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1. Introduction

Matrix Riccati differential equations have been extensively studied during the
past decades by researchers both in control theory and differential equations area.
First, in the work of Kalman [13] it is obtained the existence of global solution for a
matrix Riccati differential equation under the controllability and observability condi-
tions. Second, Wonham [20] established these results to the framework of stochastic
control considering the so-called Riccati equations of stochastic control. Both results
have been related to the so-called LQ optimisation problem.

The above earlier results impose controllability and observability conditions,
which are somewhat conservative. More recent works replace these conditions by some
weaker ones, as stabilizability and detectability.

In the particular case of constant coefficients, the well-known (standard) alge-
braic Riccati equation arise naturally and play an essential role. The solutions, whose
existence is assured by Popov conditions, properties and applications are studied in
many works, see e.g. [8], [15], and [18]. In the study of stochastic case, a class of
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modified algebraic Riccati equations appear. The result from [23] provides a neces-
sary and sufficient condition for the existence of a mean-square stabilizing solution
for this kind of equations. This assures that the corresponding stochastic LQ problem
is solvable, i.e. the cost function is minimized and the stochastic closed-loop system is
mean-square stable. Also, it was shown in [10] that a mean-square stabilizing solution
of a modified algebraic Riccati equation, is unique (if it exists) and coincides with the
maximal solution. In [19] it is considered LQ optimal stochastic control problem with
random coefficients via the stochastic maximum principle.

Further, if we consider the case of periodic coefficients, the early results that
provide the existence of a stabilizing solution for a matrix Riccati differential equation
goes to [21]. In addition, the method developed for algebraic Riccati equation has been
extended to the Riccati equations for continuous-time linear periodic systems in [17].
More recently, [14] extends the eigenvalue method to the differential Riccati equation
in terms of nonlinear eigenvalues and eigenvectors. Various results concerning periodic
systems are presented in [1].

The novelty to be pursued in this paper is the use of spectral theory of positive
operators to deal with generalized Riccati differential equation (GRDE) in order to
obtain necessary and sufficient conditions for the existence and uniqueness of the
stabilizing solution. The contribution of the paper can be summarised as follows. First,
regarding the set-up of the problem, i.e. the class of nonlinear backward differential
equation we first present several special cases. We consider LQ optimal regulator
and stochastic LQ optimal regulator. For stochastic framework the cases when the
controlled system is affected by multiplicative white noise and of the perturbation
model by a Markov process simultaneous, respectively, is considered. This indicates
that the considered problem arises in a natural way in optimal control problems
and incorporates all these cases. Discussions on backward differential equations and
applications can be found in [6] and [22].

Motivated by this goal, we present the definition of stabilizing solution of the
class of nonlinear continuous-time backward equation under consideration, see Defini-
tion 2.5. Further, we introduce the concept of unobservable characteristic multipliers
of a pair formed by a continuous-time linear equation with periodic coefficients and
an output, see Definition 3.2. In this framework it is proved the central contribu-
tion of the paper, i.e. the existence of the stabilizing solution of the GRDE under
consideration, see Theorem 4.3.

Organization of the paper. First, in Subsection 1.1 we introduce useful notations.
Section 2 is devoted to the formulation of the problem. It presents our framework,
motivated by several special cases of LQ control problems related to our model. Section
3 is dedicated to state and describe some preliminary results, while Section 4 contains
the main result of the paper, i.e. the existence of the positive semidefinite and periodic
stabilizing solution of the GRDE. Finally, in Section 5, we draw conclusions.
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1.1. Notations

The notations used in this work are in general the standard ones. Here we men-
tion some notations less met. If m,n,N are fixed natural numbers, then

MN
nm

∆
= Rn×m × · · · × Rn×m︸ ︷︷ ︸

N times

,

Rn×m being the linear space of the matrices with n−rows and m−columns. B ∈MN
nm

if and only if B = (B1, B2, . . . , BN ), Bi ∈ Rn×m. When n = m we shall write MN
n

instead of MN
nn. If B ∈MN

nm, C ∈MN
mp then BC is defined by

BC = (B1C1, B2C2, . . . , BNCN ) ∈MN
np.

If A = (A1, A2, . . . , AN ) ∈MN
n is such that det Ai 6= 0, 1 ≤ i ≤ N, then

A−1 ∆
= (A−1

1 , A−1
2 , . . . , A−1

N ) ∈MN
n .

If X = (X1, X2, . . . , XN ) ∈MN
mp then

XT ∆
= (XT

1 , X
T
2 , . . . , X

T
N ) ∈MN

pm.

Here and in the sequel superscript ()
T

stands for the transpose of a matrix or a vector.
Sn ⊂ Rn×n stands for the linear space of symmetric matrices of size n× n and

SNn
∆
= Sn × Sn × · · · × Sn︸ ︷︷ ︸

N times

.

SNn has a structure of finite dimensional real Hilbert space induced by the inner
product

〈X,Y〉 =

N∑
i=1

Tr [XiYi], (1.1)

for all X = (X1, X2, . . . , XN ), Y = (Y1, Y2, . . . , YN ) from SNn . T r [·] denotes the trace
of a matrix. On SNn one should consider the order relation � induced by the solid,
closed, normal, convex cone

SN+
n

∆
= {X ∈ SNn | X = (X1, X2, . . . , XN ) with Xi ≥ 0, 1 ≤ i ≤ N}.

Here Xi ≥ 0 means that Xi is positive semidefinite matrix. If X , Y are two vector
spaces, then B(X ,Y) denotes the linear space of linear operators T : X → Y. If X = Y
we shall write B(X ) instead of B(X ,X ).

