On systems of semilinear hyperbolic functional equations

László Simon

Abstract. We consider a system of second order semilinear hyperbolic functional differential equations where the lower order terms contain functional dependence on the unknown function. Existence of solutions for \(t \in (0, T) \) and \(t \in (0, \infty) \), further, examples and some qualitative properties of the solutions in \((0, \infty)\) are shown.

Mathematics Subject Classification (2010): 35L71, 35L53, 35B40.

Keywords: Semilinear hyperbolic equations, functional partial differential equations, second order hyperbolic systems, qualitative properties of solutions.

1. Introduction

In the present work we shall consider weak solutions of initial-boundary value problems of the form

\[
\begin{aligned}
&u''(t) + Q_j(u(t)) + \varphi(x) D_j h(u(t)) + H_j(t, x; u) + G_j(t, x; u, u') = F_j, \\
&t > 0, \ x \in \Omega, \quad j = 1, \ldots, N \\
&u(0) = u^{(0)}, \quad u'(0) = u^{(1)}
\end{aligned}
\]

where \(\Omega \subset \mathbb{R}^n \) is a bounded domain and we use the notations \(u(t) = (u_1(t), \ldots, u_N(t)) \), \(u(t) = (u_1(t, x), \ldots, u_N(t, x)) \), \(u' = (u'_1, \ldots, u'_N) = D_t u = (D_t u_1, \ldots, D_t u_N) \), \(u'' = D_t^2 u \), \(Q_j \) is a linear second order symmetric elliptic differential operator in the variable \(x \); \(h \) is a \(C^1 \) function having certain polynomial growth, \(H_j \) and \(G_j \) contain nonlinear functional (non-local) dependence on \(u \) and \(u' \), with some polynomial growth.

There are several papers on semilinear hyperbolic differential equations, see, e.g., [3], [4], [10], [14] and the references there. Semilinear hyperbolic functional equations were studied, e.g. in [5], [6], [7], with certain non-local terms, generally in the form of particular integral operators containing the unknown function. First order quasilinear evolution equations with non-local terms were considered, e.g., in [13] and [15], second
order quasilinear evolution equations with non-local terms were considered in [11], by using the theory of monotone type operators (see [2], [9], [16]).

This work was motivated by the classical book [9] of J.L. Lions on nonlinear PDEs where a single equation was considered in a particular case (semilinear hyperbolic differential equation). We shall use ideas of the above work.

Semilinear hyperbolic functional equations were considered in a previous work of the author (see [12]).

2. Existence in \((0, T)\)

Denote by \(\Omega \subset \mathbb{R}^n\) a bounded domain with sufficiently smooth boundary, and let \(Q_T = (0, T) \times \Omega\). Denote by \(W^{1,2}(\Omega)\) the Sobolev space with the norm

\[
\|u\| = \left[\int_\Omega \left(\sum_{j=1}^n |D_j u|^2 + |u|^2 \right) \, dx \right]^{1/2}.
\]

Further, let \(V_j \subset W^{1,2}(\Omega)\) be closed linear subspaces of \(W^{1,2}(\Omega)\), \(V_j^*\) the dual space of \(V_j\), \(V = (V_1, ..., V_N)\), \(V^* = (V_1^*, ..., V_N^*)\), \(H = L^2(\Omega) \times \cdots \times L^2(\Omega)\), the duality between \(V_j^*\) and \(V_j\) (and between \(V^*\) and \(V\)) will be denoted by \(\langle \cdot, \cdot \rangle\), the scalar product in \(L^2(\Omega)\) and \(H\) will be denoted by \((\cdot, \cdot)\). Denote by \(L^2(0, T; V_j)\) and \(L^2(0, T; V)\) the Banach space of measurable functions \(u : (0, T) \to V_j\), \(u : (0, T) \to V\), respectively, with the norm

\[
\|u_j\|_{L^2(0, T; V_j)} = \left[\int_0^T \|u_j(t)\|_{V_j}^2 \, dt \right]^{1/2}, \quad \|u\|_{L^2(0, T; V)} = \left[\int_0^T \|u(t)\|_V^2 \, dt \right]^{1/2},
\]

respectively.

Similarly, \(L^\infty(0, T; V_j)\), \(L^\infty(0, T; V)\), \(L^\infty(0, T; L^2(\Omega))\), \(L^\infty(0, T; H)\) is the set of measurable functions \(u_j : (0, T) \to V_j\), \(u : (0, T) \to V\), \(u_j : (0, T) \to L^2(\Omega)\), \(u : (0, T) \to H\), respectively, with the \(L^\infty(0, T)\) norm of the functions \(t \mapsto \|u_j(t)\|_{V_j}\), \(t \mapsto \|u(t)\|_V\), \(t \mapsto \|u_j(t)\|_{L^2(\Omega)}\), \(t \mapsto \|u(t)\|_H\), respectively.

Now we formulate the assumptions on the functions in (1.1).

\((A_1)\). \(Q : V \to V^*\) is a linear continuous operator defined by

\[
\langle Q(u), v \rangle = \sum_{j=1}^N \langle Q_j(u), v_j \rangle = \sum_{j=1}^N \left[\sum_{k=1}^N \langle Q_{jk}(u_k), v_j \rangle \right],
\]

\(u = (u_1, ..., u_N), \quad v = (v_1, ..., v_N),\)

where \(Q_{jk} : W^{1,2}(\Omega) \to [W^{1,2}(\Omega)]^*\) are continuous linear operators satisfying

\[
\langle Q_{jk}(u_k), v_j \rangle = \langle Q_{jk}(v_j), u_k \rangle, \quad Q_{jk} = Q_{kj}, \text{ thus } \langle Q(u), v \rangle = \langle Q(v), u \rangle
\]

for all \(u, v \in V\) and

\[
\langle Q(u), u \rangle \geq c_0 \|u\|_V^2 \text{ with some constant } c_0 > 0.
\]

\((A_2)\). \(\varphi : \Omega \to \mathbb{R}\) is a measurable function satisfying

\[c_1 \leq \varphi(x) \leq c_2 \text{ for a.a. } x \in \Omega\]
with some positive constants c_1, c_2.

(A₃). $h : \mathbb{R}^n \to \mathbb{R}$ is a continuously differentiable function satisfying

$$h(\eta) \geq 0, \quad |D_j h(\eta)| \leq \text{const} |\eta|^\lambda \text{ for } |\eta| > 1$$

where

$$1 < \lambda \leq \lambda_0 = \frac{n}{n-2} \text{ if } n \geq 3, \quad 1 < \lambda < \infty \text{ if } n = 2.$$

(A₄). $h : \mathbb{R}^n \to \mathbb{R}$ is a continuously differentiable function satisfying with some positive constants c_3, c_4

$$h(\eta) \geq c_3 |\eta|^{\lambda+1}, \quad |D_j h(\eta)| \leq c_4 |\eta|^\lambda \text{ for } |\eta| > 1, \quad n \geq 3 \text{ where } \lambda > \lambda_0 = \frac{n}{n-2},$$

$$|D_j h(\eta)| \leq c_4 |\eta|^\lambda \quad \text{for } |\eta| > 1, \quad n = 2 \text{ where } 1 < \lambda < \infty.$$

