
Stud. Univ. Babeş-Bolyai Math. 66(2021), No. 1, 5–15
DOI: 10.24193/subbmath.2021.1.01

Applications of implicit parametrizations

Dan Tiba
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Abstract. We review several applications of the implicit parametrization theorem
in optimization. In nonlinear programming, we discuss both new forms, with less
multipliers, of the known optimality conditions, and new algorithms of global
type. For optimal control problems, we analyze the case of mixed equality con-
straints and indicate an algorithm, while in shape optimization problems the
emphasis is on the new penalization approach.
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1. Introduction

In several papers [17, 10, 19], a constructive extension was proposed for the
classical implicit functions theorem, involving implicit parametrizations in finite di-
mensional spaces. While it is intuitive that implicit parametrizations offer, in general,
a more advantageous representation of implicitly defined manifolds, the representation
is even global in some important cases. For instance, in dimension two, in the general
setting of the Poincaré-Bendixson theorem [4, 14], the implicit parametrization that
we construct, is always global [18]. In dimension three, we quote the example of the
torus, from [10]. In fact, this is an important question for the applications: when have
the implicit parametrizations a global character, also in dimension three?

This new representation of manifolds (of arbitrary dimension and codimension)
was intended for applications in geometric optimization problems and we quote [18,
7, 21, 22] for recent results in this respect. It turns out that it is also useful in
mathematical programming and in optimal control as shown in [23, 20, 25].

In this paper, we briefly review such results and their possible extensions. The
Section 2 is devoted to the implicit parametrization question. In Section 3, applications
in nonlinear programming and optimal control are briefly discussed. The last section
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includes some relevant properties obtained in shape optimization and their possible
generalizations.

2. Implicit parametrizations

We consider a system of l < d equalities defined in some bounded open set
Ω ⊂ Rd, with l, d natural numbers:

F1(x) = F2(x) = . . . = Fl(x) = 0, x ∈ Ω. (2.1)

Above we assume that F1, F2, . . . , Fl ∈ C1(Ω) and there is x0 ∈ Ω such that
(2.1) is satisfied and

D(F1, F2, . . . , Fl)

D(x1, x2, . . . , xl)
6= 0 in x0 = (x0

1, x
0
2, . . . , x

0
d). (2.2)

Notice that (2.2) remains valid on a neighbourhood V of x0, V ⊂ Ω. In V , we
define the linear algebraic system

v(x) · ∇Fj(x) = 0, j = 1, l, (2.3)

where the unknown vector v(x) ∈ Rd.
It is known that (2.1), under condition (2.2), defines a d−l dimensional manifold

contained in Ω and ∇F1(x),∇F2(x), . . . ,∇Fl(x) are a basis in the normal space at x,
to this manifold.

Therefore, any solution to (2.3) is a vector in the tangent space to this manifold
and we fix v1, v2, . . . , vd−l as continuous (in V ) independent solutions of (2.3) that
is a basis in the tangent space to the manifold. The choice of v1, v2, . . . , vd−l is not
unique [19].

We associate to them a system of nonlinear partial derivatives of order one:

∂y1(t1)

∂t1
= v1(y1(t1)), t1 ∈ I1 ⊂ R, y1(0) = x0; (2.4)

∂y2(t1, t2)

∂t2
= v(y2(t1, t2)), t2 ∈ I2(t1) ⊂ R, y2(t1, 0) = y1(t1); (2.5)

. . .

. . .

∂yd−l(t1, t2, . . . , td−l)

∂td−l
= vd−l(yd−l(t1, t2, . . . , td−l)),

td−l ∈ Id−l(t1, t2, . . . , td−l),

yd−l(t1, t2, . . . , td−l−1, 0) = yd−l−1(t1, t2, . . . , td−l−1).