2. A class of nonlinear backward differential equations

2.1. Model description and basic assumptions

On the Hilbert space SNn we consider backward differential equation

− d

dt
X(t) = R(t,X(t)), t ∈ R, (2.1)
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with the unknown function X(t) = (X(t, 1), X(t, 2), . . . , X(t,N)) ∈ SNn . In (2.1) the
pair (t,X)→ R(t,X) : Dom R ⊂ R× SNn → SNn is described by

R(t,X) = (R1(t,X),R2(t,X), . . . ,RN (t,X))

with

Ri(t,X) =AT (t, i)X(i) +X(i)A(t, i) + Π1(t)[X](i)

− (X(i)B(t, i) + Π2(t)[X](i) + L(t, i))

· (Π3(t)[X](i) +R(t, i))−1(X(i)B(t, i)

+ Π2(t)[X](i) + L(t, i))T +M(t, i), 1 ≤ i ≤ N. (2.2)

Here,

X→ Π1(t)[X]
∆
= (Π1(t)[X](1), . . . ,Π1(t)[X](N)) : SNn → SNn ;

X→ Π2(t)[X]
∆
= (Π2(t)[X](1), . . . ,Π2(t)[X](N)) : SNn →MN

nm;

X→ Π3(t)[X]
∆
= (Π3(t)[X](1), . . . ,Π3(t)[X](N)) : SNn → SNm ;

are given linear operators.

Dom R ∆
= {(t,X) ∈ R× SNn | det (Π3(t)[X](i) +R(t, i)) 6= 0, 1 ≤ i ≤ N}.

According to the convention of notations from Subsection 1.1, we may rewrite (2.2)
in a compact form as:

R(t,X) =AT (t)X + XA(t) + Π1(t)[X]− (XB(t) + Π2(t)[X] + L(t))

· (Π3(t)[X] + R(t))−1(XB(t) + Π2(t)[X] + L(t))T + M(t) (2.3)

for all (t,X) ∈ Dom R, where we have used the following notations:

A(t) = (A(t, 1), A(t, 2), . . . , A(t,N)) ∈MN
n ,

B(t) = (B(t, 1), B(t, 2), . . . , B(t,N)) ∈MN
nm, (2.4a)

M(t) = (M(t, 1),M(t, 2), . . . ,M(t,N)) ∈ SNn ,
L(t) = (L(t, 1), L(t, 2), . . . , L(t,N)) ∈MN

nm,

R(t) = (R(t, 1), R(t, 2), . . . , R(t,N)) ∈ SNm . (2.4b)

Based on the operators Πk(t)[·](i) involved in (2.2) we define:

Π(t)[X] = (Π(t)[X](1),Π(t)[X](2), . . . ,Π(t)[X](N))

as

Π(t)[X](i) =

(
Π1(t)[X](i) Π2(t)[X](i)
ΠT

2 (t)[X](i) Π3(t)[X](i)

)
∈ SNn+m. (2.5)

Hence, for each t ∈ R, X→ Π(t)[X] : SNn → SNn+m is a linear operator.



Stabilizing solution of a class of Riccati type differential equations 163

Remark 2.1. From (2.3) one sees that the operator R(·, ·) is defined by the quadruple
(A(·),B(·),Π(·),Q(·)) where A(·), B(·) are described in (2.4a), the operator valued
function X→ Π(·)[X] is described in (2.5) and

Q(t) =

(
M(t) L(t)
LT (t) R(t)

)
∈ SNn+m. (2.6)

Obvious the components Q(t, i) of Q(t) are

Q(t, i) =

(
M(t, i) L(t, i)
LT (t, i) R(t, i)

)
∈ Sn+m, 1 ≤ i ≤ N.

The developments from this work are done under the following assumption:

(H).

(a). A(·) : R → MN
n , B(·) : R → MN

nm, M(·) : R → SNn , L(·) : R → MN
nm,

R(·) : R→ SNn are continuous functions which are periodic of period θ.
(b). t→ Π(t)[·] : R→ B(SNn ,SNn+m) is a continuous operator valued function which

is periodic with period θ.
(c). for each t ∈ R, X→ Π(t)[X] : SNn → SNn+m is a positive operator, i.e. Π(t)[X] �

0 whenever X � 0.
(d).

R(t, i) > 0 (2.7a)

M(t, i)− L(t, i)R−1(t, i)LT (t, i) ≥ 0 (2.7b)

for all t ∈ R, 1 ≤ i ≤ N.

2.2. Several relevant special cases of the differential equation (2.1)

In this subsection we display several special cases of the backward differential
equation (2.1) arising in a natural way, in some optimal control problems in both
deterministic and stochastic framework.

A. The LQ optimal regulator.
We consider the optimal control problem described by the controlled system

ẋ(t) = A(t)x(t) +B(t)u(t)

x(t0) = x0 (2.8)

the performance criterion

J(x0, u) =

∞∫
t0

(xT (t)M(t)x(t) + 2xT (t)L(t)u(t) + uT (t)R(t)u(t))dt (2.9)

and the class of admissible controls u(·) ∈ L2([t0,∞);Rm). The problem of the optimal
regulator requires the finding of the conditions which guarantee the existence of a
control ũ(·) which minimizes the cost function (2.9) along of the trajectories of the
controlled system (2.8) determined by the all admissible controls u(·). One shows
that if R(t) > 0, M(t)−L(t)R−1(t)LT (t) ≥ 0, for all t ≥ t0, then the optimal control
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may be computed using a special solution named ”stabilizing solution” of the matrix
differential equation

−Ẋ(t) =AT (t)X(t) +X(t)A(t)− (X(t)B(t) + L(t))R−1(t)

· (X(t)B(t) + L(t))T +M(t). (2.10)

The problem of the existence of the optimal control which solves the optimization
problem described by (2.8)-(2.9) reduces to the problem of the existence of the sta-
bilizing solution of the matrix differential equation (2.10). The differential equation
(2.10) may be regarded as a special case of (2.1) when N = 1, Πk(t)[X] = 0, 1 ≤ k ≤ 3,
X ∈ S1

n. Since, for n = 1 the differential equation (2.10) reduces to the well known
scalar differential equation studied by the mathematician Jacopo Francesco Riccati
in the first part of the 18th century, the equation (2.10) was called ”matrix Riccati
differential equation”.