(A₅). $H_j : Q_T \times [L^2(Q_T)]^N \to \mathbb{R}$ are functions for which $(t, x) \mapsto H_j(t, x; u)$ is measurable for all fixed $u \in H$, H_j has the Volterra property, i.e. for all $t \in [0, T]$, $H_j(t, x; u)$ depends only on the restriction of u to $(0, t)$; the following inequality holds for all $t \in [0, T]$ and $u \in H$:

$$\int_{\Omega} |H_j(t, x; u)|^2 dx \leq c^* \left[\int_{\Omega} \int_0^t h(u(\tau)) d\tau dx + \int_{\Omega} h(u) dx \right].$$

Finally, $(u^{(k)}) \to u$ in $[L^2(Q_T)]^N$ and $(u^{(k)}) \to u$ a.e. in Q_T imply

$$H_j(t, x; u^{(k)}) \to H_j(t, x; u) \text{ for a.a. } (t, x) \in Q_T.$$

(A₅'). $G_j : Q_T \times [L^2(Q_T)]^N \times L^\infty(0, T; H) \to \mathbb{R}$ is a function satisfying: $(t, x) \mapsto G_j(t, x; u, w)$ is measurable for all fixed $u \in [L^2(Q_T)]^N$, $w \in L^\infty(0, T; H)$, G_j has the Volterra property: for all $t \in [0, T]$, $G_j(t, x; u, w)$ depends only on the restriction of u, w to $(0, t)$ and

$$G_j(t, x; u, w') = \varphi_j(t, x; u)u'_j(t) + \psi_j(t, x; u, u')$$

where

$$\varphi_j \geq 0, \quad |\varphi_j(t, x; u)| \leq \text{const} \quad (2.1)$$

if (A₃) is satisfied.

(A₅''). If (A₅') is satisfied, we assume instead of the second inequality in (2.1)

$$\int_{\Omega} |\varphi_j(t, x; u)|^2 dx \leq \text{const} \left[\int_{Q_T} |u|^{2\mu} d\tau dx + \int_{\Omega} |u|^{2\mu} dx \right] \quad (2.2)$$

where $\mu \leq \frac{n+1}{n-1} \frac{\lambda-1}{\lambda+1}$.

Further, on ψ_j we assume

$$\int_{\Omega} |\psi_j(t, x; u, w')|^2 dx \leq c_1 + c_2 \int_{Q_T} |u'|^2 d\tau$$

with some constants c_1, c_2.

Further, if $(u^{(\nu)}) \to u$ in $[L^2(Q_T)]^N$ then

$$\varphi_j(t, x; u^{(\nu)}) \to \varphi_j(t, x; u) \text{ for a.a. } (t, x) \in Q_T$$

and if

$$(u^{(\nu)}) \to u \text{ in } [L^2(Q_T)]^N \text{ and a.e. in } Q_T, \quad (w^{(\nu)}) \to w$$
weakening in $L^\infty(0,T;H)$ in the sense that for all fixed $g_1 \in L^1(0,T;H)$
\[
\int_0^T \langle g_1(t), w^{(\nu)}(t) \rangle dt \to \int_0^T \langle g_1(t), w(t) \rangle dt,
\]
then for a.a. $(t,x) \in Q_T$
\[
\psi_j(t,x;u^{(\nu)},w^{(\nu)}) \to \psi_j(t,x;u,w).
\]

Theorem 2.1. Assume $(A_1), (A_2), (A_3), (A_4), (A_5)$. Then for all $F \in L^2(0,T;H)$, $u^{(0)} \in V$, $u^{(1)} \in H$ there exists $u \in L^\infty(0,T;V)$ such that
\[
u' \in L^\infty(0,T;H), \quad u'' \in L^2(0,T;V^*)
\]
satisfies the system (1.1) in the sense: for a.a.t $\in [0,T]$, all $v \in V$
\[
\langle u''(t), v_j \rangle + \langle Q_j(u(t)), v_j \rangle + \int \phi(x)D_jh(u(t))v_jdx + \int H_j(t,x;u)v_jdx + \int G_j(t,x,u,u')v_jdx = (F_j(t), v_j) \quad j = 1, ..., N
\]
and the initial condition (1.2) is fulfilled.

If $(A_1), (A_2), (A_3), (A_4), (A_5)$ are satisfied then for all $F \in L^2(0,T;H)$, $u^{(0)} \in V \cap [L^{\lambda+1}(\Omega)]^N$, $u^{(1)} \in H$ there exists $u \in L^\infty(0,T;V \cap [L^{\lambda+1}(\Omega)]^N)$ such that
\[
u' \in L^\infty(0,T;H), \quad u'' \in L^2(0,T;[V \cap (L^{\lambda+1}(\Omega))^N]^*)
\]
and u satisfies (1.1) in the sense: for a.a. $t \in [0,T]$, all $v_j \in V_j \cap L^{\lambda+1}(\Omega)$ (2.3) holds, further, the initial condition (1.2) is fulfilled.

Proof. We apply Galerkin’s method. Let $w_1^{(j)}, w_2^{(j)}, \ldots$ be a linearly independent system in V_j if (A_3) is satisfied and in $V_j \cap L^{\lambda+1}(\Omega)$ if (A'_3) is satisfied such that the linear combinations are dense in V_j and $V_j \cap L^{\lambda+1}(\Omega)$, respectively. We want to find the m-th approximation of u in the form
\[
u_j^{(m)}(t) = \sum_{i=1}^m g_{lm}^{(j)}(t)w_i^{(j)} \quad (j = 1, 2, \ldots, N)
\]
where $g_{lm}^{(j)} \in W^{2,2}(0,T)$ if (A_3) holds and $g_{lm}^{(j)} \in W^{2,2}(0,T) \cap L^\infty(0,T)$ if (A'_3) holds such that
\[
\langle (u_j^{(m)})''(t), w_k^{(j)} \rangle + \langle Q(u^{(m)}(t)), w_j^{(j)} \rangle + \int \phi(x)D_jh(u^{(m)}(t))w_k^{(j)}dx
\]
\[
+ \int H_j(t,x;u^{(m)})w_k^{(j)}dx + \int G_j(t,x;u^{(m)},(u^{(m)})'w_k^{(j)}dx = (F_j(t), w_k^{(j)}),
\]
\[
k = 1, \ldots, m, \quad j = 1, \ldots, N
\]
\[
u_j^{(m)}(0) = u_j^{(m)}(0), \quad (u_j^{(m)})'(0) = u_j^{(m)}(0)
\]
where $u_j^{(m)}$, $u_j^{(m)}$ $(j = 1, 2, \ldots, N)$ are linear combinations of $w_1^{(j)}, w_2^{(j)}, \ldots, w_m^{(j)}$ satisfying
\[
(u_j^{(m)}) \to u_j^{(0)} \text{ in } V_j \text{ and } V_j \cap L^{\lambda+1}(\Omega), \text{ respectively, as } m \to \infty \quad (2.7)
\]
(u_{j1}^{(m)}) \to u_j^{(1)} in H as m \to \infty. \tag{2.8}

It is not difficult to show that all the conditions of the existence theorem for a system of functional differential equations with Carathéodory conditions are satisfied.

