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Eigenvalues for anisotropic p−Laplacian
under a Steklov-like boundary condition
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Abstract. The eigenvalue problem

−div
(1

p
∇ξ
(
F p
(
∇u)

)
= λa(x) | u |q−2 u,

with q ∈ (1,∞), p ∈
(

Nq
N+q−1

,∞
)
, p 6= q, subject to Steklov-like boundary

condition,

F p−1(∇u)∇ξF (∇u) · ν = λb(x) | u |q−2 u

is investigated on a bounded Lipschitz domain Ω ⊂ RN , N ≥ 2. Here, F stands
for a C2(RN \ {0}) norm and a ∈ L∞(Ω), b ∈ L∞(∂Ω) are given nonnegative
functions satisfying ∫

Ω

a dx+

∫
∂Ω

b dσ > 0.

Using appropriate variational methods, we are able to prove that the set of eigen-
values of this problem is the interval [0,∞).
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1. Introduction

Let F be a norm in RN , that is a nonnegative, positively homogeneous of degree
1, convex function defined in RN . Moreover, we assume that F ∈ C2(RN \ {0}).

Next, let us introduce the so-called anisotropic p−Laplacian, defined as follows

Qpu := div
(1

p
∇ξ
(
F p
(
∇u)

)
.
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When p = 2, Q2 is the anisotropic operator, also known as the Finsler-Laplace oper-
ator [6]. We point out that a typical example of F satisfying the above conditions is
the lr−norm

F (ξ) :=
( N∑
i=1

| ξi |r
)1/r

, r > 1,

for which the operator Qp has the form

∆r,pu := div
(
‖ ∇u ‖p−rr ∇ru

)
,

where

∇ru :=

(∣∣∣ ∂u
∂x1

∣∣∣r−2 ∂u

∂x1
, · · · ,

∣∣∣ ∂u
∂xN

∣∣∣r−2 ∂u

∂xN

)
.

Note that ∆r,p is a nonlinear operator unless p = r = 2 when it reduces to the usual
Laplacian operator. Two important special cases are r = 2 and p ∈ (1,∞) when ∆2,p

coincides with the usual p-Laplace operator (see [12]) and the case r = p, when ∆p,p is
the so-called pseudo p-Laplacian. A physical motivation to study differential equations
involving such operators is given by the fact that they appear in well-established
models of surface energies in metallurgy, crystallography, crystalline fracture theory,
or noise-removal procedures in digital image processing (see for instance, [9], [15], and
references therein). Meanwhile, a geometric motivation for the investigation of such
operators comes from the fact that such anisotropies appears naturally in the Finsler
geometry, such as, for instance, the Minkowski geometry (see the seminal works of P.
Finsler [7] and H. Minkowski [13]).

The paper concerns the study of the following Steklov-like eigenvalue problem
for Qp: {

−Qpu := −div
(

1
p∇ξ

(
F p
(
∇u)

)
= λa(x) | u |q−2 u in Ω,

F p−1(∇u)∇ξF (∇u) · ν = λb(x) | u |q−2 u on ∂Ω,
(1.1)

under the following hypotheses

(Hpq) q ∈ (1,∞), p ∈
(

Nq
N+q−1 ,∞

)
, p 6= q;

(HΩ) Ω ⊂ RN , N ≥ 2, is a bounded domain with Lipschitz continuous boundary
∂Ω;

(Hab) a, b ∈ L∞(Ω) are given nonnegative functions satisfying∫
Ω

a dx+

∫
∂Ω

b dσ > 0. (1.2)

In (1.1)2, ν stands for the outward unit normal to ∂Ω.