(2.6)

The system (2.4) - (2.6) has an iterated character.
Each equation has one supplementary independent variable and the initial condi-
tion corresponding to it is given by the solution of the previous equation (by x0 in
the first one). Moreover, each equation includes just one derivative, therefore (2.4) -
(2.6) is in fact a system of d− l ordinary differential subsystems, each of dimension d.
By I1, I2(t1), . . . , Id−l(t1, t2, . . . , td−l) we denote the corresponding existence intervals,
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around the origin. The existence is ensured by the Peano theorem, due to the con-
tinuity of v1, v2, . . . , vd−l. The independent variables not involved in derivation, play
the role of parameters and they enter just via the initial condition. The numerical
solution via Matlab is standard and easy.

Furthermore, each of the system (2.4), (2.5), . . . , (2.6) solves an inverse problem:
given F1, F2, . . . , Fl ∈ C1(Ω) with conditions (2.1), (2.2), the mentioned systems are
constructed in such a way that F1, F2, . . . , Fl are prime integrals for any of them (see
[19]).

Theorem 2.1. For every k = 1, l, j = 1, d− l, we have

Fk(yj(t1, t2, . . . , tj)) = 0, (2.7)

for any (t1, t2, . . . , tj) ∈ I1 × I2(t1)× . . .× Ij(t1, t2, . . . , tj−1).

Due to the conservation property in (2.7) and to the examples in [17], [10], we
call such systems to be of Hamiltonian type. They have unexpected properties.

Theorem 2.2. Under condition (2.2), each system has the uniqueness property in V ,
the intervals I2(t1), . . . , Id−l(t1, t2, . . . , td−l−1) may be chosen independently of the
parameters and the unique solutions of (2.4), (2.5), . . . , (2.6) are of class C1 in each
of their arguments and

∂yd−l
∂tk

(t1, t2, . . . , td−l) = vk(yd−l(t1, . . . , td−l)), k = 1, d− l. (2.8)

Relation (2.8) is immediately extended to y1, . . . , yd−l−1 due to the initial con-
ditions in (2.4), (2.5), . . . , (2.6).

The most important property obtained via (2.4), (2.5), . . . , (2.6) is the following.

Theorem 2.3. Under the above assumptions, the mapping

yd−l : I1 × I2 × . . .× Id−l → Rd

is regular and one-to-one on its image.

That is, yd−l gives a parametrization of the manifold (2.1) around x. In [19], it is
also shown that the classical implicit functions theorem may be obtained as well as a
special case of the above constructive approach. However, as we have already argued,
parametrizations offer a more complete description of the manifold.

We also recall that the classical hypothesis (2.2) may be dropped and a gener-
alized solution of the system (2.1) may be introduced and studied according to [17],
[19].

In dimension two, the iterated system (2.4), (2.5), . . . , (2.6) becomes the simplest
Hamiltonian system associated to some g ∈ C1(Ω), a new notation of F1, such that
g(x0) = 0, ∇g(x0) 6= 0, x0 ∈ Ω ⊂ R2, which correspond to the conditions (2.1), (2.2):

x′1(t) = − ∂g

∂x2
(x1(t), x2(t1)), t ∈ I,

x′2(t) =
∂g

∂x1
(x1(t), x2(t1)), t ∈ I,

(2.9)

(x1(0), x2(0)) = x0. (2.10)
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Obviously, the Theorem 2.1, Theorem 2.2, Theorem 2.3 remain valid for the
system (2.9), (2.10), including relations (2.7), (2.8). We introduce now the hypothesis

|∇g(x1, x2)| > 0 on G = {(x1, x2) ∈ Ω; g(x1, x2) = 0}, (2.11)

which is a reformulation of the hypothesis in the Poincaré - Bendixson theorem [4],
[14], for (2.9), (2.10).

For convenience, we also assume that

g(x1, x2) > 0 on ∂Ω. (2.12)

Theorem 2.4. Under conditions (2.11), (2.12), G is a finite union of disjoint closed
curves, without self intersections and not intersecting ∂Ω, parametrized by the solution
of (2.9), (2.10), when some initial condition x0 is chosen on each of its components.