Thus, by using the Volterra property of \(G \) and \(H \), we obtain that there exists a solution of (2.5), (2.6) in a neighbourhood of 0 (see [8]). Further, the maximal solution of (2.5), (2.6) is defined in \([0, T]\). Indeed, multiplying (2.5) by \([g_{lm}]'(t)\) and taking the sum with respect to \(j \), and \(k \) we obtain

\[
\langle (u^{(m)})''(t), (u^{(m)})'(t) \rangle + \langle Q(u^{(m)}(t)), (u^{(m)})'(t) \rangle + \int_{\Omega} \varphi(x) \frac{d}{dt} [h(u^{(m)}(t))] dx
\]

\[
+ \int_{\Omega} (H(t, x; u^{(m)}), (u^{(m)})'(t)) dx + \int_{\Omega} (G(t, x; u^{(m)}, (u^{(m)})', (u^{(m)})'(t)) dx
\]

\[= \langle F(t), (u^{(m)})'(t) \rangle. \tag{2.9}\]

Integrating the above equality over \((0, t)\) we find (see, e.g., [16], [12])

\[
\frac{1}{2} \| (u^{(m)})'(t) \|_{H}^2 + \frac{1}{2} \langle Q(u^{(m)}(t)), u^{(m)}(t) \rangle + \int_{\Omega} \varphi(x) h(u^{(m)}(t)) dx
\]

\[+ \int_{0}^{t} \left[\int_{\Omega} (H(\tau, x; u^{(m)}), (u^{(m)})') dx \right] d\tau + \int_{0}^{t} \left[\int_{\Omega} (G(\tau, x; u^{(m)}, (u^{(m)})', (u^{(m)})') dx \right] d\tau
\]

\[= \int_{0}^{t} \left[\langle F(\tau), (u^{(m)})'(\tau) \rangle \right] d\tau. \tag{2.10}\]

Hence, by using Young’s inequality, Sobolev’s imbedding theorem and the assumptions of our theorem, we obtain

\[
\| (u^{(m)})'(t) \|_{H}^2 + \int_{\Omega} h(u^{(m)}(t)) dx + \| u^{(m)}(t) \|_{V}^2
\]

\[\leq \text{const} \left\{ 1 + \int_{0}^{t} \left[\| (u^{(m)})'(\tau) \|_{H}^2 + \int_{\Omega} h(u^{(m)}(\tau)) dx \right] d\tau \right\}
\]

where the constant is not depending on \(t \) and \(m \). Thus by Gronwall’s lemma

\[
\| (u^{(m)})'(t) \|_{H}^2 + \int_{\Omega} h(u^{(m)}(t)) dx \leq \text{const} \tag{2.11}\]

and thus

\[
\| u^{(m)}(t) \|_{V}^2 \leq \text{const} \tag{2.12}\]

Further, the estimates (2.11), (2.12) hold for all \(t \in [0, T] \) and all \(m \) and in the case \(\lambda > \lambda_0, n \geq 3 \)

\[
\| u^{(m)}(t) \|_{V \cap [L^{\lambda+1}(\Omega)]^n} \leq \text{const}. \tag{2.13}\]

By (2.11), (2.12), if \((A_3)\) is satisfied, there exist a subsequence of \((u^{(m)})\), again denoted by \((u^{(m)})\) and \(u \in L^\infty(0, T; V) \) such that

\[
(u^{(m)}) \to u \text{ weakly in } L^\infty(0, T; V), \tag{2.14}\]

\[(u^{(m)})' \to u' \text{ weakly in } L^\infty(0, T; H) \tag{2.15}\]
in the following sense: for any fixed \(g \in L^1(0, T; V^*) \) and \(g_1 \in L^1(0, T; H) \)
\[
\int_0^T \langle g(t), u^{(m)}(t) \rangle dt \to \int_0^T \langle g(t), u(t) \rangle dt,
\]
\[
\int_0^T (g_1(t), (u^{(m)}))'(t) dt \to \int_0^T (g_1(t), u'(t)) dt.
\]

Similarly, in the case \(\lambda > \lambda_0, n \geq 3, \) (when \(A_3' \) holds) there exist subsequence of \((u^{(m)}) \) and \(u \in L^\infty(0, T; V \cap [L^{\lambda+1}(\Omega)]^N) \) such that
\[
(u^{(m)}) \to u \text{ weakly in } L^\infty(0, T; V \cap [L^{\lambda+1}(\Omega)]^N),
\]
which means: for any fixed \(g \in L^1(0, T; (V \cap L^{\lambda+1}(\Omega))^*) \)
\[
\int_0^T \langle g(t), u^{(m)}(t) \rangle dt \to \int_0^T \langle g(t), u(t) \rangle dt.
\]

Since the imbedding \(W^{1,2}(\Omega) \) into \(L^2(\Omega) \) is compact, by (2.14) – (2.16) we have for a subsequence
\[
(u^{(m)}) \to u \text{ in } L^2(0, T; H) = [L^2(Q_T)]^N \text{ and a.e. in } Q_T.
\]
(see, e.g., [9]). Finally, we show that the limit function \(u \) is a solution of problem (1.1), (1.2).

As \(Q : V \to V^* \) is a linear and continuous operator, by (2.14) for all \(v \in V \) and \(v \in V \cap [L^{\lambda+1}(\Omega)]^N \), respectively we have
\[
\langle (Q(u^{(m)}m)(t)), v \rangle \to \langle (Q(u(t)), v) \rangle \text{ weakly in } L^\infty(0, T)
\]
and by (2.15)
\[
\langle (u^{(m)})'(t), v \rangle = \frac{d}{dt} \langle (u^{(m)})(t), v \rangle \to \langle u'(t), v \rangle
\]
with respect to the weak convergence of the space of distributions \(D'(0, T) \).

Further, by (2.17) and the continuity of \(D_jh \)
\[
\varphi(x)D_jh(u_m(t)) \to \varphi(x)D_jh(u(t)) \text{ for a.e. } (t, x) \in Q_T.
\]

Now we show that for any fixed
\[
v \in L^2(0, T; V), \quad v \in L^2(0, T; V) \cap L^1(0, T; (L^{\lambda+1}(\Omega))^N),
\]
respectively, the sequence of functions
\[
\varphi(x)D_jh(u^{(m)}(t))v \quad j = 1, \ldots, N
\]
is equiintegrable in \(Q_T \). Indeed, if \(A_3 \) is satisfied then by Sobolev’s imbedding theorem and (2.12) for all \(t \in [0, T] \)
\[
\|\varphi(x)D_jh(u^{(m)}(t))\|_{L^2(\Omega)}^2 \leq \text{const} \|D_jh(u^{(m)}(t))\|_{L^2(\Omega)}^2
\]
\[
\leq \text{const} \left[1 + \int_{\Omega} |u^{(m)}(t)|^{2\lambda_0} dx \right] \leq \text{const} \left[1 + \|u_m(t)\|_{V^2}^{2\lambda_0} \right] \leq \text{const},
\]
because \(2\lambda_0 = \frac{2n}{n-2} \) and \(W^{1,2}(\Omega) \) is continuously imbedded into \(L^{\frac{2n}{n-2}}(\Omega) \), thus
Cauchy–Schwarz inequality implies that the sequence of functions (2.21) is equiintegrable in \(Q_T \).
If \((A'_3)\) is satisfied then for all \(t \in [0, T]\)
\[
\int_{\Omega} |\varphi(x)D_j h(u^{(m)}(t))|^{\frac{\lambda + 1}{\lambda}} \, dx \leq \text{const} \int_{\Omega} [h(u^{(m)}(t)) + 1] \, dx \leq \text{const}
\]
thus Hölder’s inequality implies that the sequence (2.21) is equiintegrable in \(Q_T\). Consequently, by (2.20) and Vitali’s theorem we obtain that for any fixed
\[
v \in L^2(0, T; V), \quad v \in L^2(0, T; V) \cap L^1(0, T; L^{\lambda + 1}(\Omega)),
\]
respectively
\[
\lim_{m \to \infty} \int_{Q_T} \varphi(x)D_j h(u^{(m)}(t))v_j \, dt \, dx = \int_{Q_T} \varphi(x)D_j h(u(t))v_j \, dt \, dx \tag{2.22}
\]
and
\[
\varphi(x)D_j h(u(t)) \in L^2(0, T; V^*), \quad \varphi(x)D_j h(u(t)) \in L^\infty(0, T; L^{\lambda + 1}(\Omega)) \tag{2.23}
\]
if \((A_3), (A'_3)\) holds, respectively.