The solution u of (1.1) is understood in a weak sense, as an element of the
Sobolev space W 1,p(Ω) satisfying equation (1.1)1 in the sense of distributions and
boundary condition (1.1)2 in the sense of traces:
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Definition 1.1. λ ∈ R is an eigenvalue of problem (1.1) if there exists uλ ∈W 1,p \ {0}
such that for all w ∈W 1,p(Ω)∫

Ω

(
F (∇uλ)

)p−1

∇ξF (∇uλ) · ∇w dx

= λ
(∫

Ω

a | uλ |q−2 uλw dx+

∫
∂Ω

b | uλ |q−2 uλw dσ
)
.

(1.3)

Indeed, according to a Green type formula (see [4], p. 71), u ∈ W 1,p(Ω) is a solution
of (1.1) if and only if it satisfies (1.3).
Our goal is to determine the set of all eigenvalues of problem (1.1). Fortunately we
are able to offer a complete description of this set.

The main result of our paper is given by the following theorem

Theorem 1.2. Assume that (Hpq), (HΩ) and (Hab) above are fulfilled. Then the set of
eigenvalues of problem (1.1) is [0,∞).

It is worth pointing out that this nice result is due to the fact that operator
Qp is nonhomogeneous (p 6= q). The homogeneous case (p = q) is more delicate. For
example, if p = q and either a ≡ 1, b ≡ 0 or a ≡ 0, b ≡ 1 and F is the usual euclidian
norm, then the eigenvalue set of the corresponding (Neumann type) problem is fully
known only if p = q = 2; otherwise, i.e. if p = q ∈ (1,∞) \ {2}, then it is only known
that, as a consequence of the Ljusternik-Schnirelman theory, there exists a sequence of
positive eigenvalues of problem (1.1) with Q = −∆p (see, e.g., [11]), but this sequence
may not constitute the whole eigenvalue set.

Regarding the assumption p ∈
(

Nq
N+q−1 ,∞

)
we point out that this is directly

related to the well-known embeddings W 1,p(Ω) ↪→ Lq(Ω) which hold in the cases: (1)
1 ≤ q ≤ p∗ = pN/(N − p), if 1 < p < N ; (2) p ≤ q < ∞, if p = N ; (3) q = ∞, if
p > N. Moreover, these embeddings are compact when 1 ≤ q < p∗ in case (1), all q in
case (2), and when reinterpreted as W 1,p(Ω) ↪→ C1(Ω) in case (3). We also have trace
compactly embeddings W 1,p(Ω) ↪→ Lq(∂Ω) for all 1 ≤ p ≤ q < p(N − 1)/(N − p) if
1 ≤ p < N, and similarly as before in the other ranges of p (see [1], [3, Section 9.3]).

Also, we restrict ourselves to functions a ∈ L∞(Ω), b ∈ L∞(∂Ω) since assuming
weaker regularity for these functions leads to similar results without essential changes.

The Dirichlet eigenvalue problem associated with operator −Qp for q = 2 has
been studied in [5]. As far as the problem (1.1) is concerned, a separate analysis is
needed since some specific situations have to be addressed, including those related to
the trace on ∂Ω and the fact that the eigenfunctions of our problem belong to the set
C (see Section 2, (2.2) for the definition of C). It is worth pointing out that results
concerning the existence and nonexistence of solutions for the case of p−Laplacian
under Dirichlet boundary conditions and appropriate assumptions on Ω have been
obtained by M. Ôtani in the well known paper [14].

2. Preliminary results

Our hypotheses (Hpq), (HΩ), (Hab) will be assumed throughout this paper. Test-
ing equation (1.3) against w = uλ we observe that the eigenvalues of problem (1.1)
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cannot be negative numbers. It is also obvious that λ0 = 0 is an eigenvalue of this
problem and the corresponding eigenfunctions are the nonzero constant functions. So
any other eigenvalue belongs to (0,∞).

