The weighted mean operator on ℓ^{2} with weight sequence $w_{n}=(n+1)^{p}$ is hyponormal for $p=2$

H.C. Rhaly Jr. and B.E. Rhoades

Abstract

Posinormality is used to demonstrate that the weighted mean matrix whose weight sequence is the sequence of squares of positive integers is a hyponormal operator on ℓ^{2}.

Mathematics Subject Classification (2010): 47B20.
Keywords: hyponormal operator, posinormal operator, factorable matrix, weighted mean matrix.

1. Introduction

In this paper, attention will be focused on an example of a weighted mean matrix that does not satisfy the sufficient conditions for hyponormality given in [4]. Nor does it satisfy the key lemma used in [5], so a somewhat different approach will be required here. The computations here are much more complex than those in [5], and, because of that, the computer software package SAGE [6] has been used as an aid.

If $B(H)$ denotes the set of all bounded linear operators on a Hilbert space H, then $A \in B(H)$ is said to be is posinormal (see [1], [2]) if $A A^{*}=A^{*} P A$ for some positive operator $P \in B(H)$, called the interrupter, and A is hyponormal if $A^{*} A-A A^{*} \geq 0$. Hyponormal operators are necessarily posinormal.

A lower triangular infinite matrix $M=\left[m_{i j}\right]$, acting through multiplication to give a bounded linear operator on ℓ^{2}, is factorable if its entries are of the form

$$
m_{i j}=\left\{\begin{array}{lll}
a_{i} c_{j} & \text { if } & j \leq i \\
0 & \text { if } & j>i
\end{array}\right.
$$

where a_{i} depends only on i and c_{j} depends only on j; the matrix M is terraced if $c_{j}=1$ for all j. A weighted mean matrix is a lower triangular matrix with entries w_{j} / W_{i}, where $\left\{w_{j}\right\}$ is a nonnegative sequence with $w_{0}>0$, and $W_{i}=\sum_{j=0}^{i} w_{j}$. A weighted mean matrix is factorable, with $a_{i}=1 / W_{i}$ and $c_{j}=w_{j}$ for all i, j.

2. Main result

Under consideration here will be the weighted mean matrix M associated with the weight sequence $w_{n}=(n+1)^{2}$. As was also the case for $w_{n}=n+1$, this example is not easily seen to be hyponormal directly from the definition and fails to satisfy the sufficent conditions for hyponormality given in [4, Corollary 1], but it survives the necessary condition given in [4, Corollary 2]. Encouraged by the latter, we set out to prove that M is hyponormal. The next theorem will provide us our main tool - an expression for the interrupter P associated with the matrix M.

Theorem 2.1. Suppose $M=\left[a_{i} c_{j}\right]$ is a lower triangular factorable matrix that acts as a bounded operator on ℓ^{2} and that the following conditions are satisfied:
(a) both $\left\{a_{n}\right\}$ and $\left\{a_{n} / c_{n}\right\}$ are positive decreasing sequences that converge to 0 , and
(b) the matrix B defined by $B=\left[b_{i j}\right]$ by

$$
b_{i j}= \begin{cases}c_{i}\left(\frac{1}{c_{j}}-\frac{1}{c_{j+1}} \frac{a_{j+1}}{a_{j}}\right) & \text { if } i \leq j ; \\ -\frac{a_{j+1}}{a_{j}} & \text { if } i=j+1 \\ 0 & \text { if } i>j+1\end{cases}
$$

is a bounded operator on ℓ^{2}.
Then M is posinormal with interrupter $P=B^{*} B$. The entries of $P=\left[p_{i j}\right]$ are given by