Further, by (2.17) and \((A_4)\)
\[
H_j(t, x; u^{(m)}) \to H_j(t, x; u) \text{ a.e. in } Q_T \tag{2.24}
\]
and by (2.11)
\[
\int_{Q_T} |H_j(t, x; u^m)|^2 \, dx \, dt \leq \text{const} \int_{Q_T} h(u^m(t)) \, dx \, dt \leq \text{const},
\]
hence, by Cauchy–Schwarz inequality, for any fixed \(v \in L^2(0, T; V)\), the sequence of functions \(H_j(t, x; u^{(m)})v_j\) is equiintegrable in \(Q_T\) \((j = 1, \ldots, N)\), thus by (2.24) and Vitali’s theorem
\[
\lim_{m \to \infty} \int_{Q_T} H_j(t, x; u^{(m)})v_j \, dt \, dx = \int_{Q_T} H_j(t, x; u)v_j \, dt \, dx \tag{2.25}
\]
and
\[
H(t, x; u) \in L^2(0, T; V^*).\]

Similarly, (2.15) – (2.17) and \((A_5)\) imply
\[
\psi_j(t, x; u^{(m)}, (u^{(m)})') \to \psi_j(t, x; u, u') \text{ a.e. in } Q_T \tag{2.26}
\]
and for arbitrary \(v \in L^2(0, T; V)\) the sequence of functions \(\psi_j(t, x; u^{(m)}, (u^{(m)})')v_j\) is equiintegrable in \(Q_T\) by Cauchy–Schwarz inequality, because by (2.11)
\[
\int_{Q_T} |\psi_j(t, x; u^{(m)}, (u^{(m)})')|^2 \, dt \, dx \leq \text{const} \left[1 + \int_{Q_T} |(u^{(m)})'|^2 \, dx \right] \, dt \leq \text{const}.
\]
Consequently, Vitali’s theorem implies that for \(j = 1, \ldots, N\)
\[
\lim_{m \to \infty} \int_{Q_T} \psi_j(t, x; u^{(m)}, (u^{(m)})')v_j \, dt \, dx = \int_{Q_T} \psi_j(t, x; u, u')v \, dt \, dx \tag{2.27}
\]
and
\[
\psi_j(t, x; u, u') \in L^2(0, T; V^*).\]

Further, by using Vitali’s theorem, we show that for arbitrary fixed \(v \in L^2(0, T; V)\)
\[
\varphi_j(t, x; u^{(m)})v_j \to \varphi_j(t, x; u)v_j \text{ in } L^2(Q_T), \quad j = 1, \ldots, N. \tag{2.28}
\]
Indeed, by \((A_5)\) and (2.17)

\[\varphi_j(t, x; u^{(m)}) \rightarrow \varphi_j(t, x; u) \text{ for a.e. } (t, x) \in Q_T, \quad j = 1, \ldots, N. \tag{2.29} \]

Further, by \((A_5)\) \(|\varphi_j(t, x; u^{(m)})|^2\) is bounded and so for fixed \(v \in L^2(0, T; V)\) the sequence

\[\int_{Q_T} |\varphi_j(t, x; u^{(m)})v_j - \varphi_j(t, x; u)v_j|^2 \, dt \, dx \leq \text{const} |v_j|^2 \]

is equiintegrable which implies with (2.29) by Vitali’s theorem (2.28). Consequently, by (2.15) we obtain

\[\lim \int_{Q_T} \varphi_j(t, x; u^{(m)})'(t)v_j \, dt \, dx = \int_{Q_T} \varphi_j(t, x; u)'(t)v_j \, dt \, dx, \quad j = 1, \ldots, N \tag{2.30} \]

and \(\varphi(t, x; u')u' \in L^2(0, T; V^*)\).

If \((A'_5)\) (and \((A'_3)\)) is satisfied, then for a fixed \(v \in L^2(0, T; V) \cap [L^{\lambda+1}(Q_T)]^N\) we also have

\[\varphi_j(t, x; u^{(m)})v_j \rightarrow \varphi_j(t, x; u)v_j \text{ in } L^2(Q_T), \quad j = 1, \ldots, N. \tag{2.31} \]

Indeed, by (2.11), (2.12) \((u^{(m)})\) is bounded in \(W^{1,2}(Q_T)\), hence it is bonded in \(L^{2(\frac{n+1}{n-1})}(Q_T)\). Thus Hölder’s inequality implies for any measurable \(M \subset Q_T\)

\[\int_M |\varphi_j(t, x; u^{(m)})v_j - \varphi_j(t, x; u)v_j|^2 \, dt \, dx \leq \text{const} \left\{ \int_{Q_T} [u^{(m)}|^2 + |u^{(m)}|^2]^q \, dt \, dx \right\}^{1/q_1} \cdot \left\{ \int_M |v_j|^2 p_1 \right\}^{1/p_1} \]

where

\[2p_1 = \lambda + 1, \quad \frac{1}{p_1} + \frac{1}{q_1}, \]

thus

\[2\mu q_1 = 2\mu - \frac{p_1}{p_1 - 1} = 2\mu \frac{\lambda + 1}{\lambda - 1} \leq \frac{2(n + 1)}{n - 1} \]

since

\[\mu \leq \frac{n + 1}{n - 1} \cdot \frac{\lambda - 1}{\lambda + 1}, \]

hence (2.29), (2.32) and Vitali’s theorem imply (2.31). Consequently, by (2.15) we obtain (2.30) (when \((A'_5)\) holds).

Now let

\[v = (v_1, \ldots, v_N) \in V \text{ and } \chi_j \in C_0^\infty(0, T) \quad (j = 1, \ldots, N) \]

be arbitrary functions. Further, let \(z^M_j = \sum_{l=1}^M b_l u_l^{(j)}, \quad b_l \in \mathbb{R} \) be sequences of functions such that

