that

a1‖ρ‖p−1
L1(RN )

< λ1,p.

(b) If f satisfies the stronger growth condition

|f(x, s, ξ)| ≤ σ(x) + a1|s|α + a2|ξ|β

with α, β ∈ [0, p− 1), then Assumption 1.1 is fulfilled.

By a generalized solution to problem (1.1) we mean any function u ∈ W 1,p
0 (Ω)

for which there exists a sequence {un}n≥1 in W 1,p
0 (Ω) such that

(a) un ⇀ u in W 1,p
0 (Ω) as n→∞;

(b) −∆pun + µ∆qun − f(·, ρ ∗ un(·),∇(ρ ∗ un)(·)) ⇀ 0 in W−1,p′(Ω) as n→∞;
(c) lim

n→∞
〈−∆pun + µ∆qun, un − u〉 = 0.

The essential point in our work is that the driving operator −∆p + µ∆q in
problem (1.1) has a fundamentally different behavior depending on whether µ ≤ 0 or
µ > 0. Indeed, in the latter case, the operator lacks the ellipticity: notice for instance
that, for a nonzero u0 ∈W 1,p

0 (Ω) and a number λ > 0, the quantity

〈−∆p(λu0) + µ∆q(λu0), λu0〉 = λp‖∇u0‖pLp(Ω,RN )
− λqµ‖∇u0‖qLq(Ω,RN )

does not keep a constant sign if µ > 0. It is positive for λ > 0 sufficiently large and it
is negative for λ > 0 sufficiently small. In view of this, in [3], the operator −∆p+µ∆q

for µ > 0 was called a competing (p, q)-Laplacian. Due to the lack of ellipticity there
is no available method to handle problem (1.1) for arbitrary µ. In order to bypass this
drawback, the notion of generalized solution was introduced in [3] for a counterpart
of problem (1.1) without convolution. Note that, in the case where µ ≤ 0, the notions
of generalized solution and weak solution coincide (see Lemma 3.3). In Theorem 3.4,
we prove the existence of a generalized solution to problem (1.1) for arbitrary µ. Our
approach relies on a fixed-point theorem and approximation process. Our treatment
of problem (1.1) is unified in the sense that it does not distinguish according to the
sign of µ.
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2. Preliminaries

In the sequel, the space W 1,p
0 (Ω) is considered endowed with the norm

‖∇(·)‖Lp(Ω,RN ).

2.1. Galerkin basis

Due to the density of C∞0 (Ω) in W 1,p
0 (Ω), the Banach space W 1,p

0 (Ω) with

1 < p < +∞ is separable. Therefore, there exists a Galerkin basis of W 1,p
0 (Ω), that is

a sequence {Xn}n≥1 of vector subspaces of W 1,p
0 (Ω) satisfying

(i) dimXn <∞, ∀n ≥ 1;
(ii) Xn ⊂ Xn+1, ∀n ≥ 1;

(iii)
⋃
n≥1

Xn = W 1,p
0 (Ω).

For the rest of the paper we fix a Galerkin basis {Xn}n≥1 of W 1,p
0 (Ω).

2.2. Rellich-Kondrachov theorem

For 1 < p < N , as known from the Rellich-Kondrachov theorem, the Sobolev
space W 1,p

0 (Ω) is compactly embedded into Lθ(Ω) if 1 ≤ θ < p∗(= Np
N−p ) and continu-

ously embedded if θ = p∗. For every θ ∈ [1, p∗] we denote by Sθ > 0 the best constant
for this embedding, hence

‖u‖Lθ(Ω) ≤ Sθ ‖∇u‖Lp(Ω,RN ), ∀u ∈W 1,p
0 (Ω). (2.1)

For θ = p, we have that Sp = λ
− 1
p

1,p (see (1.2)).

2.3. Convolution

For easy reference we list a few useful properties of the convolution ρ ∗ u of
ρ ∈ L1(RN ) and u ∈ W 1,p

0 (Ω); we refer to [1, §4.4, §9.1] for details. In order to have

well defined the convolution ρ ∗ u of ρ ∈ L1(RN ) with u ∈ W 1,p
0 (Ω), it is convenient

to consider the Sobolev space W 1,p
0 (Ω) embedded in W 1,p(RN ) by identifying every

u ∈ W 1,p
0 (Ω) with its extension equal to zero outside Ω. The convolution ρ ∗ u is

defined by

ρ ∗ u(x) =

∫
RN
ρ(x− y)u(y) dy for a.e. x ∈ RN .