B. The stochastic linear quadratic optimal regulator.

The case when the controlled system is affected by multiplicative white noise
perturbations.
In this case, the optimal control problem consists of the finding of a control ũ(·) which
minimizes the cost function

J(x0, u) = E

 ∞∫
0

(xT (t)M(t)x(t) + 2xT (t)L(t)u(t) + uT (t)R(t)u(t))dt

 (2.11)

along of the trajectories of the controlled system

dx(t) = (A(t)x(t) +B(t)u(t))dt+ (C(t)x(t) +D(t)u(t))dw(t)

x(0) = x0 ∈ Rn (2.12)

determined by the admissible controls u(t) from a class of admissible stochastic pro-
cesses U(x0). Here and in the sequel E[·] stands for the mathematical expectation. In
(2.12) {w(t)}t≥0 is an 1-dimensional standard Wiener process defined on a given prob-
ability space (Ω,F ,P) (see [11], [16]). In 1968, to solve this problem W. M. Wonham
(see [20]) introduced the following matrix differential equation

−Ẋ(t) =AT (t)X(t) +X(t)A(t) + CT (t)X(t)C(t)

− (X(t)B(t) + CT (t)X(t)D(t) + L(t))

· (DT (t)X(t)D(t) +R(t))−1(BT (t)X(t) +DT (t)X(t)C(t)

+ LT (t)) +M(t). (2.13)

Since in the special case C(t) = 0, D(t) = 0, the differential equation (2.13) re-
duces to the matrix Riccati differential equation (2.10), it was called ”matrix Riccati
differential equation of stochastic control”.

The problem of the stochastic linear quadratic optimal regulator in the case of
the simultaneous presence of multiplicative white noise perturbations and of the per-
turbation modeled by a Markov process.
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In this case, the controlled system is of the form:

dx(t) = (A(t, ηt)x(t) +B(t, ηt)u(t))dt+ (C(t, ηt)x(t) +D(t, ηt)u(t))dw(t)

(2.14)

and the performance criterion:

J(x0, u) = E[

∞∫
0

(xT (t)M(t, ηt)x(t)+2xT (t)L(t, ηt)u(t)+uT (t)R(t, ηt)u(t))dt]. (2.15)

Here, {w(t)}t≥0 is 1-dimensional standard Wiener process as before, and {ηt}t≥0 is
a standard Markov process defined by the same probability space (Ω,F ,P), taking
values in the finite set N = {1, 2, . . . , N} and having the transition semigroup P (t) =
eQt. The elements qij of the generator matrix Q have the properties:

qij ≥ 0, if i 6= j,

N∑
l=1

qil = 0, for all i, j ∈ N .

For more details we refer to [2], [3], [7], [11]. It is assumed that the processes {w(t)}t≥0

and {ηt}t≥0 are independent stochastic processes.
In the computation of the control which minimizes the cost functional (2.15)

along of the trajectories of the controlled system (2.14) one uses the stabilizing solution
of the following system of matrix Riccati type differential equations:

−Ẋ(t, i) =AT (t, i)X(t, i) +X(t, i)A(t, i) + CT (t, i)X(t, i)C(t, i)

− (X(t, i)B(t, i) + CT (t, i)X(t, i)D(t, i) + L(t, i))

· (DT (t, i)X(t, i)D(t, i) +R(t, i))−1(BT (t, i)X(t, i) (2.16)

+DT (t, i)X(t, i)C(t, i) + LT (t, i)) +

N∑
j=1

qijX(t, j) +M(t, i).

1 ≤ i ≤ N. One sees that (2.16) is a special case of (2.1) with A(t, i) replaced by

A(t, i) +
1

2
qiiIn,

Π1(t)[X](i) = CT (t, i)X(i)C(t, i) +

N∑
j=1
j 6=i

qijX(j),

Π2(t)[X](i) = CT (t, i)X(i)D(t, i)

Π3(t)[X](i) = DT (t, i)X(i)D(t, i), 1 ≤ i ≤ N,
X = (X(1), X(2), . . . , X(N)) ∈ SNn .

Remark 2.2. From the previous examples, one sees that the differential equation (2.1)
contains as special cases different types of Riccati differential equations arising in both
deterministic and stochastic framework. That is why, in the sequel we shall call the
differential equation (2.1) ”generalized Riccati differential equation” (GRDE).
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2.3. The stabilizing solution of a GRDE

Let Fad be the set of all continuous and θ periodic functions F : R→MN
mn. In

the developments from this work these functions will be named ”admissible feedback
gains”.