\[(z^M_j) \rightarrow v_j \text{ in } V_j \text{ and } V_j \cap L^{\lambda+1}(\Omega), \quad j = 1, \ldots, N. \tag{2.33} \]
respectively, as $M \to \infty$. Further, by (2.5) we have for all $m \geq M$
\begin{equation}
\int_0^T \langle -(u_j^{(m)})'(t), z_j^M \rangle \chi_j(t)dt + \int_0^T \langle Q(u^{(m)}(t)), z_j^M \rangle \chi_j(t)dt + \int_0^T \langle u^{(m)}(t), z_j^M \rangle \chi_j(t)dt
\end{equation}
\begin{equation}
+ \int_0^T \int_\Omega \varphi(x) D_j h(u^{(m)}(t)) z_j^M \chi_j(t)dtdx + \int_0^T \int_\Omega H_j(t, x; u^{(m)}) z_j^M \chi_j(t)dtdx
\end{equation}
\begin{equation}
+ \int_0^T \int_\Omega G_j(t, x; u^{(m)'}, u') z_j^M \chi_j(t)dtdx
\end{equation}
\begin{equation}
= \int_0^T \langle F_j(t), z_j^M \rangle \chi_j(t)dt.
\end{equation}
By (2.15), (2.18), (2.22), (2.25), (2.27), (2.30) we obtain from (2.34) as $m \to \infty$
\begin{equation}
- \int_0^T \langle u_j'(t), z_j^M \rangle \chi_j(t)dt + \int_0^T \langle Q_j(u(t)), z_j^M \rangle \chi_j(t)dt + \int_0^T \langle u^{(m)}(t), z_j^M \rangle \chi_j(t)dt
\end{equation}
\begin{equation}
+ \int_0^T \int_\Omega \varphi(x) D_j h(u(t)) z_j^M \chi_j(t)dtdx
\end{equation}
\begin{equation}
+ \int_0^T \int_\Omega H_j(t, x; u) z_j^M \chi_j(t)dtdx + \int_0^T \int_\Omega G_j(t, x; u, u') z_j^M \chi_j(t)dtdx
\end{equation}
\begin{equation}
= \int_0^T \langle F_j(t), z_j^M \rangle \chi(t)dt.
\end{equation}
From equality (2.35) and (2.33) we obtain as $M \to \infty$
\begin{equation}
- \int_0^T \langle u_j'(t), v_j \rangle \chi_j(t)dt + \int_0^T \langle Q_j(u(t)), v_j \rangle \chi_j(t)dt + \int_0^T \langle u^{(m)}(t), v_j \rangle \chi_j(t)dt
\end{equation}
\begin{equation}
+ \int_0^T \int_\Omega \varphi(x) D_j h(u(t)) v_j \chi_j(t)dtdx
\end{equation}
\begin{equation}
+ \int_0^T \int_\Omega H_j(t, x; u) v_j \chi_j(t)dtdx + \int_0^T \int_\Omega G_j(t, x; u, u') v_j \chi_j(t)dtdx
\end{equation}
\begin{equation}
= \int_0^T \langle F_j(t), v_j \rangle \chi_j(t)dt.
\end{equation}
Since $v_j \in V_j$ and $\chi_j \in C_0^\infty(0, T)$ are arbitrary functions, (2.36) means that
\begin{equation}
u_j'' \in L^2(0, T; V_j^*) and \ u_j'' \in L^2(0, T; (V \cap L^{\lambda+1}(\Omega))^*)
\end{equation}
respectively (see, e.g. [16]) and for a.a. $t \in [0, T]$
\begin{equation}
u_j'' + Q_j(u(t)) + \varphi(x) D_j h(u(t)) + H_j(t, x; u) + G_j(t, x; u, u') = F_j, \ j = 1, \ldots, N,
\end{equation}
i.e. we proved (1.1).
Now we show that the initial condition (1.2) holds. Since $u \in L^\infty(0, T; V)$, $u' \in L^\infty(0, T; H)$, we have $u \in C([0, T]; H)$ and for arbitrary $\chi_j \in C^\infty[0, T]$ with the properties $\chi_j(0) = 1$, $\chi_j(T) = 0$, all j, k
\begin{equation}
\int_0^T \langle u_j'(t), w_j^{(k)} \rangle \chi_j(t)dt = -(u_j(0), w_k^{(j)})_{L^2(\Omega)} - \int_0^T \langle u_j(t), w_k^{(j)} \rangle \chi_j(t)dt,
\end{equation}
\[\int_0^T \langle (u_j^{(m)})'(t), w_k^{(j)} \rangle_{\chi_j(t)} dt = -(u_j^{(m)}(0), w_k^{(j)})_{L^2(\Omega)} - \int_0^T \langle u_j^{(m)}(t), w_k^{(j)} \rangle_{\chi_j(t)} dt. \]

Hence by (2.6), (2.7), (2.8), (2.14), (2.15), we obtain as \(m \to \infty \)

\[(u(0), w_k^{(j)})_{L^2(\Omega)} = \lim_{m \to \infty} (u_j^{(m)}(0), w_k^{(j)})_{L^2(\Omega)} \]

\[\lim_{m \to \infty} (u_j^{(m)}(0), w_k^{(j)})_{L^2(\Omega)} = (u(0), w_k^{(j)})_{L^2(\Omega)} \]

for all \(j \) and \(k \) which implies \(u(0) = u(0) \).

Similarly can be shown that \(u'(0) = u'(0) \).

3. Examples

Let the operator \(Q \) be defined by

\[\langle Q_{jk}(u_k), v_j \rangle = \int_\Omega \left[\sum_{l=1}^n a_{il}^{jk}(x)(D_l u_k)(D_i v_j) + d^{jk}(x) u_k v_j \right] dx \]

where \(a_{il}^{jk}, d^{jk} \in L^\infty(\Omega) \), \(a_{il}^{jk} = a_{il}^{jk} \sum_{i,l=1}^n a_{il}^{jj}(x) \xi_i \xi_l \geq c_1 |\xi|^2 \), \(d^{ii}(x) \geq c_0 \) with some positive constants \(c_0, c_1 \); further, \(a_{il}^{jk} = a_{il}^{kj} \) and for some \(\tilde{c}_0 < c_1 \)

\[\|a_{il}^{jk}\|_{L^\infty(\Omega)} < \frac{\tilde{c}_0}{n-1}; \quad \|d^{jk}\|_{L^\infty(\Omega)} < \frac{\tilde{c}_0}{n-1} \text{ for } j \neq k. \]

Then assumption (A1) is satisfied.

If \(h \) is a \(C^1 \) function such that \(h(\eta) = |\eta|^\lambda+1 \) if \(|\eta| > 1 \) then (A3), (A3'), respectively, are satisfied.

Further, let \(\hat{h}_j : \mathbb{R}^N \to \mathbb{R} \) be continuous functions satisfying

\[|\hat{h}_j(\eta)| \leq \text{const } |\eta|^\lambda \text{ for } |\eta| > 1, \quad j = 1, \ldots, N \]

with some positive constant. It is not difficult to show that operators \(H_j \) defined by one of the formulas

\[H_j(t, x; u) = \chi_j(t, x) \hat{h}_j \left(\int_{Q_T} u_1(\tau, \xi) d\tau d\xi, \ldots, \int_{Q_T} u_N(\tau, \xi) d\tau d\xi \right), \]

\[H_j(t, x; u) = \chi_j(t, x) \hat{h}_j \left(\int_0^t u_1(\tau, x) d\tau, \ldots, \int_0^t u_N(\tau, x) d\tau \right), \]

\[H_j(t, x; u) = \chi_j(t, x) \hat{h}_j \left(\int_{\Omega} u_1(\tau, \xi) d\xi, \ldots, \int_{\Omega} u_N(\tau, \xi) d\xi \right), \]

\[H_j(t, x; u) = \chi_j(t, x) \hat{h}_j(u_1(\tau_1(t), x), \ldots, u_N(\tau_k(t), x)) \text{ where } \]

\(\tau_k \in C^1, \quad 0 \leq \tau_k(t) \leq t, \quad \tau'_k(t) \geq c_1 > 0, \quad k = 1, \ldots, N \)

satisfy (A4) if \(\chi_j \in L^\infty(Q_T) \).