The weak partial derivatives of the convolution ρ ∗ u are expressed by

∂

∂xi
(ρ ∗ u) = ρ ∗ ∂u

∂xi
∈ Lp(RN ), ∀i = 1, . . . , N.

There hold the estimates

‖ρ ∗ u‖Lr(RN ) ≤ ‖ρ‖L1(RN )‖u‖Lr(Ω) (2.2)

whenever r ∈ [1, p∗] and∥∥∥ρ ∗ ∂u
∂xi

∥∥∥
Lp(RN )

≤ ‖ρ‖L1(RN )

∥∥∥ ∂u
∂xi

∥∥∥
Lp(Ω)

, ∀i = 1, . . . , N. (2.3)
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Using the convexity of the function t 7→ tp on (0,+∞) and (2.3), we derive that

‖∇(ρ ∗ u)‖p
Lp(RN ,RN )

=

∫
RN
|∇(ρ ∗ u)|p dx =

∫
RN

(
N∑
i=1

(
ρ ∗ ∂u

∂xi

)2
) p

2

dx

≤
∫
RN

(
N∑
i=1

∣∣∣ρ ∗ ∂u
∂xi

∣∣∣)p dx ≤ Np−1
N∑
i=1

∥∥∥ρ ∗ ∂u
∂xi

∥∥∥p
Lp(RN )

≤ Np−1‖ρ‖p
L1(RN )

N∑
i=1

∥∥∥ ∂u
∂xi

∥∥∥p
Lp(Ω)

≤ Np‖ρ‖p
L1(RN )

‖∇u‖p
Lp(Ω,RN )

. (2.4)

2.4. Fixed point theorem

An essential tool in our approach will be the following consequence of Brouwer’s
fixed point theorem (see [8, page 37]).

Lemma 2.1. Let X be a finite-dimensional space endowed with the norm ‖ ·‖X and let
A : X → X∗ be a continuous mapping. Assume that there is a constant R > 0 such
that

〈A(v), v〉 ≥ 0 for all v ∈ X with ‖v‖X = R.

Then there exists u ∈ X with ‖u‖X ≤ R satisfying A(u) = 0.

3. Main result

In this section we provide our main result regarding the existence of solutions
to problem (1.1).

3.1. Nonlinear operator associated to problem (1.1)

Hereafter we consider the operator A : W 1,p
0 (Ω)→W−1,p′(Ω) given by

〈A(u), v〉 = 〈−∆pu+ µ∆qu, v〉 −
∫

Ω

f(x, ρ ∗ u(x),∇(ρ ∗ u)(x))v(x) dx (3.1)

which arises from problem (1.1).

Lemma 3.1. Suppose that (1.3) in Assumption 1.1 is fulfilled. Then, the operator

A : W 1,p
0 (Ω)→W−1,p′(Ω) defined in (3.1) is continuous.

Proof. Relations (2.2) and (2.4) imply that the operator T : W 1,p
0 (Ω) → Lp(Ω) ×

Lp(Ω)N given by T (u) = (ρ ∗ u|Ω,∇(ρ ∗ u)|Ω) is linear and continuous. The growth
condition in (1.3) allows to apply the Krasnoselskii theorem [2] which implies that
the Nemytskii operator

Nf : Lp(Ω)× Lp(Ω)N → Lp
′
(Ω), (v, w) 7→ f(·, v(·), w(·))

is well defined and continuous. We infer that the operator

W 1,p
0 (Ω)→ Lp

′
(Ω), u 7→ f(·, ρ ∗ u(·),∇(ρ ∗ u)(·)) (3.2)

is continuous as the composition of continuous operators. Note also that Lp
′
(Ω) is

continuously embedded in W−1,p′(Ω).
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The operators −∆p : W 1,p
0 (Ω) → W−1,p′(Ω) and −∆q : W 1,q

0 (Ω) → W−1,q′(Ω)

are continuous. Since q < p and Ω is bounded, we have that W 1,p
0 (Ω) is continu-

ously embedded in W 1,q
0 (Ω) and W−1,q′(Ω) is continuously embedded in W−1,p′(Ω).

Therefore, −∆p + µ∆q : W 1,p
0 (Ω)→W−1,p′(Ω) is continuous.

Altogether, this shows that the operator A is continuous. �

3.2. Finite-dimensional approximations

Given a Galerkin basis {Xn}n≥1 of W 1,p
0 (Ω), we construct a corresponding se-

quence of approximate solutions related to problem (1.1).