If we assume that λ > 0 is an eigenvalue of problem (1.1) and choose w ≡ 1 in
(1.3) we deduce that every eigenfunction uλ corresponding to λ satisfies the equation∫

Ω

a | uλ |q−2 uλ dx+

∫
∂Ω

b | uλ |q−2 uλ dσ = 0. (2.1)

So all eigenfunctions corresponding to positive eigenvalues necessarily belong to the
set

C :=
{
u ∈W 1,p(Ω);

∫
Ω

a | u |q−2 u dx+

∫
∂Ω

b | u |q−2 u dσ = 0
}
. (2.2)

This is a symmetric cone and we can see that C is a weakly closed subset of W 1,p(Ω).
Indeed, let

(
un
)
n
⊂ C such that un ⇀ u0 in W 1,p(Ω). From assumption (Hpq),

W 1,p(Ω) ↪→ Lq(Ω) and W 1,p(Ω) ↪→ Lq(∂Ω) compactly, hence there exists a subse-
quence of

(
un
)
n
, which is also denoted

(
un
)
n
, such that

un → u0 in Lq(Ω), un → u0 in Lq(∂Ω).

By Lebesgue’s Dominated Convergence Theorem (see also [3, Theorem 4.9]) we obtain
u0 ∈ C.
In addition, C has nonzero elements (see [2, Section 2]).
Now let us define the positively homogeneous of order p functional

J : W 1,p(Ω)→ R, J(w) :=

∫
Ω

(
F (∇w)

)p
dx ∀ w ∈W. (2.3)

Standard arguments can be used in order to deduce that functional J is convex and
weakly lower semicontinuous (see, for instance [16, Proposition 25.20]).
Consider the minimization problem

µ := inf
w∈C1

J(w) , (2.4)

where

C1 := C ∩
{
u ∈W 1,p(Ω);

∫
Ω

a | u |q dx+

∫
∂Ω

b | u |q dσ = 1
}
.

The next result states that J attains its minimal value and this value is positive.

Lemma 2.1. For each p > 1 there exists u∗ ∈ C1 such that

µ := J(u∗) = inf
w∈C1

J(w) > 0.

Proof. Let
(
un
)
n
⊂ C1 be a minimizing sequence for J , i. e.,

J(un)→ inf
w∈C1q

J(w) := µ.

We can prove that
(
un
)
n

is bounded in W 1,p(Ω). Assume the contrary, that there

exists a subsequence of
(
un
)
n
, again denoted

(
un
)
n
, such that ‖ un ‖W 1,p(Ω)→∞ as

n→∞. Define

vn =
un

‖ un ‖W 1,p(Ω)
∀ n ∈ N .



Eigenvalues for anisotropic p−Laplacian 89

Clearly sequence
(
vn
)
n

is bounded in W 1,p(Ω) so there exist a v ∈ W 1,p(Ω) and a

subsequence of
(
vn
)
n
, again denoted

(
vn
)
n
, such that

vn ⇀ v in W 1,p(Ω).

Taking into account assumption (Hpq) we obtain that W 1,p(Ω) ↪→ Lq(Ω) and
W 1,p(Ω) ↪→ Lq(∂Ω) compactly, therefore, up to a subsequence, we have

vn → v in Lq(Ω), vn → v in Lq(∂Ω).

As ‖ vn ‖W 1,p(Ω)= 1 ∀ n ∈ N we have ‖ v ‖W 1,p(Ω)= 1, and∫
Ω

(
F (∇v)

)p
dx ≤ lim inf

n→∞

∫
Ω

(
F (∇vn)

)p
dx

= lim inf
n→∞

1

‖ un ‖pW 1,p(Ω)

J(un) = 0,

which shows that v is a constant function. On the other hand, since
(
vn
)
n
⊂ C and C

is weakly closed in W 1,p(Ω), we infer that v ∈ C, hence v ≡ 0. But this contradicts the
fact that ‖ v ‖W 1,p(Ω)= 1. Therefore,

(
un
)
n

is indeed bounded in W 1,p(Ω), thus, by

passing to a subsequence, we can assume that
(
un
)
n

converges weakly to a function

u∗ ∈W 1,p(Ω) and

un → u∗ in Lq(Ω), un → u∗ in Lq(∂Ω).