If Π(·) is the operator valued function described in (2.5) and F(·) is an arbitrary
admissible feedback gain, we associate a new operator valued function ΠF(·) defined
as follows:

ΠF(t)[X] = (ΠF(t)[X](1),ΠF(t)[X](2), . . . ,ΠF(t)[X](N)) (2.17a)

ΠF(t)[X](i) = (In FT (t, i))Π(t)[X](i)(In FT (t, i))T , 1 ≤ i ≤ N. (2.17b)

Remark 2.3. (a). From (2.5) and (2.17) we infer that X → ΠF(t)[X] ∈ B(SNn ).
Moreover, if the assumption (H) (c) is fulfilled, then ΠF(t)[X] � 0 whenever
X � 0.

(b). In the sequel, Π∗F(t)[·] denotes the adjoint operator of ΠF(t)[·] with respect to
the inner product (1.1). Thus, in the special case when Π(t)[·] is associated to
the Riccati differential equation (2.13) we infer that

Π∗F(t)[X] = (C(t) +D(t)F (t))X(C(t) +D(t)F (t))T , for all X ∈ S1
n, (2.18)

and in the case when the operator Π(t)[·] is associated to the Riccati differential
equation (2.16), one obtains that

Π∗F(t)[X](i) =(C(t, i) +D(t, i)F (t, i))X(i)(C(t, i) +D(t, i)F (t, i))T

+

N∑
j=1
j 6=i

qjiX(j), for all X ∈ SNn . (2.19)

Employing the triple (A(·),B(·),Π(·)) described in (2.4a) and (2.5), for each
F ∈ Fad we may define the operator valued function LF : R→ B(SNn ) by

LF(t)[X] = (A(t) + B(t)F(t))X + X(A(t) + B(t)F(t))T + Π∗F(t)[X], (2.20)

for all X ∈ SNn .

Remark 2.4. From (2.18)-(2.20) one sees that in the case when the GRDE (2.1) takes
one of the special forms (2.13) or (2.16), the linear operator LF(t)[·] defined in (2.20)
recover the well known Lyapunov type operators involved in the definition of the
property of the stochastic stabilizability of the systems (2.12) and (2.14), respectively.

Now we are in position to define the notion of ”stabilizing solution” of the GRDE (2.1).

Definition 2.5. A solution X̃(·) : R→ SNn of the GRDE (2.1),

X̃(·) = (X̃(·, 1), . . . , X̃(·, N))

is named stabilizing solution if the linear differential equation on the linear space SNn
Ẏ(t) = LF̃(t)[Y(t)] (2.21)

is exponentially stable, where LF̃[·] is defined as in (2.20) for F(·) replaced by

F̃(·) = (F̃ (·, 1), . . . , F̃ (·, N))
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described by

F̃ (t, i) =− (Π3(t)[X̃(t)](i) +R(t, i))−1(X̃(t, i)B(t, i) + Π2(t)[X̃(t)](i)

+ L(t, i))T . (2.22)

Invoking Remark 2.4, we may infer that in the case when the GRDE (2.1) takes
one of the special forms (2.10), (2.13) or (2.16), the concept of stabilizing solution
introduced in the Definition 2.5, recover the traditional definition of the stabilizing
solution of a Riccati differential equation from deterministic / stochastic control.
Applying Corollary 5.4.2 and Theorem 5.4.3 from [9] we obtain:

Corollary 2.6. Under the assumption (H) the GRDE (2.1) has at most one bounded
and stabilizing solution. Moreover, this solution, if it exists is a periodic function with
period θ.

Our aim is to provide a set of necessary and sufficient conditions for the existence
of the stabilizing solution of a GRDE of type (2.1).

3. Some auxiliary issues

3.1. Monodromy operators. Characteristic multipliers

In this subsection we recall several definitions and results regarding the linear
differential equations with periodic coefficients specialized to the case of linear differ-
ential equations on SNn of the form

Ẏ(t) = LF(t)[Y(t)] (3.1)

when LF(t)[·] is associated via (2.20) to the triple (A(·),B(·),Π(·)) and to an arbitrary
F(·) ∈ Fad.

For t, t0 ∈ R we denote TF(t, t0) the linear evolution operator on SNn defined by
the linear differential equation (3.1) by

TF(t, t0)X0 = Y(t; t0,X0)

where Y(·; t0,X0) is the solution of the linear differential equation (3.1) with the
initial condition Y(t0; t0,X0) = X0. The main properties of the operator TF(t, t0)
involved in the developments of this paper, are summarized in the following lemma.

Lemma 3.1. (a). TF(t, t0) = ISN
n
, for all t0 ∈ R, ISN

n
is the identity operator on SNn ;

(b). TF(t, t1)TF(t1, t0) = TF(t, t0), for all t, t1, t0 ∈ R;
(c). T−1

F (t, t0) = TF(t0, t), for all t, t0 ∈ R;
(d). if the assumption (H) is fulfilled, then TF(t + jθ, t0 + jθ) = TF(t, t0), for all

t, t0 ∈ R, j ∈ Z;
(e). for each t ≥ t0 ∈ R, TF(t, t0) : SNn → SNn is a positive operator, i.e. TF(t, t0)X �

0, for all t ≥ t0 if X � 0.