This result was proved in [18] and gives the global existence and the periodicity
of the solution for the Hamiltonian system (2.9), (2.10). It has an important role
in the analysis of shape optimization problems in dimension two, which is a case of
interest [18], [7].

Remark 2.5. The question of the extension of Thm. 2.4 to dimension three or higher,
is open, [10]. This is mainly due to the fact that the Poincare-Bendixson theorem
is valid just in dimension two. The extension (of interest in the setting of shape
optimization problems) refers to the iterated Hamiltonian systems (2.4), (2.5), . . . ,
(2.6) and consists of finding reasonable sufficient conditions ensuring that the obtained
manifold is closed and the representation via (2.4), (2.5), . . . , (2.6) is global.

3. Optimization and optimal control

We discuss here the general constrained nonlinear programming problem in Rd:

Min{h(x1, . . . , xd)} (3.1)

subject to (2.1) and to inequality constraints

Gj(x1, . . . , xd) ≤ 0, j = 1,m, (3.2)

where h, Fi, i = 1, l, Gj , j = 1,m are in C1(Rd) and the classical Mangasarian -
Fromowitz assumption, see [1], is valid.

That is (2.2) is assumed and there is e ∈ Rd such that

∇Fi(x0)e = 0, i = 1, l,∇Gj(x0)e < 0, j ∈ I(x0). (3.3)

Here, I(x0) is the set of indices j = 1,m of the active inequality constraints at x0.
By using Thm. 2.3 (the special case of implicit functions, when the parametrization
yd−l has the last d− l components given by the coordinates in Rd, see [19]) we obtain
the reduced optimization problem that involves just inequality constraints:

Min{h(y1
d−l, y

2
d−l, . . . , y

l
d−l, t1 + x0

l+1, . . . , td−l + x0
d)} (3.4)

subject to

Gj(y
1
d−l, y

2
d−l, . . . , y

l
d−l, t1 + x0

l+1, . . . , td−l + x0
d) ≤ 0, j = 1,m, (3.5)
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where (t1, . . . , td−l) is in a neighbourhood of the origin in Rd−l.
It turns out (see [23]) that the reduced problem (3.4), (3.5) also satisfies the

Mangasarian - Fromowitz condition (3.3) (adapted to this setting) in the origin of
Rd−l. Using derivation formulas as in (2.8), we get

Theorem 3.1. Let x0 be a local solution of the problem (3.1), (2.1), (3.2). Then, there
are βj ≥ 0, j = 1,m such that

0 = ∇h(x0) · vs(x0) +

m∑
j=1

βj∇Gj(x0) · vs(x0), s = 1, d− l, (3.6)

0 = βjGj(x0), j = 1,m. (3.7)

This is a simplified version of the KKT optimality conditions since the multipliers
associated to (2.1) are eliminated. If we consider just the optimization problem with
equality constraints (3.1), (2.1), then (finally) we obtain the optimality conditions in
Fermat form by taking βj = 0, j = 1,m, in Thm. 3.1.

Notice that the first term in (3.6) is the tangential derivative of the cost in
x0 (the components of ∇h(x0) from the tangent plane to the manifold of equality
constraints). This allows to formulate an algorithm of gradient type with projection
for the problem (3.1), (2.1). The novelty here is that the projection can be effectively
computed as yd−l in each step of this algorithm.

Details in [23], and we underline that the question of the computation of the
projection is this main drawback for this type of numerical methods, Ciarlet [2].
Moreover, in the general case of the problem (3.1), (2.1), (3.2) we notice that the
inequality constraints that are not active at x0 define a neighbourhood of x0. One
can reformulate equivalently the problem on this neighbourhood and involving just
the equality constraints (2.1) and the equality constraints obtained from the active
inequality constraints. Therefore, the conditions (3.6), (3.7) reduce to (3.6) with βj =
1, j ∈ I(x0) and βj = 0 otherwise and {vs} restricted to include just the basis of
the tangent space to the manifold defined by all these equality constraints (assumed
independent in x0).