By Lebesgue’s Dominated Convergence Theorem we obtain u∗ ∈ C1, so the weak lower
semicontinuity of J leads to µ = J(u∗). In addition, J(u∗) > 0. Indeed, assuming by
contradiction that J(u∗) = 0 would imply that u∗ ≡ Const., which is impossible
because u∗ ∈ C1. �

3. Proof of the main result

The following lemma plays a crucial role in the proof of our main theorem

Lemma 3.1. Assume that (Hpq), (HΩ) and (Hab) above are fulfilled. Let u∗ ∈W 1,p(Ω)
be a minimizer of the functional J defined by (2.3) on the set

C1 := C ∩
{
u ∈W 1,p(Ω);

∫
Ω

a | u |q dx+

∫
∂Ω

b | u |q dσ = 1
}
.

Then u∗ is an eigenfunction of problem (1.1) with eigenvalue µ = inf
w∈C1

J(w).

Proof. Since the constraint C1 is no more a C1 manifold if q < 2, we can not use a
reasoning based on Lagrange Multipliers Rule. In order to avoid this inconvenience
let us define the functional

Jµ : W 1,p(Ω)→ R, Jµ(u) =

∫
Ω

(
F (∇u)

)p
dx

− µ
(∫

Ω

a | u |q dx+

∫
∂Ω

b | u |q dσ
) p

q ∀ u ∈W 1,p(Ω).

(3.1)
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Standard arguments can be used in order to deduce that Jµ ∈ C1(W 1,p(Ω);R), with
the derivative given by

〈J ′µ(u), w〉 = p

∫
Ω

(
F (∇u

)p−1∇ξF (∇u) · ∇w dx

− µp
(∫

Ω

a | u |q dx+

∫
∂Ω

b | u |q dσ
) p

q−1

·
(∫

Ω

a | u |q−2 uw dx+

∫
∂Ω

b | u |q−2 uw dσ
) (3.2)

for all u,w ∈W 1,p(Ω).

It is obviously that u∗ is an eigenfunction of problem (1.1) with eigenvalue µ if
and only if u∗ is a critical point of Jµ, i. e. J ′µ(u∗) = 0. In order to show this, we fix
v ∈ Lip(Ω) arbitrarily. For each n ∈ N∗ define fn : R→ R,

fn(s) =

∫
Ω

a
∣∣∣u∗ +

1

n
v + s

∣∣∣q dx+

∫
∂Ω

b
∣∣∣u∗ +

1

n
v + s

∣∣∣q dσ ∀ s ∈ R. (3.3)

It is easily seen that fn is coercive, since we have

fn(s) ≥ 2−q | s |q
(
‖ a ‖L∞(Ω)| Ω |N + ‖ b ‖L∞(∂Ω)| ∂Ω |N−1

)
−
∫

Ω

a
∣∣∣u∗ +

1

n
v
∣∣∣q dx− ∫

∂Ω

b
∣∣∣u∗ +

1

n
v
∣∣∣q dσ,

where | · |N and | · |N−1 denote the Lebesgue measures of the two sets. We have also
used the inequality

| x |q≤ (| x+ y | + | y |)q ≤ 2q(| x+ y |q + | y |q) ∀ x, y ∈ R, q > 1.

Moreover, function fn is continuous differentiable on R (see [8, Theorem 2.27]) and
convex (its derivative is an increasing function). Therefore, for all n ∈ N∗, fn admits
a minimum point sn, such that f ′n(sn) = 0, that is∫

Ω

a
∣∣∣u∗ +

1

n
v + sn

∣∣∣q−2(
u∗ +

1

n
v + sn

)
dx

+

∫
∂Ω

b
∣∣∣u∗ +

1

n
v + sn

∣∣∣q−2(
u∗ +

1

n
v + sn

)
dσ = 0.