Proof. The proof of these properties is omitted because they are known in a more gen-
eral framework for linear differential equations in both finite and infinite dimensional
case, see e.g. Chapter 3 from [4] for infinite dimensional case and Chapter 1.3. from
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[12] for finite dimensional case. Assertion (e) may be obtained applying Corollary
2.2.6 from [9]. �

In the rest of the paper we assume that (H) is fulfilled. For each t0 ∈ R, we set

TF(t0)
∆
= TF(t0 + θ, t0). (3.2)

According to the terminology used in connection with the linear differential equations
with periodic coefficients, TF(t0) will be named the monodromy operator associated
to the linear operator LF(·) or, equivalently the monodromy operator associated to
the linear differential equation (3.1). From Lemma 3.1 (d), (e) and (3.2) one gets that
TF(·) is an operator valued function periodic of period θ and for each t0 ∈ R, TF(t0)
is a positive operator on the ordered space (SNn ,SN+

n ). The elements of the spectrum
σ(TF(t0)) are named characteristic multipliers of the linear differential equation (3.1).
If λ ∈ σ(TF(t0)) then there exists 0 6= X ∈ SNn such that

TF(t0)X = λX. (3.3)

By direct calculations based on Lemma 3.1 we obtain that (3.3) is equivalent to

TF(t1)TF(t1, t0)X = λTF(t1, t0)X, for all t1 ∈ R. (3.4)

From the equivalence of (3.3) and (3.4) we may conclude that the spectrum of the
monodromy operator does not depend upon t0. In our development an important role
will be played by the characteristic multipliers from the subset

σ+(TF(t0)) = {µ ∈ σ(TF(t0))|∃0 6= Y ∈ SN+
n such that TF(t0)Y = µY}.

If µ ∈ σ+(TF(t0)) we denote

VF(µ, t0) = {Y ∈ SN+
n | Y 6= 0, TF(t0)Y = µY}.

One sees that σ+(TF(t0)) ⊂ [0,∞). In this work, the elements of σ+(TF(t0)) will be
named distinctive characteristic multipliers. These represent the time-varying counter
part of the concept of distinctive eigenvalues introduced in [23] to characterize a subset
of the spectrum of a Lyapunov type operators arising in stochastic control.

Let ρF be the spectral radius of the monodromy operator. Applying, for example,
Theorem 2.6 from [5] in the case of linear operator T∗F(t0) defined on the ordered space
(SNn ,SN+

n ) we obtain that there exists 0 6= Y ∈ SN+
n such that TF(t0)Y = ρFY, so

ρF ∈ σ+(TF(t0)), for all t0 ∈ R.

3.2. Unobservable characteristic multipliers

Let C(·) : R→MN
pn be a continuous function which is periodic of period θ.

Definition 3.2. (a). We say that the distinctive characteristic multiplier µ is an un-
observable characteristic multiplier at t0 with respect to the pair (C(·),LF(·)) if
there exists Y ∈ VF(µ, t0) such that

C(t)TF(t, t0)Y = 0, ∀ t ∈ [t0, t0 + θ]. (3.5)

(b). A distinctive characteristic multiplier µ is named unobservable characteristic
multiplier for the pair (C(·),LF(·)) if it is an unobservable characteristic multi-
plier at any t0 ∈ R.
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Remark 3.3. (a). Even if the property of unobservability could be defined for any
characteristic multiplier we preferred to restrict the definition to the distinc-
tive characteristic multipliers, because, in this framework this property will be
involved in the next sections.

(b). From the periodicity property of the functions involved in Definition 3.2, one
obtaines that (3.5) holds for any t ≥ t0 if it is true for t ∈ [t0, t0 + θ].

3.3. An useful representation formula of the operator R
Using Lemma 5.1.1 from [9] applied to the operator (2.2), we obtain:

Corollary 3.4. Let F(·) = (F (·, 1), F (·, 2), . . . , F (·, N)) be an admissible feedback
gain. Under the assumption (H) we have the following representation of the oper-
ator Ri(·, ·):

Ri(t,X) =L∗F(t)[X](i)− (F (t, i)− FX(t, i))T (Π3(t)[X](i) +R(t, i)

× (F (t, i)− FX(t, i)) +M(t, i)− L(t, i)R−1(t, i)LT (t, i) (3.6)

+ (F (t, i) +R−1(t, i)LT (t, i))TR(t, i)(F (t, i) +R−1(t, i)LT (t, i))

for all 1 ≤ i ≤ N, (t,X) ∈ Dom R, where L∗F[X] = (L∗F(t)[X](1), . . . ,L∗F(t)[X](N)) is
the adjoint of the operator LF(t)[·] associated via (2.20) to the triple (A(·),B(·),Π(·))
and to the admissible feedback gain F(·), while,

FX(t, i)
∆
=− (Π3(t)[X](i) +R(t, i))−1(X(i)B(t, i) + Π2(t)[X](i)

+ L(t, i))T . (3.7)

Employing the convention of notation established in Subsection 1.1, we may
rewrite (3.6) and (3.7) in a compact form:

R(t,X) =L∗F(t)[X]− (F(t)− FX(t))T (Π3(t)[X] + R(t))

· (F(t)− FX(t)) + M(t)− L(t)R−1(t)LT (t)

+ (F(t) + R−1(t)LT (t))TR(t)(F(t) + R−1(t)LT (t)) (3.8)

FX(t) = −(Π3(t)[X] + R(t))−1(XB(t) + Π2(t)[X] + L(t))T , (3.9)

for all (t,X) ∈ Dom R.

4. The main result

4.1. The statement of the main result

First we recall the definition of the concept of stabilizability of a triple
(A(·),B(·),Π(·)) where A(·), B(·) are defined in (2.4a) and Π(·) is described by
(2.5). The next definition is an adaptation of the Definition 5.3.2 from [9] to the
triples involved here.

Definition 4.1. We say that (A(·),B(·),Π(·)) is stabilizable if there exists an admis-
sible feedback gain F(·) with the property that the linear differential equation on
SNn :

Ẏ = LF(t)[Y](t) (4.1)
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is exponentially stable, LF(t)[·] being the linear operator associated via (2.20) to
(A(·),B(·),Π(·)) and to the admissible feedback gain F(·). The admissible feedback
gains for which the linear differential equation (4.1) is exponentially stable will be
named stabilizing admissible feedback gains.