Using the maximal (in space) description offered by Thm. 2.3, of the manifold
defined by (2.1), we introduce a class of algorithms of ”global type”. Namely, they
search for solution in a maximal admissible neighbourhood of x0 (which is just an
admissible point here) and may find all the solutions from this admissible set.

The basic observation is that the solution of (2.4) , (2.5), . . . , (2.6) exists (roughly
speaking), up to the ”moment” of meeting a critical point. And the computation of
yd−l on this maximal existence interval, for a finer and finer discretization, provides a
dense set of points in the manifold defined by (2.1). We denote it by An, in the n-th
discretization step. The constraints (3.2) are to be just checked on this points in An.
We may impose even supplementary abstract constraints in the problem (3.1), (2.1),
(3.2), of the form:

x ∈ D, D ⊂ Rd closed subset. (3.8)

We denote by Cn the discrete admissible set of points, in step n, obtained after
checking the points in An for (3.2) and (3.8). The algorithm is as follows:
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Algorithm 3.2

1) choose n = 1, the discretization step 1
n in (3.4) - (3.6) and the solution

intervals In1 , . . . , I
n
d−l, the small parameter δ.

2) compute An and Cn.

3) find in Cn, the minimum of h(·), by direct computation, denoted by xn.

4) test |h(xn)− h(xn−1)| < δ.

5) If YES, then STOP; if NO, then GO TO step 1).

In this setting, it is enough to assume h and Gj , j = 1,m to be in C(Rd),

Fi, i = 1, l satisfy (2.2) and D has nonvoid interior. By density, we get

Theorem 3.2. The algorithm is convergent for n→∞.

The admissible set for the problem (3.1), (2.1) may have several connected com-
ponents, see [23].

Then, it is necessary to know an initial point x0 on each component, for the
algorithm to work. If hypothesis (2.2) is not fulfilled, we suggest to work with gene-
ralized solutions of (2.4), (2.5), . . . , (2.6). This subject is not yet investigated in the
literature.

Finally, we mention the recent paper [16], that proposes an alternative approach
in similar situation. We have reworked in [23] their main numerical example (in R6)
by employing implicit parametrizations and starting from the solutions they found.
Our investigation allows a very consistent decrease of the optimal value for the per-
formance index. The Algorithm 3.2 easily allows to extend the search region, simply
by increasing the computations intervals for (2.4), (2.5), . . . , (2.6). Some high dimen-
sional applications are also reported in [9].

Similar ideas work for constrained optimal control problems.

Here, we briefly discuss the difficult case of mixed equality constraints, following
[23]. The problem, of Mayer type, is the following:

Min{l(x(0), x(1))}, (3.9)

x′(t) = f(t, x(t), u(t)), t ∈ [0, 1], (3.10)

h(x(t), u(t)) = 0, t ∈ [0.1], (3.11)

and it is inspired from the recent works [3], [12], where the maximum principle is
discussed.

Here l(·, ·), f(t, ·, ·), h(·, ·) are defined in finite dimensional spaces X ×X,X ×U
of appropriate dimension and (3.10) is assumed to be uniquely and globally solvable,
as it is standard in optimal control theory. Later, we shall add to it initial conditions.
We require l continuous, f continuous and locally Lipschitzian in (x, u), h of class C1,
with locally Lipschitzian gradient for each component, such that there is the vector
(x0, u0) in X × U satisfying

h(x0, u0) = 0, ∇h(x0, u0) of maximal rank. (3.12)

The finite dimensional nonlinear algebraic system h(x, u) = 0, under condition
(3.12), defines a manifold M ⊂ X × U that can be parametrized and discretized
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via the system (2.4), (2.5), . . . , (2.6). Moreover, the relations (3.10), (3.11) can be
interpreted as a DAE system and we differentiate (3.11) and replace it by:

∇xh(x(t), u(t)f(t, x(t)), u(t)) +∇uh(x(t), u(t))u′(t) = 0. (3.13)

The important remark is that the manifold M provides consistent initial condi-
tions for (3.10), (3.13).