The operators \(\varphi_j, \psi_j \) may have forms, similar to the above forms of \(H_j \) with bounded continuous functions \(\hat{h}_j \). Then (A5) is fulfilled.
Remark. One can show uniqueness and continuous dependence of the solution of (1.1), (1.2) if the following additional conditions are satisfied:

\[G_j(t,x;u,u') = \tilde{\varphi}_j(x)u'_j(t) \]

where \(\tilde{\varphi}_j \) is measurable and \(0 \leq \tilde{\varphi}_j(x) \leq \text{const} \), \(h \) is twice continuously differentiable and

\[|D_iD_kh(\eta)| \leq \text{const}|\eta|^{\lambda - 1} \text{ for } |\eta| > 1. \]

Further \(H_j(t,x;u) \) satisfy some Lipschitz condition with respect to \(u \).

4. Solutions in \((0, \infty)\)

Now we formulate and prove existence of solutions for \(t \in (0, \infty) \). Denote by \(L^p_{\text{loc}}(0, \infty; V) \) the set of functions \(u : (0, \infty) \to V \) such that for each fixed finite \(T > 0 \), their restrictions to \((0,T)\) satisfy \(u|_{(0,T)} \in L^p(0,T;V) \) and let \(Q_{\infty} = (0, \infty) \times \Omega \), \(L^\alpha_{\text{loc}}(Q_{\infty}) \) the set of functions \(u : Q_{\infty} \to \mathbb{R}^N \) such that \(u_j|_{Q_T} \in L^\alpha(Q_T) \) \((j = 1, \ldots, N)\) for any finite \(T \).

Now we formulate assumptions on \(H_j \) and \(G_j \).

\((B_1)\) The functions \(H_j : Q_{\infty} \times [L^2_{\text{loc}}(Q_{\infty})]^N \to \mathbb{R} \) are such that for all fixed \(u \in [L^2_{\text{loc}}(Q_{\infty})]^N \) the functions \((t,x) \mapsto H_j(t,x;u) \) are measurable, \(H_j \) have the Volterra property (see \((A_4)\)) and for each fixed finite \(T > 0 \), the restrictions of \(H_j \) to \(Q_T \times [L^2(Q_T)]^N \) satisfy \((A_4)\).

Remark. Since \(H_j \) has the Volterra property, this restriction \(H^T_j \) is well defined by the formula

\[H^T_j(t,x;\tilde{u}) = H_j(t,x;u), \quad (t,x) \in Q_T, \quad \tilde{u} \in [L^2(Q_T)]^N \]

where \(u \in [L^2_{\text{loc}}(Q_{\infty})]^N \) may be any function satisfying \(u(t,x) = \tilde{u}(t,x) \) for \((t,x) \in Q_T \).

\((B_5)\) The operators

\[G_j : Q_{\infty} \times [L^2_{\text{loc}}(Q_{\infty})]^N \times L^\infty_{\text{loc}}(0, \infty; H) \to \mathbb{R} \]

are such that for all fixed \(u \in L^2_{\text{loc}}(0, \infty; V) \), \(w \in L^\infty_{\text{loc}}(0, \infty; H) \) the functions \((t,x) \mapsto G_j(t,x;u,w) \) are measurable, \(G_j \) have the Volterra property and for each fixed finite \(T > 0 \), the restrictions \(G^T_j \) of \(G_j \) to \(Q_T \times [L^2(Q_T)]^N \times L^\infty(0,T;H) \) satisfy \((A_5)\).

\((B'_5)\) It is the same as \((B_5)\) but \(G^T_j \) satisfy \((A'_5)\).

Theorem 4.1. Assume \((A_1) - (A_3), (B_4), (B_5)\). Then for all \(F \in L^2_{\text{loc}}(0, \infty; H) \), \(u^{(0)} \in V, u^{(1)} \in H \) there exists

\[u \in L^\infty_{\text{loc}}(0, \infty; V) \text{ such that } u' \in L^\infty_{\text{loc}}(0, \infty; H), \quad u'' \in L^2_{\text{loc}}(0, \infty; V^*), \]

\(u \) satisfies \((1.1)\) for a.a. \(t \in (0, \infty) \) (in the sense, formulated in Theorem 2.1) and the initial condition \((1.2)\).

If \((A_1), (A_2), (A'_3), (B_4), (B_5)\) are fulfilled then for all \(F \in L^2_{\text{loc}}(0, \infty; H) \), \(u^{(0)} \in V \cap [L^{\lambda+1}(\Omega)]^N, u^{(1)} \in H \) there exists

\[u \in L^\infty_{\text{loc}}(0, \infty; V \cap [L^{\lambda+1}(\Omega)]^N) \text{ such that } u' \in L^\infty_{\text{loc}}(0, \infty; H), \]

for all \(t \in (0, \infty) \).
\[u'' \in L^2_{\text{loc}}(0, \infty; V^*) + L^\infty_{\text{loc}}(0, \infty; [L^{1+1}(\Omega)]^N) \subset L^2_{\text{loc}}(0, \infty; [V \cap (L^{1+1}(\Omega))^N]^*), \]

\[u \text{ satisfies (1.1) for a.a. } t \in (0, \infty) \text{ (in the sense, formulated in Theorem 2.1) and the initial condition (1.2).} \]

Assume that the following additional conditions are satisfied: there exist \(T_0 \) and a function \(\gamma \in L^2(T_0, \infty) \) such that for \(t > T_0 \)
\[|G(t, x; u, u')| \leq \gamma(t), |H(t, x; u)| \leq \gamma(t) \text{ and } \|F(t)\|_{V^*} \leq \gamma(t). \] (4.1)

Then for the above solution \(u \) we have
\[u \in L^\infty(0, \infty; V), \quad u \in L^\infty(0, \infty; V \cap [L^{1+1}(\Omega)]^N), \text{ respectively and} \]
\[u' \in L^\infty(0, \infty; H). \] (4.2)

Further, assume that there exists a positive constant \(\hat{c} \) such that
\[\varphi_j(t, x; u) \geq \hat{c}, \quad (t, x) \in Q_\infty, \quad j = 1, \ldots, N \] (4.3)
and there exist \(F_\infty \in H, u_\infty \in V \) such that
\[Q(u_\infty) = F_\infty, \quad F - F_\infty \in L^2(0, \infty; H), \] (4.4)
\[|H_j(t, x; u)| \leq \beta(t, x), \quad |\psi_j(t, x; u, u')| \leq \beta(t, x), \quad |\varphi_j(t, x; u)| \leq \text{const} \] (4.5)
with some \(\beta \in L^2(0, \infty; L^2(\Omega)). \) Then for the above solution we have
\[u \in L^\infty(0, \infty; V), \quad u \in L^\infty(0, \infty; V \cap [L^{1+1}(\Omega)]^N), \] (4.6)
\[\|u'(t)\|_H \leq \text{const } e^{-\tilde{c}t}, \quad t \in (0, \infty) \] (4.7)
and there exists \(w^{(0)} \in H \) such that
\[u(T) \to w^{(0)} \text{ in } H \text{ as } T \to \infty, \quad \|u(T) - w^{(0)}\|_H \leq \text{const } e^{-\tilde{c}T}. \] (4.8)

Finally, \(w^{(0)} \in V \) and
\[Q(w^{(0)}) + \varphi D\gamma(w^{(0)}) = F_\infty. \] (4.9)