$$
p_{i j}=\left\{\begin{array}{lll}
\frac{c_{j}^{2} c_{j+1}^{2} a_{j+1}^{2}+\left(\sum_{k=0}^{j} c_{k}^{2}\right)\left(c_{j+1} a_{j}-c_{j} a_{j+1}\right)^{2}}{c_{j}^{2} c_{j+1}^{2} a_{j}^{2}} & \text { if } & i=j ; \\
\frac{\left(c_{i} a_{i+1}-c_{i+1} a_{i}\right)\left[c_{j}\left(\sum_{k=0}^{j+1} c_{k}^{2}\right) a_{j+1}-c_{j+1}\left(\sum_{k=0}^{j} c_{k}^{2}\right) a_{j}\right]}{c_{i} c_{i+1} c_{j} c_{j+1} a_{i} a_{j}} & \text { if } & i>j ; \\
\frac{\left(c_{j} a_{j+1}-c_{j+1} a_{j}\right)\left[c_{i}\left(\sum_{k=1}^{i+1} c_{k}^{2}\right) a_{i+1}-c_{i+1}\left(\sum_{k=0}^{i} c_{k}^{2}\right) a_{i}\right]}{c_{i} c_{i+1} c_{j} c_{j+1} a_{i} a_{j}} & \text { if } & i<j .
\end{array}\right.
$$

Proof. See [3].
We are now ready for the main result. The induction step in the proof below was aided by explicit computations using the computer software package SAGE [6].

Theorem 2.2. The weighted mean matrix M associated with the weight sequence $w_{n}=$ $(n+1)^{2}$ is hyponormal.

Proof. One easily verifies that the weighed mean matrix M associated with $w_{n}=$ $(n+1)^{2}$ satisfies the hypotheses of Theorem 2.1. For M to be hyponormal, we must have

$$
\left\langle\left(M^{*} M-M M^{*}\right) f, f\right\rangle=\left\langle\left(M^{*} M-M^{*} P M\right) f, f\right\rangle=\langle(I-P) M f, M f\rangle \geq 0
$$

for all f in ℓ^{2}. Consequently, we can conclude that M will be hyponormal when $Q: \equiv I-P \geq 0$; we note that the range of M contains all the e_{n} 's from the standard orthonormal basis for ℓ^{2}.

Using the given weight sequence, we determine that the entries of $Q=\left[q_{m n}\right]$ are given by

$$
q_{m n}=\left\{\begin{array}{llll}
\frac{60 n^{7}+600 n^{6}+2488 n^{5}+5476 n^{4}+6795 n^{3}+4650 n^{2}+1584 n+207}{30(n+1)^{3}(n+2)^{3}(n+3)(2 n+5)} & \text { if } & m=n ; \\
-\frac{1}{30} \cdot \frac{10 m^{3}+52 m^{2}+93 m+57}{(m+1)^{2}(m+2)^{2}(m+3)(2 m+5)} \cdot \frac{\left(3 n^{2}+7 n+3\right)(2 n+3)}{(n+1)(n+2)} & \text { if } & m>n ; \\
-\frac{1}{30} \cdot \frac{10 n^{3}+52 n^{2}+93 n+57}{(n+1)^{2}(n+2)^{2}(n+3)(2 n+5)} \cdot \frac{\left(3 m^{2}+7 m+3\right)(2 m+3)}{(m+1)(m+2)} & \text { if } & m<n .
\end{array}\right.
$$

In order to show that Q is positive, it suffices to show that Q_{N}, the $N^{t h}$ finite section of Q (involving rows $m=0,1,2, \ldots, N$ and columns $n=0,1,2, \ldots, N$), has positive determinant for each positive integer N. For columns $n=0,1, \ldots, N-1$, we multiply the $(n+1)^{s t}$ column of Q_{N} by

$$
z_{n}: \equiv \frac{(n+3)(2 n+3)\left(3 n^{2}+7 n+3\right)}{(n+1)(2 n+5)\left(3 n^{2}+13 n+13\right)}
$$

and subtract from the $n^{t h}$ column. Call the new matrix Q_{N}^{\prime}. Then we work with the rows of Q_{N}^{\prime}. For $m=0,1, \ldots, N-1$, we multiply the $(m+1)^{s t}$ row of Q_{N}^{\prime} by z_{m} and subtract from the $m^{\text {th }}$ row. This leads to the tridiagonal form

$$
Y_{N}: \equiv\left(\begin{array}{cccccc}
d_{0} & s_{0} & 0 & \ldots & 0 & 0 \\
s_{0} & d_{1} & s_{1} & \ldots & 0 & 0 \\
0 & s_{1} & d_{2} & \ldots & . & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & . & \ldots & d_{N-1} & s_{N-1} \\
0 & 0 & 0 & \ldots & s_{N-1} & d_{N}
\end{array}\right)
$$