Proposition 3.2. Suppose that Assumption 1.1 is fulfilled. Then, for every n ≥ 1, there
exists un ∈ Xn such that

〈−∆pun + µ∆qun, v〉 =

∫
Ω

f(x, ρ ∗ un(x),∇(ρ ∗ un)(x))v(x) dx (3.3)

for all v ∈ Xn. Moreover, the sequence {un}n≥1 so obtained is bounded in W 1,p
0 (Ω).

Proof. On each finite-dimensional space Xn we consider the mapping An : Xn → X∗n
defined by

〈An(u), v〉 = 〈−∆pu+ µ∆qu, v〉 −
∫

Ω

f(x, ρ ∗ u(x),∇(ρ ∗ u)(x))v(x) dx

for all u, v ∈ Xn. Note that An is continuous (see Lemma 3.1). Our goal is to apply
Lemma 2.1 to the operator An. To this end, we note from (1.3) in Assumption 1.1
and Hölder’s inequality that

〈An(v), v〉 =

∫
Ω

(|∇v|p − µ|∇v|q − f(x, ρ ∗ v,∇(ρ ∗ v))v) dx

≥ ‖∇v‖p
Lp(Ω,RN )

− µ|Ω|
p−q
p ‖∇v‖q

Lp(Ω,RN )
− ‖σ‖Lr′ (Ω)‖v‖Lr(Ω)

−a1‖ρ ∗ v‖p−1
Lp(RN )

‖v‖Lp(Ω) − a2‖∇(ρ ∗ v)‖p−1
Lp(RN ,RN )

‖v‖Lp(Ω)

for all v ∈ Xn. Hereafter, we denote by |Ω| the Lebesgue measure of Ω. Then (2.2),
(2.4), and (2.1) lead to the estimate

〈An(v), v〉 ≥ ‖∇v‖p
Lp(Ω,RN )

− µ|Ω|
p−q
p ‖∇v‖q

Lp(Ω,RN )

−‖σ‖Lr′ (Ω)‖v‖Lr(Ω) − a1‖ρ‖p−1
L1(RN )

‖v‖pLp(Ω)

−a2N
p−1‖ρ‖p−1

L1(RN )
‖∇v‖p−1

Lp(Ω,RN )
‖v‖Lp(Ω)

≥ ‖∇v‖p
Lp(Ω,RN )

− µ|Ω|
p−q
p ‖∇v‖q

Lp(Ω,RN )
− Sr‖σ‖Lr′ (Ω)‖∇v‖Lp(Ω,RN )

−(a1S
p
p‖ρ‖

p−1
L1(RN )

+ a2SpN
p−1‖ρ‖p−1

L1(RN )
)‖∇v‖p

Lp(Ω,RN )
(3.4)

for all v ∈ Xn. Taking into account (1.4) (recall that Sp = λ
− 1
p

1,p ) and that p > q > 1,
the following estimate is true

〈An(v), v〉 ≥ 0 whenever v ∈ Xn with ‖∇v‖Lp(Ω,RN ) = R
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provided R > 0 is sufficiently large. Then Lemma 2.1 yields the existence of un ∈ Xn

satisfying An(un) = 0, that is, (3.3).

It remains to show that the sequence {un}n≥1 is bounded in W 1,p
0 (Ω). By in-

serting v = un ∈ Xn in (3.4), we find that(
1− ‖ρ‖p−1

L1(RN )
(a1S

p
p + a2SpN

p−1)
)
‖∇un‖pLp(Ω,RN )

≤ µ|Ω|
p−q
p ‖∇un‖qLp(Ω,RN )

+ Sr‖σ‖Lr′ (Ω)‖∇un‖Lp(Ω,RN ).

The desired conclusion is readily obtained from assumption (1.4) and the fact that
p > q > 1. �

3.3. Main result on the existence of a solution to problem (1.1)

First, we show that the notions of generalized solution and weak solution coincide
for problem (1.1) in the case where µ ≤ 0.

Lemma 3.3. Suppose that µ ≤ 0. For every u ∈W 1,p
0 (Ω), the following conditions are

equivalent:

(i) u is a weak solution to problem (1.1), that is, u satisfies

〈−∆pu+ µ∆qu, v〉 =

∫
Ω

f(x, ρ ∗ u(x),∇(ρ ∗ u)(x))v(x) dx

for all v ∈W 1,p
0 (Ω);

(ii) u is a generalized solution to problem (1.1).