Proof. Similarly to the proof of Theorem 2.1, we apply Galerkin’s method and we want to find the \(m \)-th approximation of solution \(u = (u_1, \ldots, u_N) \) for \(t \in (0, \infty) \) in the form (see (2.4))
\[u_j^{(m)}(t) = \sum_{l=1}^{m} g_{lm}^{(j)}(t) w_l^{(j)}, \quad j = 1, \ldots, N \]
where \(g_{lm}^{(j)} \in W^{2,2}_{\text{loc}}(0, \infty) \) if \((A_3) \) is satisfied and \(g_{lm}^{(j)} \in W^{2,2}_{\text{loc}}(0, \infty) \cap L^\infty_{\text{loc}}(0, \infty) \) if \((A'_3) \) is satisfied. Here \(W^{2,2}_{\text{loc}}(0, \infty) \) and \(L^\infty_{\text{loc}}(0, \infty) \) denote the set of functions \(g : (0, \infty) \to \mathbb{R} \) such that for all \(T \) the restriction of \(g \) to \((0, T) \) belongs to \(W^{2,2}(0, T), L^\infty(0, T), \) respectively.

According to the arguments in the proof of Theorem 2.1, there exists a solution of (2.5), (2.6) in a neighbourhood of \(t = 0. \) Further, we obtain estimates (2.11), (2.12) and (2.13), respectively, for \(t \in [0, T] \) with sufficiently small \(T \) where on the right hand side are finite constants (depending on \(T \)). Consequently, the maximal solutions of (2.5), (2.6) are defined in \((0, \infty)\) and the estimates (2.11), (2.12), (2.13) hold for all
finite \(T > 0 \) (if \(t \in [0,T] \)), the constants on the right hand sides are depending only on \(T \).

Let \((T_k)_{k \in \mathbb{N}}\) be a monotone increasing sequence, converging to \(+\infty\). According to the arguments in the proof of Theorem 2.1, there is a subsequence \((u^{(m_1)})\) of \((u^{(m)})\) for which (2.14), (2.15) and (2.16) hold, respectively, with \(T = T_1 \). Further, there is a subsequence \((u^{(m_2)})\) of \((u^{(m_1)})\) for which (2.14), (2.15) and (2.16) hold, respectively, with \(T = T_2 \), etc. By a diagonal process we obtain a sequence \((u^{(m_m)})_{m \in \mathbb{N}}\) such that (2.14), (2.15), (2.16) hold for every fixed \(T > 0 \); further,

\[
\begin{align*}
 u &\in L^\infty_{loc}(0,\infty;V), \quad u' \in L^\infty_{loc}(0,\infty;H), \quad u'' \in L^2_{loc}(0,\infty;V^*) \text{ and} \\
 u &\in L^\infty_{loc}(0,\infty;V \cap [L^{\lambda+1}(\Omega)]^N), \quad u' \in L^\infty_{loc}(0,\infty;H), \\
 u'' &\in L^2_{loc}(0,\infty;V^*) + L^\infty_{loc}(0,\infty;[L^{\lambda+1}(\Omega)]^N),
\end{align*}
\]

respectively and (1.1) holds for \(t \in (0,\infty) \).

Now we consider the case when (4.1) holds. Then by (2.10) we obtain for all \(t \geq T_1 \geq T_0 \)

\[
\frac{1}{2} \| (u^{(m)})'(t) \|^2_H + \frac{1}{2} \| (Q(u^{(m)}),u^{(m)}(t)) + c_1 \int_\Omega h(u^{(m)}(t))dx
\]

\[
\leq \int_0^{T_1} \int_\Omega |(G(\tau,x;u^{(m)},(u^{(m)})',(u^{(m)})'((u^{(m)})'(\tau))|d\tau + \int_0^{T_1} \int_\Omega |(H(\tau,x;u^{(m)}),(u^{(m)})'(\tau))|d\tau
\]

\[
+ \int_0^{T_1} \int_\Omega |(F(\tau),(u^{(m)}),(u^{(m)}))|d\tau + 3\lambda(\Omega) \left[\int_{T_1}^{\infty} |\gamma(\tau)|d\tau \right] \sup_{\tau \in [0,t]} \| (u^{(m)})'(\tau) \|_H.
\]

Choosing sufficiently large \(T_1 > 0 \), since \(\lim_{T_1 \to \infty} \int_{T_1}^{\infty} |\gamma(\tau)|d\tau = 0 \), we find

\[
\frac{1}{4} \| (u^{(m)})'(t) \|^2_H + \frac{1}{2} \| (Q(u^{(m)}),u^{(m)}(t)) + c_1 \int_\Omega h(u^{(m)}(t))dx \leq \text{const}
\]

for all \(t > 0 \), \(m \) which implies (4.2).

Finally, consider the case when (4.3) - (4.5) are satisfied, too. Denoting \((w^{(m)})\) of \((u^{(m)})\), for simplicity, by \((w^{(m)})' = (u^{(m)})' \):

\[
\langle (w^{(m)})'(t), (w^{(m)})'(t) \rangle + \langle (Q(w^{(m)}),w^{(m)})(t),(w^{(m)}))' \rangle + \int_\Omega \varphi(x) \frac{d}{dt} [h(u^{(m)}(t))]dx + \int_\Omega (H(t,x;u^{(m)}),(u^{(m)})'(t)dx
\]

\[
+ \int_\Omega (G(t,x;u^{(m)}),(u^{(m)})'(t)dx + \int_\Omega (F(t) - F_\infty, (w^{(m)}))'(t)dx
\]

Integrating over \([0,t]\) we find (similarly to (2.10))

\[
\frac{1}{2} \| (w^{(m)})'(t) \|^2_H + \frac{1}{2} \| (Q(w^{(m)}),w^{(m)}(t)) + c_1 \int_\Omega h(u^{(m)}(t))dx
\]

\[
+ \varepsilon \int_0^t \left[\int_\Omega |(w^{(m)})'(\tau)|^2 dx \right] d\tau
\]

\[
\leq \varepsilon \int_0^t \left[\int_\Omega |(w^{(m)})'(\tau)|^2 dx \right] d\tau + C(\varepsilon) \int_0^t \| F(\tau) - F_\infty \|^2_H d\tau
\]
\[+ \frac{1}{2} \| (u^{(m)})' (0) \|_{H}^{2} + \frac{1}{2} \langle (Qu^{(m)})(0), u^{(m)}(0) \rangle + c_2 \int_{\Omega} h(u^{(m)}(0)) dx + \varepsilon \int_{0}^{t} \left(\int_{\Omega} |(w^{(m)})'(\tau)| dx \right) d\tau + C(\varepsilon) \| \beta \|_{L^{2}(0, \infty; H)}. \]

Choosing \(\varepsilon = \tilde{c}/4 \) we obtain
\[\int_{0}^{t} \left[\int_{\Omega} |(w^{(m)})'(\tau)|^{2} dx \right] d\tau \leq \text{const.} \quad (4.12) \]

Further, from (4.11), (4.12) we obtain
\[\| (u^{(m)})'(t) \|_{H}^{2} + \tilde{c} \int_{0}^{t} \| (u^{(m)})'(\tau) \|_{H}^{2} d\tau \leq c^{*} \]

with some positive constant \(c^{*} \) not depending on \(m \) and \(t \). Thus by Gronwall’s lemma we find
\[\| (u^{(m)})'(t) \|_{H}^{2} = \| (w^{(m)})'(t) \|_{H}^{2} \leq c^{*} e^{-\tilde{c}t}, \quad t > 0 \]

which implies (4.7) as \(m \to \infty \) (since \((u^{(m)})' \to u' \) weakly in \(L^{\infty}(0, T; H) \)). Further, by (A1) one obtains from (4.11) that for all \(t > 0, m \)
\[\| w^{(m)}(t) \|_{V} \leq \text{const}, \quad \| w^{(m)}(t) \|_{V \cap [L^{\lambda+1}(\Omega)]^{N}} \leq \text{const}, \]

respectively, which implies (4.6).