where

$$
\begin{aligned}
& d_{n}=q_{n n}-z_{n} q_{n, n+1}-z_{n}\left(q_{n+1, n}-z_{n} q_{n+1, n+1}\right)= \\
& q_{n n}-2 z_{n} q_{n, n+1}+z_{n}^{2} q_{n+1, n+1}= \\
& \quad \frac{144 n^{11}+3192 n^{10}+31216 n^{9}+177540 n^{8}+651210 n^{7}+1613062 n^{6}}{(n+1)^{3}(n+3)(n+4)(2 n+5)^{2}(2 n+7)\left(3 n^{2}+13 n+13\right)^{2}} \\
& \quad \quad+\frac{2743061 n^{5}+3186210 n^{4}+2460693 n^{3}+1192988 n^{2}+323673 n+37086}{(n+1)^{3}(n+3)(n+4)(2 n+5)^{2}(2 n+7)\left(3 n^{2}+13 n+13\right)^{2}}
\end{aligned}
$$

and $s_{n}=q_{n+1, n}-z_{n} q_{n+1, n+1}=-\frac{(n+3)(2 n+3)\left(2 n^{2}+10 n+11\right)\left(3 n^{2}+7 n+3\right)}{(n+1)(n+2)(n+4)(2 n+5)(2 n+7)\left(3 n^{2}+13 n+13\right)}$ when $0 \leq$ $n \leq N-1$; and

$$
d_{N}=\frac{60 N^{7}+600 N^{6}+2488 N^{5}+5476 N^{4}+6795 N^{3}+4650 N^{2}+1584 N+207}{30(N+1)^{3}(N+2)^{3}(N+3)(2 N+5)} .
$$

Note that $\operatorname{det} Y_{N}=\operatorname{det} Q_{N}^{\prime}=\operatorname{det} Q_{N}$. Next we transform Y_{N} into a triangular matrix with the same determinant, and we find that the new matrix has diagonal entries δ_{n} which are given by the recursion formula: $\delta_{0}=d_{0}, \delta_{n}=d_{n}-s_{n-1}^{2} / \delta_{n-1}(1 \leq n \leq N)$. An induction argument shows that

$$
\delta_{n} \geq \frac{30(n+3)^{6}(2 n+3)^{2}\left(2 n^{2}+10 n+11\right)^{2}\left(3 n^{2}+7 n+3\right)^{2}}{(n+1)^{2}(n+4)(2 n+5)^{2}(2 n+7)\left(3 n^{2}+13 n+13\right)^{2} g(n)}>0, \text { where }
$$

$$
g(n)=60 n^{7}+1020 n^{6}+7348 n^{5}+29016 n^{4}+67679 n^{3}+93031 n^{2}+69633 n+21860
$$

for $0 \leq n \leq N-1$; note that $g(n)$ is the numerator obtained in d_{N} when N is replaced by $n+1$. Since d_{N} departs from the pattern set by the earlier d_{n} 's, δ_{N} must be handled separately:

$$
\delta_{N} \geq \frac{60 N^{7}+600 N^{6}+2488 N^{5}+5476 N^{4}+6795 N^{3}+4650 N^{2}+1584 N+207}{30(N+1)^{3}(N+2)^{4}(N+3)(2 N+5)}>0
$$

Therefore $\operatorname{det} Q_{N}=\prod_{j=0}^{N} \delta_{j}>0$, and the proof is complete.

For the induction step in the proof above, the initial estimate for δ_{n} came from computing $\frac{s_{N-1}^{2}}{d_{N}}$ and then replacing N by $n+1$. From there, an adjustment was needed.