Remark 4.2. When the triple (A(·),B(·),Π(·)) is associated to the Riccati equations
(2.10), (2.13) or (2.16), respectively, the concept of stabilizability introduced by Defi-
nition 4.1 recover the notions of stabilizability known in the deterministic and/or
stochastic control.

The main result of this work is stated in the following theorem:

Theorem 4.3. Under the assumption (H) the following are equivalent:

(i). the GRDE (2.1) has a bounded and stabilizing solution

X̃(·) = (X̃(·, 1), . . . , X̃(·, N))

with X̃(t, i) ≥ 0, for all t ∈ R, 1 ≤ i ≤ N ;
(ii). (a). the triple (A(·),B(·),Π(·)) is stabilizable;

(b). µ = 1 is not an unobservable distinctive characteristic multiplier for the

pair (C̃(·),L−R−1LT (·)) where C̃(·) = (C̃(·, 1), . . . , C̃(·, N)),

C̃(t, i) = (M(t, i)− L(t, i)R−1(t, i)LT (t, i))1/2 (4.2)

and L−R−1LT (·) is the linear operator of type (2.20) associated to the triple
(A(·),B(·),Π(·)) and the feedback gains F (t, i) = −R−1(t, i)LT (t, i).

4.2. Several intermediate results

For the proof of Theorem 4.3 we need several results which can be interesting
by themselves. In this subsection we present their proofs.

Lemma 4.4. Let Fk(·) = (Fk(·, 1), . . . , Fk(·, N)), k = 1, 2 be two admissible feedback
gains. Let LFk

(t) : SNn → SNn , k = 1, 2 be the linear operators associated to the triple
(A(·),B(·),Π(·)) and the feedback gain Fk(·) as in (2.20). We denote TFk

(t, t0) the
linear evolution operator on SNn defined by the linear differential equation

Ẋ(t) = LFk
(t)[X(t)], k = 1, 2. (4.3)

If there exists Y ∈ SN+
n \ {0} with the property that

F1(t)TF1
(t, t0)Y = F2(t)TF1

(t, t0)Y, t ∈ [t0, t0 + θ], t0 ∈ R (4.4)

then we have

TF1
(t, t0)Y = TF2

(t, t0)Y, for all t ∈ [t0, t0 + θ]. (4.5)

Proof. Let Xk(t) = Xk(t; t0,Y)
∆
= TFk

(t, t0)Y, k = 1, 2. The linear differential equa-
tion (4.3) satisfied by Xk(·) may be rewritten as:

Ẋk(t) =A(t)Xk(t) + Xk(t)AT (t) + B(t)Fk(t)Xk(t)

+ (B(t)Fk(t)Xk(t))T + Π∗Fk
(t)[Xk(t)], k = 1, 2. (4.6)
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Substituting (4.4) in (4.6) written for k = 1, we obtain that X1(·) satisfies the differ-
ential equation:

Ẋ1(t) =(A(t) + B(t)F2(t))X1(t) + X1(t)(A(t) + B(t)F2(t))T

+ Π∗F1
(t)[X1(t)], t ∈ [t0, t0 + θ]. (4.7)

We show now that if (4.4) holds, then

Π∗F1
(t)[X1(t)] = Π∗F2

(t)[X1(t)], t ∈ [t0, t0 + θ]. (4.8)

To this end we set X1(t) = (X1(t, 1), . . . , X1(t,N)). This allows us to write the
componentwise version of (4.4) as

F1(t, i)X1(t, i) = F2(t, i)X1(t, i), t ∈ [t0, t0 + θ], 1 ≤ i ≤ N. (4.9)

Let Z = (Z(1), . . . , Z(N)) ∈ SNn \ {0} be arbitrary. Using the definition of the adjoint
operator with respect to the inner product (1.1) we may write via (2.17) that

〈Z,Π∗F1
(t)[X1(t)]〉 = 〈Π∗F1

(t)[Z],X1(t)〉 =

N∑
i=1

Tr[Π∗F1
(t)[Z](i)X1(t, i)]

=

N∑
i=1

Tr[Π(t)[Z](i) ·Ψ(X1(t, i), F1(t, i))] (4.10)

where

Ψ(X1(t, i), F1(t, i))
∆
= (In FT1 (t, i))TX1(t, i)(In FT1 (t, i)) ∈ Sn+m. (4.11)

Substituting (4.9) in (4.11) we obtain

Ψ(X1(t, i), F1(t, i)) = Ψ(X1(t, i), F2(t, i)). (4.12)

Plugging (4.12) in (4.10), we obtain after some calculations based on the properties
of the trace operator that

〈Z,Π∗F1
(t)[X1(t)]〉 = 〈Z,Π∗F2

(t)[X1(t)]〉.

This equality confirms the validity of (4.8) because Z is arbitrary in SNn . Now, (4.8)
allows us to rewrite (4.7) as

Ẋ1(t) =(A(t) + B(t)F2(t))X1(t) + X1(t)(A(t) + B(t)F2(t))T

+ Π∗F2
(t)[X1(t)], t ∈ [t0, t0 + θ]. (4.13)

Writing (4.6) for k = 2 and comparing with (4.13) we remark that X2
∆
= TF2

(t, t0)Y
is also a solution of the linear differential equation (4.13). On the other hand X1(t0) =
X2(t0) = Y. From the uniqueness of the solution of an initial value problem we deduce
that

X2(t; t0,Y) = X1(t; t0,Y), t ∈ [t0, t0 + θ]

which shows that (4.5) is true. Thus the proof is complete. �
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Proposition 4.5. Let X̃(·) = (X̃(·, 1), . . . , X̃(·, N)) be a θ−periodic solution of the

GRDE (2.1) such that X̃(t, i) ≥ 0, for all t ∈ R, 1 ≤ i ≤ N. Let

F̃(t) = (F̃ (t, 1), . . . , F̃ (t,N))

be the corresponding feedback gain (2.22) associated to the solution X̃(·). Under the
assumption (H), if µ ∈ σ+(TF̃(t0)) is such that µ ≥ 1 then µ is an unobservable at

t0 distinctive characteristic multiplier for the pair (C̃(·),L−R−1LT (·)) where C̃(·) is
defined as in (4.2).