Proof. The implication (i)⇒(ii) is immediate (take un = u) and actually does not
require the condition that µ ≤ 0. Conversely, assume that u is a generalized solution
to problem (1.1), and let {un}n≥1 be a sequence satisfying conditions (a)–(c) of the
definition of generalized solution with respect to u. Using the monotonicity of the
operator −∆q we note that

〈−∆pun, un − u〉 ≤ 〈−∆pun, un − u〉 − µ〈−∆qun + ∆qu, un − u〉
= 〈−∆pun + µ∆qun, un − u〉 − µ〈∆qu, un − u〉.

By (a) and (c), this leads to

lim sup
n→∞

〈−∆pun, un − u〉 ≤ 0.

Then we are able to conclude the strong convergence un → u in W 1,p(Ω) (see, e.g.,

[7, Proposition 2.72]). By Lemma 3.1, this implies that A(un)→ A(u) in W−1,p′(Ω),

where A : W 1,p
0 (Ω)→W−1,p′(Ω) is the operator defined in (3.1). In view of condition

(b) of the definition of generalized solution, this yields A(u) = 0, which precisely
means that u is a weak solution to problem (1.1). �

We can now state our main result.

Theorem 3.4. Suppose that Assumption 1.1 holds. Then there exists a generalized
solution to problem (1.1). In particular, if µ ≤ 0, there exists a weak solution to
problem (1.1).
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Proof. Consider the sequence {un}n≥1 ⊂W 1,p
0 (Ω) constructed in Proposition 3.2. As

asserted therein, this sequence is bounded in W 1,p
0 (Ω). In view of the reflexivity of

the space W 1,p
0 (Ω), we can pass to a subsequence still denoted by {un}n≥1 such that

un ⇀ u in W 1,p
0 (Ω) (3.5)

with some u ∈W 1,p
0 (Ω). Moreover, since the sequence {un}n≥1 is bounded in W 1,p

0 (Ω),
invoking the continuity of the operator in (3.2), we have that

the sequence {f(·, ρ ∗ un,∇(ρ ∗ un))}n≥1 is bounded in Lp
′
(Ω). (3.6)

On the basis of the reflexivity of W−1,p′(Ω), we can assume that

−∆pun + µ∆qun − f(·, ρ ∗ un,∇(ρ ∗ un)) ⇀ η in W−1,p′(Ω) (3.7)

with some η ∈W−1,p′(Ω).
Now let v ∈

⋃
n≥1Xn. Fix an integer m ≥ 1 such that v ∈ Xm. Proposition 3.2

provides that (3.3) holds for all n ≥ m. Letting n → ∞ in (3.3), by means of (3.7)
we get

〈η, v〉 = 0 for all v ∈
⋃
n≥1

Xn.

By the density of
⋃
n≥1Xn in W 1,p

0 (Ω) (see (iii) in the definition of Galerkin basis in

Section 2.1), it turns out that η = 0. Therefore, (3.7) renders

−∆pun + µ∆qun − f(·, ρ ∗ un,∇(ρ ∗ un)) ⇀ 0 in W−1,p′(Ω). (3.8)

Next, setting v = un in (3.3), we obtain

〈−∆pun + µ∆qun, un〉 −
∫

Ω

f(x, ρ ∗ un,∇(ρ ∗ un))un dx = 0 (3.9)

for all n ≥ 1, while (3.8) gives

〈−∆pun + µ∆qun, u〉 −
∫

Ω

f(x, ρ ∗ un,∇(ρ ∗ un))u dx→ 0 (3.10)

as n→∞. Altogether, (3.9) and (3.10) yield

〈−∆pun + µ∆qun, un − u〉 −
∫

Ω

f(x, ρ ∗ un,∇(ρ ∗ un))(un − u) dx→ 0 (3.11)

as n → ∞. Moreover, from (3.5), Rellich-Kondrachov compact embedding theorem
which ensures that un → u strongly in Lp(Ω), and (3.6), we derive that

lim
n→∞

∫
Ω

f(x, ρ ∗ un,∇(ρ ∗ un))(un − u) dx = 0. (3.12)

Inserting (3.12) into (3.11) enables us to assert

lim
n→∞

〈−∆pun + µ∆qun, un − u〉 = 0. (3.13)

At this point we can notice that (3.5), (3.8), and (3.13) are just the conditions (a),

(b), and (c) expressing that u ∈ W 1,p
0 (Ω) is a generalized solution to problem (1.1),

which proves the first assertion in the theorem. The last assertion in the theorem is a
consequence of Lemma 3.3. �
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Collège Jean Moulin,
14 rue Jean Moulin,
54510 Tomblaine, France
e-mail: vmotreanu@gmail.com