Theorem 3.3. Any trajectory of (3.10), (3.13) starting from a point in M , remains in
M .

This gives a characterization of the admissible global trajectories for the con-
strained control problem (3.9) - (3.11). Consequently, it can be shown that the dis-
cretization of M provided by (2.4), (2.5), . . . , (2.6), generates a dense family of ad-
missible trajectories and an algorithm of global type, similar to Algorithm 3.2, can
be formulated and its convergence remains valid [23].

Some academic examples can be found in [23] as well.

4. Shape optimization

Shape optimization problems have a similar structure with optimal control prob-
lems, for instance:

Min
Ω

∫
Ω

j(x, y(x))dx, (4.1)

−∆y = f in Ω, (4.2)

y = 0 on ∂Ω. (4.3)

Here f ∈ L2(D) and j(·, ·) is a Caratheodory mapping, the admissible domains
satisfy Ω ⊂ D, D a given domain bounded in Rd.

Other elliptic operators (or even evolution operators, [24]), other boundary con-
ditions or cost functionals (defined on ∂Ω, or on some given subset E ⊂ Ω, for any Ω
admissible, or depending as well on ∇y(x), etc.), more constraints (for instance, on
the state y) may be considered in (4.1) - (4.3).

An important choice is the admissible family of geometries in Rd, denoted by
O. In one of the first approaches in shape optimization, due to Murat and Simon [6],
the family O is given as the image of some fixed domain B ⊂ Rd (for instance, a ball)
via a family F of mapping T : B → Rd, of class C2, one-to-one on their image T (B)
and T−1 of class C2 as well.

Then, (4.1) - (4.3) may be transported on B and the transformation T ∈ F
will enter, together with its derivatives, in the coefficients of the transformed elliptic
operator in B. The geometric optimization problem (4.1) - (4.3) is then equivalent
with a control by the coefficients problem, if O is defined as above. The drawback of
this approach is that all the admissible domains Ω ∈ O have to be simply connected
(when B is a ball), that is this family O is not general enough.

A similar discussion may be pursued in the case of the speed method of Zolesio,
[26]. See [13], [15], [8] for information in this respect.
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A more far reaching point of view is to assume that the admissible domains
Ω ∈ O are given via an implicit representation, using a family of functions Φ ∈ F :

Ω = ΩΦ = {x ∈ Rd; Φ(x) < 0, Φ ∈ F}, (4.4)

where F is now a subset in C(D) with D ⊂ Rd some given bounded domain. Ob-
viously, relation (4.4) defines an open set and supplementary information should be
given in order to select some connected component of interest, not necessarily simply
connected. In this way, both topological and boundary variations may be considered
in the problem (4.1) - (4.3).

This point of view was introduced by Osher and Sethian [11] in the setting of free
boundary problems and the treatment is based on the Hamilton - Jacobi equation.

In shape optimization, implicit representation of domains were considered in-
dependently, already in [5]. Recently, it was shown that iterated Hamiltonian type
systems, as discussed in §2, play a fundamental role in this setting [18]. Such ordi-
nary differential systems are much easier to handle as Hamilton - Jacobi equations
and Thm. 2.4 is the key result in dimension two, which is a case of interest in shape
optimization.

A frequently met supplementary constraint on the admissible Ω ∈ O is E ⊂ Ω,
where E ⊂ D is another given open subset.

This geometric condition, under definition (4.4), is expressed as Φ(x) < 0 in E,
a very simple algebraic condition. Notice that it also selects the connected component
of ΩΦ, that is the domain of interest in the optimization problem. Similarly, one may
ask that, for a given point x0 ∈ D, we have x0 ∈ ∂ΩΦ (or for some given submanifold
Γ ⊂ D, we have Γ ⊂ ∂ΩΦ). This is expressed algebraically as Φ(x0) = 0 (or Φ(x) = 0
on Γ) and again selects in (4.4) the connected component of interest of ΩΦ.