Proof. Comparing (2.22) and (3.7) we see that F̃(t) = FX(t), for all t ∈ R+. Using

(3.8) with F(t) = F̃(t) we obtain that the equation (2.1) satisfied by X̃(·) becomes

− d

dt
X̃(t) = L∗

F̃
(t)[X̃(t)] + W(t) (4.14)

where we denote

W(t) =M(t)− L(t)R−1(t)LT (t) + (F̃(t) + R−1(t)LT (t))T

·R(t)(F̃(t) + R−1(t)L(t)). (4.15)

From (4.14) we deduce

X̃(t0) = T∗
F̃

(t0)X̃(t0 + θ) +

t0+θ∫
t0

T∗
F̃

(t, t0)W(t)dt (4.16)

with T∗
F̃

(t0) and T∗
F̃

(t, t0) are the adjoint operators of TF̃(t0) and TF̃(t, t0), respec-

tively, with respect to the inner product (1.1). From (2.7) we infer that W(t) � 0, for
all t ∈ [t0, t0 + θ]. This leads to

Ψ
∆
=

t0+θ∫
t0

T∗
F̃

(t, t0)W(t)dt � 0 (4.17)

because T∗
F̃

(t, t0)W(t) � 0, for all t ∈ [t0, t0 + θ].

On the other hand from µ ∈ σ+(TF̃(t0)) we deduce that there exists Y ∈ SN+
n \ {0}

such that

TF̃(t0)Y = µY. (4.18)

From (1.1), (4.16), (4.17) and (4.18) together with X̃(t0) = X̃(t0 + θ), we get

0 ≤〈Ψ,Y〉 = 〈X̃(t0),Y〉 − 〈T∗
F̃

(t0)X̃(t0 + θ),Y〉

= 〈X̃(t0),Y〉 − 〈X̃(t0),TF̃(t0)Y〉 = (1− µ)〈X̃(t0),Y〉 ≤ 0.

Hence, 〈Ψ,Y〉 = 0, which yields to

t0+θ∫
t0

〈W(t),TF̃(t, t0)Y〉dt = 0. (4.19)
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From (4.15) and (4.19) we deduce that

t0+θ∫
t0

〈M(t)− L(t)R−1(t)LT (t),TF̃(t, t0)Y〉dt = 0, (4.20a)

t0+θ∫
t0

〈W1(t),TF̃(t, t0)Y〉dt = 0. (4.20b)

where W1(t) = (F̃(t) + R−1(t)LT (t))TR(t)(F̃(t) + R−1(t)LT (t)).
From (2.7a) and (4.20a) we get

〈M(t)− L(t)R−1(t)LT (t),TF̃(t, t0)Y〉 = 0.

Further, from (1.1), (4.2) one gets

N∑
i=1

Tr
[
C̃(t, i)(TF̃(t, t0)Y)(i)C̃T (t, i)

]
= 0, for all t ∈ [t0, t0 + θ].

Since C̃(t, i)(TF̃(t, t0)Y)(i)C̃T (t, i) ≥ 0 we may conclude that

C̃(t)TF̃(t, t0)Y = 0, for all t ∈ [t0, t0 + θ]. (4.21)

Proceeding analogously we obtain from (4.20b) that

F̃(t)TF̃(t, t0)Y = −R−1(t)LT (t)TF̃(t, t0)Y, for all t ∈ [t0, t0 + θ]. (4.22)

Applying Lemma 4.4 with F1(t) = F̃(t) and F2(t) = −R−1(t)LT (t) in the case of the
equality (4.22) we may infer that

TF̃(t, t0)Y = T−R−1LT (t, t0)Y, for all t ∈ [t0, t0 + θ]. (4.23)

From (4.18) together with (4.23) written for t = t0 + θ, we obtain

T−R−1LT (t0)Y = µY. (4.24)

Finally, from (4.21) and (4.23) we obtain that

C̃(t)T−R−1LT (t, t0)Y = 0, for all t ∈ [t0, t0 + θ]. (4.25)

From (4.24) and (4.25) we may conclude that µ is a distinctive characteristic multiplier

unobservable at instance time t0 for (C̃(·),L−R−1LT (·)) which ends the proof. �

Proposition 4.6. Under the assumption (H), if µ = 1 is a distinctive characteristic

multiplier unobservable at instance time t0 for the pair (C̃(·),L−R−1LT (·)) then for

any positive semidefinite and θ−periodic solution X̃(·) of the GRDE (2.1) we have

that 1 ∈ σ+(TF̃(t0)) where F̃(·) is the feedback gain associated via (3.9) to the solution

X̃(·) and C̃(·) is defined in (4.2).