(3.4)

We denote

un := u∗ + 1/n v + sn ∀ n ∈ N∗. (3.5)

From (3.4) we derive that
(
un
)
n
⊂ C.

Next, we claim that the sequence
(
nsn

)
n

is bounded. Arguing by contradiction,
let us assume that, up to a sequence, nsn →∞ or nsn → −∞ as n→∞. Taking into
account that v ∈ Lip(Ω) there exists N1 large enough such that we have either

v(·) + nsn > 0 in Ω, or v(·) + nsn < 0 in Ω ∀ n ≥ N1.
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Since the function γ →| u∗ + γ |q−2 (u∗ + γ) is strictly increasing on R, we get

0 =

∫
Ω

a | un |q−2 un dx+

∫
∂Ω

b | un |q−2 un dσ

>

∫
Ω

a | u∗ |q−2 u∗ dx+

∫
∂Ω

b | u∗ |q−2 u∗ dσ = 0 ∀n ≥ N1,

(3.6)

if v(·) + nsn > 0 in Ω, or the reverse inequality in the second situation, when

v(·) + nsn < 0 in Ω.

In both cases we get a contradiction.
We point out that inequality in relation (3.6) is strictly. Indeed, we note that

(1.2) implies that either |{x ∈ Ω; a(x) > 0}|N > 0 or a = 0 a.e. in Ω and

|{x ∈ ∂Ω; b(x) > 0}|N−1 > 0,

hence we can not have equality between the two terms containing integrals.
Consequently,

(
nsn

)
n

should be bounded. This in turn implies there exists S ∈ R
such that, up to a subsequence, nsn → S as n→∞.

We note that the subsequence of
(
un
)
n
, denoted

(
un
)
n

again, with the property

that
(
nsn

)
n

has the limit S, converges in W 1,p(Ω), more exactly,

un → u∗ and n
(
un − u∗

)
→ v + S in W 1,p(Ω) as n→∞. (3.7)

We also note that from (3.7), combining with u∗ 6≡ 0, there exists N2 large enough,
such that

(
un
)
n
⊂ C \ {0} ∀ n ≥ N2. Next, using this subsequence, we are going

to construct a minimizing sequence for Jµ restricted to the constraint set C1. In this
respect, we can define

tn :=
(
‖ a1/qun ‖qLq(Ω) + ‖ b1/qun ‖qLq(∂Ω)

)1/q
, zn :=

un
tn
, (3.8)

for all n sufficiently large. Obviously, we have

tn →
∫

Ω

a | u∗ |q dx+

∫
∂Ω

b | u∗ |q dσ = 1,(
zn
)
n
⊂ C1, zn → u∗ in W 1,p(Ω) as n→∞.

(3.9)

Next, we claim that sequence
(
n(tn− 1)

)
n

is bounded. In order to proof this, we first

show that
(
n(t

1/q
n − 1)

)
n

is bounded. To this aim, we define the functional

Iq : W 1,p(Ω)→ R, Iq(u) :=

∫
Ω

a | u |q dx+

∫
∂Ω

b | u |q dσ ∀ u ∈W 1,p(Ω).

Under assumption (Hpq), it is known that Iq ∈ C1
(
W 1,p(Ω);R

)
(see, for instance

[11]) and for all u,w ∈W 1,p(Ω),

〈I ′q(u), w〉 = q
(∫

Ω

a | u |q−2 uw dx+

∫
∂Ω

b | u |q−2 uw dσ
)
. (3.10)

Since Iq(u∗) = 1, we note that for all n ∈ N∗,

n
(
t1/qn − 1

)
=
Iq(un)− Iq(u∗)

1
n

. (3.11)
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Now, taking into account that I ′q ∈
(
W 1,p(Ω)

)∗
, we get

lim
n→∞

n(t1/qn − 1) = lim
n→∞

n
(
Iq(un)− Iq(u∗)

)
= lim
n→∞

〈I ′q(u∗), n(un − u∗)〉+ o(n;u∗, v)