We underline that, if we assume just F ⊂ C(D), then ∂ΩΦ may have positive
measure. Under condition (2.11), this cannot happen and the above examples are
clearly defined, while the facility to translate geometric constraints in simple algebraic
conditions is remarkable.

It turns out that the geometric optimization problem (4.1) - (4.3) is equivalent
with a state constraint optimal control problem in D, for O given by (4.4).

Theorem 4.1. Assume (2.11), (2.12) and let ΩΦ be defined by (4.4). For any Φ ∈ F ,
there is uΦ ∈ L2(D) (not unique) such that the solution of

−∆y = f +H(Φ)uΦ in D, (4.5)

y = 0 on ∂D, (4.6)

coincides in ΩΦ with the solution of (4.2), (4.3) and satisfies the constraint∫
∂ΩΦ

|y(σ)|2dσ = 0. (4.7)

The cost (4.1) corresponding to ΩΦ is identical with the cost associated to
[yφ,Φ, uΦ] given in (4.5), (4.6).
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Here, H(·) : R→ R is the Heaviside function.
The condition (4.7) may be expressed in the form (independently of the geome-

try):
TΦ∫
0

|y(x1(t), x2(t))|2
√
x′1(t)2 + x′2(t)2dt = 0, (4.8)

where (x1(t), x2(t)) solves (2.9), (2.10) on the period [0, TΦ] and x0 is some fixed
given point on ∂ΩΦ. Moreover, the cost functional (4.1) may be also rewritten in an
”independent of the geometry” form:∫

D

(1−H(Φ))j(x, y(x))dx (4.9)

and, in fact, H(Φ) is the characteristic function of D \ ΩΦ, under hypotheses (2.11),
(2.12).

Consequently, the optimal control problem (4.5), (4.6), (4.8), (4.9) (with controls
Φ ∈ F , u ∈ L2(D)) is independent of the geometry and is equivalent with the shape
optimization problem (4.1) - (4.3), on O defined by F via (4.4).

A standard procedure in state constrained control problem is the penalization
of the constraint in the cost (ε > 0):∫

D

(1−H(Φ))j(x, y(x))dx+
1

ε

TΦ∫
0

|y(x1(t), x2(t))|2
√
x′1(t)2 + x′2(t)2dt. (4.10)

General approximation properties of the problem (4.5), (4.6), (4.10) with re-
spect to the constrained problem (4.5), (4.6), (4.8), (4.9) or to the original shape op-
timization problem (4.1), (4.2), (4.3), are discussed in [18]. We indicate here just one
property, when the cost integrand in (4.1) depends as well on ∇y, j(x, y(x),∇y(x)).

Theorem 4.2. Assume that j(·, ·, ·) is Caratheodory on D × R × R2 and satisfies the
coercivity assumption

j(x, y, v) ≥ α1|v|2 + β1|y|2 + γ, α1 > 0, β1 > 0, γ ∈ R
and j(x, y, ·) is convex. Then, if [yεn,Φ

ε
n, u

ε
n] denote a minimizing sequence in the

penalized problem (4.5), (4.6), (4.10) and y∗,Ω∗ are cluster points of the sequence
[yεn,ΩΦε

n
] in the weak topology of L2(D), respectively in the Hausdorff - Pompeiu

complementary topology, then [y∗,Ω∗] is an optimal pair for the problem (4.1) - (4.3).

The technique employed in [18] includes as well a modification of {yεn} outside
ΩΦε

n
. In the paper [7], a differentiable variant of this approach is studied. The implicit

parametrization theorem gives a global representation of the boundary and allows
to compute integrals as in (4.7), (4.8), (4.10). It also allows to discuss boundary
observation problems [22].

Remark 4.3. One question of interest, in this context, is to obtain efficient gradient
algorithms, in general shape optimization problems. Certain results of this type are
reported in [7], for Dirichlet boundary conditions. Another question is related to the
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possibility to use just one control in the ”extension” (4.5), (4.6) of the state system,
while preserving all the other properties.
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