The verification of the induction step reduces to showing that a $19^{\text {th }}$ degree polynomial is positive for all $n \geq 1$. Below is the command that was given to SAGE to execute.
$n=\operatorname{var}\left({ }^{\prime} n\right.$ ')
$\operatorname{expand}\left(\left(30 *(n+2)^{\wedge} 4 *\left(144 * n^{\wedge} 11+3192 * n^{\wedge} 10+31216 * n^{\wedge} 9+177540 * n^{\wedge} 8+651210 * n^{\wedge} 7+\right.\right.\right.$ $\left.1613062 * n^{\wedge} 6+2743061 * n^{\wedge} 5+3186210 * n^{\wedge} 4+2460693 * n^{\wedge} 3+1192988 * n^{\wedge} 2+323673 * n+37086\right)-$ $(n+1) *(n+4) *(2 * n+5) *(2 * n+7) *\left(3 * n^{\wedge} 2+13 * n+13\right)^{\wedge} 2 *\left(60 *(n-1)^{\wedge} 7+1020 *(n-1)^{\wedge} 6+\right.$ $\left.\left.7348 *(n-1)^{\wedge} 5+29016 *(n-1)^{\wedge} 4+67679 *(n-1)^{\wedge} 3+93031 *(n-1)^{\wedge} 2+69633 *(n-1)+21860\right)\right) *$ $\left(60 * n^{\wedge} 7+1020 * n^{\wedge} 6+7348 * n^{\wedge} 5+29016 * n^{\wedge} 4+67679 * n^{\wedge} 3+93031 * n^{\wedge} 2+69633 * n+21860\right)-$ $\left.900 *(n+1) *(n+2)^{\wedge} 4 *(n+3)^{\wedge} 7 *(2 * n+3)^{\wedge} 2 *\left(2 * n^{\wedge} 2+10 * n+11\right)^{\wedge} 2 *\left(3 * n^{\wedge} 2+7 * n+3\right)^{\wedge} 2\right)$ And this is the resulting SAGE worksheet output, which we denote by $f(n)$.
$f(n)=220320 * n^{\wedge} 19+8325216 * n^{\wedge} 18+147344112 * n^{\wedge} 17+1621610588 * n^{\wedge} 16+12423804832 *$ $n^{\wedge} 15+70274637076 * n^{\wedge} 14+303640886360 * n^{\wedge} 13+1022365685883 * n^{\wedge} 12+2710505167956 *$ $n^{\wedge} 11+5672704072899 * n^{\wedge} 10+9319440019836 * n^{\wedge} 9+11820506702133 * n^{\wedge} 8+11159132582690 *$ $n^{\wedge} 7+7175130478741 * n^{\wedge} 6+2225790478822 * n^{\wedge} 5-894429232807 * n^{\wedge} 4-1475079085458 * n^{\wedge} 3-$ $812545969449 * n^{\wedge} 2-226952537400 * n-26586925200$
$f(0)=-26586925200$
$f(1)=48058098267150$
$f(2)=29447930357308764$
$f(3)=2740303120043884194$
$f(4)=100611201083636165760$

References

[1] Kubrusly, C.S., Duggal, B.P., On posinormal operators, Adv. Math. Sci. Appl., 17(2007), no. 1, 131-147.
[2] Rhaly, H.C., Jr., Posinormal operators, J. Math. Soc. Japan, 46(1994), no. 4, 587-605.
[3] Rhaly, H.C., Jr., Posinormal factorable matrices whose interrupter is diagonal, Mathematica (Cluj), 53(76)(2011), no. 2, 181-188.
[4] Rhaly, H.C., Jr., Rhoades, B.E., Conditions for factorable matrices to be hyponormal and dominant, Sib. Elektron. Mat. Izv., 9(2012), 261-265.
[5] Rhaly, H.C., Jr., Rhoades, B.E., The weighted mean operator on ℓ^{2} with the weight sequence $w_{n}=n+1$ is hyponormal, New Zealand J. Math, in press.
[6] Stein, W.A., et al., Sage Mathematics Software (Version 6.2), The Sage Development Team, 2014, http://www.sagemath.org.
H.C. Rhaly Jr.

1081 Buckley Drive
Jackson, MS 39206, U.S.A.
e-mail: rhaly@member.ams.org
B.E. Rhoades

Indiana University, Department of Mathematics
Bloomington, IN 47405, U.S.A.
e-mail: rhoades@indiana.edu