= 〈I ′q(u∗), v + S〉 = 〈I ′q(u∗), v〉,

(3.12)

where o(n;u∗, v) is a notation for the term which tends to zero in the definition of
the Fréchet differential of Iq at u∗, that is o(n, u∗, v)→ 0 as n→∞. Therefore, there

exists K > 0 such that n | t1/qn − 1 |≤ K, or equivalently

0 < 1− K

n
≤ t1/qn ≤ 1 +

K

n
,

for all n ∈ N∗, n large enough, which implies

n

((
1− K

n

)q
− 1

)
≤ n(tn − 1) ≤ n

((
1 +

K

n

)q
− 1

)
, (3.13)

for all n sufficiently large. It is elementary to check that

lim
x→0+

(1 +Kx)q − 1

x
= qK, lim

x→0+

(1−Kx)q − 1

x
= −qK.

This in combination with (3.13) implies that the sequence
(
n(tn − 1)

)
n

is bounded,

thus, by possibly passing to a subsequence, there exists T ∈ R, such that n(tn−1)→ T
as n→∞.

Now, it is easy to observe that u∗ minimizes functional Jµ over C1. By using the
minimality of u∗ and the fact that

(
zn
)
n
⊂ C1 we obtain that

0 ≤ lim
n→∞

Jµ(zn)− Jµ(u∗)
1
n

. (3.14)

Since functional Jµ ∈ C1(W 1,p(Ω);R), we have

n
(
Jµ(zn)− Jµ(u∗)

)
=
(
〈J ′µ(u∗), n(zn − u∗)〉+ o(n;u∗, v), (3.15)

with o(n;u∗, v)→ 0 as n→∞. Taking into account (3.5) and (3.8) we can see that

n(zn − u∗) =
1

tn

(
nu∗

(
1− tn

)
+ v + nsn

)
→ −Tu∗ + v + S as n→∞. (3.16)

It follows from (3.14)-(3.16) that

0 ≤ 〈J ′µ(u∗), v + S − Tu∗〉. (3.17)

From (3.2), Lemma 2.1, and u∗ ∈ C1, we get that 〈J ′µ(u∗), u∗〉 = 0, 〈J ′µ(u∗), S〉 = 0,
hence (3.17) implies

0 ≤ 〈J ′µ(u∗), v〉.
A similar reasoning with −v instead of v shows that 0 = 〈J ′µ(u∗), v〉.

The conclusion then follows by exploiting the density of Lipschitz functions in
W 1,p(Ω) which is true according to assumption (HΩ) (see [10, Theorm 3.6]. �
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Proof of Theorem 1.2. By Lemma 3.1, there exists an eigenfunction u∗ of problem
(1.1) corresponding to eigenvalue µ = inf

w∈C1
J(w) > 0, thus∫

Ω

(
F (∇u∗)

)p−1

∇ξF (∇u∗) · ∇w dx

= µ
(∫

Ω

a | u∗ |q−2 u∗w dx+

∫
∂Ω

b | u∗ |q−2 u∗w dσ
) (3.18)

for all w ∈W 1,p(Ω).
Consider λ > 0 fixed. Let τ > 0. If we take u∗ of the form u∗ = τv∗ in (3.18) and
taking into account that F and ∇ξF are positively homogeneous of degree 1 and 0,
respectively, we derive ∫

Ω

(
F (∇v∗)

)p−1

∇ξF (∇v∗) · ∇w dx

= τ q−pµ
(∫

Ω

a | v∗ |q−2 v∗w dx+

∫
∂Ω

b | v∗ |q−2 u∗w dσ
) (3.19)

for all w ∈W 1,p(Ω).

Finally, if we choose τ = (λ/µ)1/(q−p) > 0, then v∗ = τu∗ is an eigenfunction
of problem (1.1) with eigenvalue λ. As has already been pointed out, λ = 0 is an
eigenvalue of problem (1.1). This conclude the proof.

�
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