Further, for arbitrary \(T_1 < T_2 \)
\[\| u(T_2) - u(T_1) \|_{H}^{2} = \langle u(T_2), u(T_2) - u(T_1) \rangle_{H} - \langle u(T_1), u(T_2) - u(T_1) \rangle_{H} \]
\[= \int_{T_1}^{T_2} \langle u'(t), u(T_2) - u(T_1) \rangle dt = \int_{T_1}^{T_2} \langle u'(t), u(T_2) - u(T_1) \rangle_{H} dt \]
\[\leq \| u(T_2) - u(T_1) \|_{H} \int_{T_1}^{T_2} \| u'(t) \|_{H} dt \]

which implies
\[\| u(T_2) - u(T_1) \|_{H} \leq \int_{T_1}^{T_2} \| u'(t) \|_{H} dt. \quad (4.13) \]

Hence by (4.7)
\[\| u(T_2) - u(T_1) \|_{H} \to 0 \text{ as } T_1, T_2 \to \infty \]

which implies (4.8) and by (4.10), (4.7) we obtain
\[\| u(T) - w_0 \|_{H} \leq \int_{T}^{\infty} \| u'(t) \|_{H} dt \leq \text{const } e^{-\tilde{c}T}. \]

Now we show \(w_0 \in V \) and (4.9) holds. Since \(u \in L^{\infty}(0, \infty; V) \),
\[(u(T_k)) \to w_0^{*} \text{ weakly in } V, \quad w_0^{*} \in V \quad (4.14) \]

for some sequence \((T_k) \), \(\lim(T_k) = +\infty \). Clearly, (4.14) implies
\[(u(T_k)) \to w_0^{*} \text{ weakly in } H, \]

thus by (4.8) \(w_0 = w_0^{*} \in V \) and (4.14) holds for arbitrary sequence \((T_k) \) converging to \(+\infty \).
In order to prove (4.9), consider arbitrary fixed \(v \in V, v \in V \cap [L^{\lambda+1}(\Omega)]^N \), respectively and

\[\chi_T(t) = \chi(t - T) \text{ where } \chi \in C_0^\infty(\mathbb{R}), \supp \chi \subset [0, 1], \int_0^1 \chi(t) dt = 1. \]

Multiply (2.3) by \(\chi_T(t) \) and integrate with respect to \(t \) on \((0, \infty) \) and take the sum with respect to \(j \), then we obtain

\[
\int_0^\infty \langle u'', (t), v \rangle T(t) dt + \int_0^\infty \langle Q(u(t)), v \rangle T(t) dt + \int_0^\infty \left[\int_0^1 (H(t, x; u), v) dx \right] T(t) dt
\]

\[+ \int_0^\infty \left[\int_0^\infty (G(t, x; u, u'), v) dx \right] T(t) dt = \int_0^\infty (F(t), v) T(t) dt. \]

Let \((T_k) \) be an arbitrary sequence converging to \(+\infty\) and consider (4.15) with \(T = T_k \).

For the first term on the left hand side of this equation we have by (4.7) (if \(T_k > 1 \))

\[
\int_0^\infty \langle u''(t), v \rangle T_k(t) dt = -\int_0^\infty \langle u'(t), v \rangle (\chi_{T_k})'(t) dt \to 0 \text{ as } k \to \infty. \quad (4.16)
\]

Further, by \((A_1), (4.14)\) and Lebesgue’s dominated convergence theorem

\[
\int_0^\infty \langle Q(u(t)), v \rangle T_k(t) dt = \int_0^\infty \langle Q(v), u(t) \rangle T_k(t) dt \quad (4.17)
\]

\[
= \int_0^1 \langle Q(v), u(T_k + \tau) \rangle \chi(\tau) d\tau \to \int_0^1 \langle Q(v), w_0 \rangle \chi(\tau) d\tau = \langle Q(v), w_0 \rangle
\]

\[
= \langle Q(w_0), v \rangle \text{ as } k \to \infty.
\]

For the third term on the left hand side of (4.15) we have

\[
\int_0^\infty \left[\int_0^\infty \varphi(x)((Dh)(u(t)), v) dx \right] T_k(t) dt \quad (4.18)
\]

\[
= \int_0^1 \left[\int_0^\infty \varphi(x)((Dh)(u(T_k + \tau)), v) dx \right] \chi(\tau) d\tau
\]

\[
\to \int_0^1 \left[\int_0^\infty \varphi(x)((Dh)(w_0), v) dx \right] \chi(\tau) d\tau = \int_0^\infty \varphi(x)((Dh)(w_0), v) dx
\]

as \(k \to \infty \) since by (4.8)

\[
u(T_k + \tau) \to w_0 \text{ in } [L^2((0, 1) \times \Omega)]^N \text{ as } k \to \infty
\]

and thus for a.a. \((\tau, x) \in (0, 1) \times \Omega\) (for a subsequence), consequently

\[
(Dh)(u(T_k + \tau, x)) \to (Dh)(w_0(x)) \text{ for a.a. } (\tau, x) \in (0, 1) \times \Omega. \quad (4.19)
\]

By using Hölder’s inequality, \((A_3), (A_3)\), respectively and Vitali’s theorem, we obtain (4.18) from (4.19).
The fourth and fifth terms on the left hand side of (4.15) can be estimated by (4.5) and (4.7) as follows: for sufficiently large k

$$
\left| \int_0^\infty \left[\int_\Omega (H(t,x;u),v)dx \right] \chi_{T_k}(t)dt \right| = \left| \int_0^\infty \left[\int_\Omega (H(T_k + \tau,x;u),v)dx \right] \chi(\tau)d\tau \right|
$$

(4.20)

$$
\leq \int_0^\infty \left[\int_\Omega \beta(T_k + \tau,x)|v|dx \right] |\chi(\tau)|d\tau \to 0 \text{ as } k \to \infty,
$$

(4.21)

$$
\leq \int_0^1 \left[\int_\Omega \left| c_5 |u'(T_k + \tau)| + \beta(T_k + \tau,x) \right| |v|dx \right] |\chi(\tau)|d\tau \to 0.
$$

Finally, for the right hand side of (4.15) we obtain by using (4.4) and the Cauchy – Schwarz inequality

$$
\int_0^\infty (F(t),v)\chi_{T_k}(t)dt = \int_0^1 (F(T_k + \tau),v)\chi(\tau)d\tau \to \int_0^1 (F_\infty,v)\chi(\tau)d\tau = (F_\infty,v).
$$

(4.22)

From (4.15) – (4.18), (4.20) – (4.22) one obtains (4.9).

Acknowledgments. This work was supported by the Hungarian National Foundation for Scientific Research under grant OTKA K 81403.

References

László Simon
Institute of Mathematics
L. Eötvös University of Budapest
e-mail: simon1@cs.elte.hu