Proof. If µ = 1 is a distinctive characteristic multiplier unobservable at t0 for
(C̃(·),L−R−1LT (·)), there exists Y ∈ SN+

n \ {0} with the properties

T−R−1LT (t0)Y = Y (4.26)
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and
C̃(t)T−R−1LT (t, t0)Y = 0, for all t ∈ [t0, t0 + θ]. (4.27)

Let X̃(·) be an arbitrary positive semidefinite and θ−periodic solution of GRDE (2.1).
Applying Corollary 3.4, taking F(t) = −R−1(t)LT (t) we may rewrite the equation

(2.1) satisfied by X̃(·) as:

− d

dt
X̃(t) = L∗−R−1LT (t0)[X̃(t)] + M(t)− L(t)R−1(t)LT (t)

− (R−1(t)LT (t) + F̃(t))T (Π3(t)[X̃] + R(t))(R−1(t)LT (t) + F̃(t)).

This allows us to write the following representation of the solution X̃(·) :

X̃(t0) = T∗−R−1LT (t0)X̃(t0 + θ) +

t0+θ∫
t0

T∗−R−1LT (t, t0)C̃2(t)dt

−
t0+θ∫
t0

T∗−R−1LT (t, t0)Υ(t)dt (4.28a)

Υ(t) = (R−1(t)LT (t) + F̃(t))T (Π3(t)[X̃(t)]

+ R(t))(R−1(t)LT (t) + F̃(t)). (4.28b)

Employing (4.26), (4.27) together with periodicity property of X̃(·), we get

〈T∗−R−1LT (t0)X̃(t0 + θ)− X̃(t0),Y〉+

〈 t0+θ∫
t0

T∗−R−1LT (t, t0)C̃2(t)dt,Y

〉
= 0. (4.29)

Further, (4.28a) and (4.29) yield

t0+θ∫
t0

〈T∗−R−1LT (t, t0)Υ(t),Y〉dt = 0. (4.30)

From (1.1), (4.28b) we infer that (4.30) is true, if and only if

〈T∗−R−1LT (t, t0)Υ(t),Y〉 = 0, for all t ∈ [t0, t0 + θ].

This is equivalent to

〈Υ(t),T−R−1LT (t, t0)Y〉 = 0, for all t ∈ [t0, t0 + θ]. (4.31)

Combining (1.1), (2.7a), (4.28b) we may conclude that (4.31) is true if and only if

−R−1(t)LT (t)T−R−1LT (t, t0)Y = F̃(t)T−R−1LT (t, t0)Y, (4.32)

for all t ∈ [t0, t0 + θ].

Applying Lemma 4.4 taking F1(t) = −R−1(t)LT (t) and F2(t) = F̃(t), we conclude
from (4.32) that

T−R−1LT (t, t0)Y = TF̃(t, t0)Y. (4.33)

Finally, (4.26) together with (4.33) written for t = t0 + θ, yield TF̃(t0)Y = Y. This
shows that µ = 1 lies in σ+(TF̃(t0)) which complete the proof. �
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4.3. The proof of the main result

First we prove the implication (i) =⇒ (ii). The stabilizability of the triple
(A(·),B(·),Π(·)) is a necessary condition for the existence of the stabilizing solution
of the GRDE (2.1) because the feedback gain associated via (2.22) to the stabiliz-
ing solution stabilizes this triple in the sense of the Definition 4.1. Let us assume
by contrary that (ii) (b) from the statement of the Theorem 4.3 is not true. This
means that there exists t0 ∈ R such that µ = 1 is a distinctive characteristic multi-
plier unobservable at t0 for (C̃(·),L−R−1LT (·)). From Proposition 4.6 we deduce that

µ = 1 ∈ σ+(TF̃(t0)) where F̃(·) is the stabilizing feedback gain associated via (2.22)

to the solution X̃(·) of the GRDE (2.1). Hence ρF̃ ≥ 1, which contradicts the fact that

X̃(·) is the stabilizing solution. So, we have shown that the implication (i) =⇒ (ii)
holds.

Now we prove (ii) =⇒ (i). Applying Theorem 5.3.5 from [9] we deduce that under
the assumption (H) if the triple (A(·),B(·),Π(·)) is stabilizable then the GRDE (2.1)

has a solution X̃(·) which is maximal in the class of positive semidefinite solutions of

(2.1). Moreover, X̃(·) is a periodic function of period θ. Let F̃(t) be the feedback gain

associated to the solution X̃(·) via (3.9) written for X replaced by X̃(t). We denote
TF̃(t0), t0 ∈ R, the monodromy operator defined by the linear differential equation

with periodic coefficients of type (3.1) when F(t) is replaced by F̃(t). In the proof of
Theorem 5.3.5 from [9] TF̃(t0) is obtained as the limit of a sequence of linear operators
having the spectral radius strictly less than 1. Hence, the spectral radius ρF̃ of the

monodromy operator TF̃(t0) satisfies ρF̃ ≤ 1. To show that the maximal solution X̃(·)
is just the stabilizing solution we have to show that ρF̃ < 1. Let us assume by contrary
that ρF̃ = 1. In this case, µ = 1 ∈ σ+(TF̃(t0)), for all t0 ∈ R. Then from Proposition
4.5 it follows that µ = 1 is a distinctive characteristic multiplier unobservable for the
pair (C̃(·),L−R−1LT (·)) which contradicts (ii) (b). Thus, ρF̃ < 1 which complete the
proof.

5. Conclusions

This paper studies the stabilizing solution for a class of continuous-time back-
ward nonlinear equations. The concept of unobservable characteristic multipliers for
a pair adequately chosen is introduced. Based on this spectrum technique, we obtain
a necessary and sufficient condition for the existance of the stabilizing solution of the
GRDE. The proposed techniques are formulated as the solvability of a linear equation.
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