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The weighted mean operator on `2 with weight
sequence wn = (n + 1)p is hyponormal for p = 2

H.C. Rhaly Jr. and B.E. Rhoades

Abstract. Posinormality is used to demonstrate that the weighted mean matrix
whose weight sequence is the sequence of squares of positive integers is a hy-
ponormal operator on `2.
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1. Introduction

In this paper, attention will be focused on an example of a weighted mean matrix
that does not satisfy the sufficient conditions for hyponormality given in [4]. Nor does
it satisfy the key lemma used in [5], so a somewhat different approach will be required
here. The computations here are much more complex than those in [5], and, because
of that, the computer software package SAGE [6] has been used as an aid.

IfB(H) denotes the set of all bounded linear operators on a Hilbert spaceH, then
A ∈ B(H) is said to be is posinormal (see [1], [2]) if AA∗ = A∗PA for some positive
operator P ∈ B(H), called the interrupter, and A is hyponormal if A∗A− AA∗ ≥ 0.
Hyponormal operators are necessarily posinormal.

A lower triangular infinite matrix M = [mij ], acting through multiplication to
give a bounded linear operator on `2, is factorable if its entries are of the form

mij =

{
aicj if j ≤ i
0 if j > i

where ai depends only on i and cj depends only on j; the matrix M is terraced if
cj = 1 for all j. A weighted mean matrix is a lower triangular matrix with entries

wj/Wi, where {wj} is a nonnegative sequence with w0 > 0, and Wi =
∑i

j=0 wj . A

weighted mean matrix is factorable, with ai = 1/Wi and cj = wj for all i,j.
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2. Main result

Under consideration here will be the weighted mean matrix M associated with
the weight sequence wn = (n+ 1)2. As was also the case for wn = n+ 1, this example
is not easily seen to be hyponormal directly from the definition and fails to satisfy
the sufficent conditions for hyponormality given in [4, Corollary 1], but it survives the
necessary condition given in [4, Corollary 2]. Encouraged by the latter, we set out to
prove that M is hyponormal. The next theorem will provide us our main tool – an
expression for the interrupter P associated with the matrix M .

Theorem 2.1. Suppose M = [aicj ] is a lower triangular factorable matrix that acts as
a bounded operator on `2 and that the following conditions are satisfied:

(a) both {an} and {an/cn} are positive decreasing sequences that converge to 0, and
(b) the matrix B defined by B = [bij ] by

bij =


ci(

1
cj
− 1

cj+1

aj+1

aj
) if i ≤ j;

−aj+1

aj
if i = j + 1;

0 if i > j + 1.

is a bounded operator on `2.

Then M is posinormal with interrupter P = B∗B. The entries of P = [pij ] are given
by

pij =


c2jc

2
j+1a

2
j+1+(

∑j
k=0 c2k)(cj+1aj−cjaj+1)

2

c2jc
2
j+1a

2
j

if i = j;

(ciai+1−ci+1ai)[cj(
∑j+1

k=0 c2k)aj+1−cj+1(
∑j

k=0 c2k)aj ]

cici+1cjcj+1aiaj
if i > j;

(cjaj+1−cj+1aj)[ci(
∑i+1

k=0 c2k)ai+1−ci+1(
∑i

k=0 c2k)ai]

cici+1cjcj+1aiaj
if i < j.

Proof. See [3]. �

We are now ready for the main result. The induction step in the proof below
was aided by explicit computations using the computer software package SAGE [6].

Theorem 2.2. The weighted mean matrix M associated with the weight sequence wn =
(n+ 1)2 is hyponormal.

Proof. One easily verifies that the weighed mean matrix M associated with wn =
(n+ 1)2 satisfies the hypotheses of Theorem 2.1. For M to be hyponormal, we must
have

〈(M∗M −MM∗)f, f〉 = 〈(M∗M −M∗PM)f, f〉 = 〈(I − P )Mf,Mf〉 ≥ 0

for all f in `2. Consequently, we can conclude that M will be hyponormal when
Q :≡ I − P ≥ 0; we note that the range of M contains all the en’s from the standard
orthonormal basis for `2.
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Using the given weight sequence, we determine that the entries of Q = [qmn] are
given by

qmn =


60n7+600n6+2488n5+5476n4+6795n3+4650n2+1584n+207

30(n+1)3(n+2)3(n+3)(2n+5) if m = n;

− 1
30 ·

10m3+52m2+93m+57
(m+1)2(m+2)2(m+3)(2m+5) ·

(3n2+7n+3)(2n+3)
(n+1)(n+2) if m > n;

− 1
30 ·

10n3+52n2+93n+57
(n+1)2(n+2)2(n+3)(2n+5) ·

(3m2+7m+3)(2m+3)
(m+1)(m+2) if m < n.

In order to show that Q is positive, it suffices to show that QN , the N th finite section
of Q (involving rows m = 0, 1, 2, ..., N and columns n = 0, 1, 2, ..., N), has positive
determinant for each positive integer N . For columns n = 0, 1, ..., N − 1, we multiply
the (n+ 1)st column of QN by

zn :≡ (n + 3)(2n + 3)(3n2 + 7n + 3)

(n + 1)(2n + 5)(3n2 + 13n + 13)

and subtract from the nth column. Call the new matrix Q′N . Then we work with the
rows of Q′N . For m = 0, 1, ..., N − 1, we multiply the (m+ 1)st row of Q′N by zm and
subtract from the mth row. This leads to the tridiagonal form

YN :≡



d0 s0 0 . . . 0 0
s0 d1 s1 . . . 0 0
0 s1 d2 . . . . 0
...

...
...

. . .
...

...
0 0 . . . . dN−1 sN−1
0 0 0 . . . sN−1 dN


,

where
dn = qnn − znqn,n+1 − zn(qn+1,n − znqn+1,n+1) =

qnn − 2znqn,n+1 + z2nqn+1,n+1 =
144n11+3192n10+31216n9+177540n8+651210n7+1613062n6

(n+1)3(n+3)(n+4)(2n+5)2(2n+7)(3n2+13n+13)2

+ 2743061n5+3186210n4+2460693n3+1192988n2+323673n+37086
(n+1)3(n+3)(n+4)(2n+5)2(2n+7)(3n2+13n+13)2

and sn = qn+1,n − znqn+1,n+1 = − (n+3)(2n+3)(2n2+10n+11)(3n2+7n+3)
(n+1)(n+2)(n+4)(2n+5)(2n+7)(3n2+13n+13) when 0 ≤

n ≤ N − 1; and

dN = 60N7+600N6+2488N5+5476N4+6795N3+4650N2+1584N+207
30(N+1)3(N+2)3(N+3)(2N+5) .

Note that det YN = det Q′N = det QN . Next we transform YN into a triangular matrix
with the same determinant, and we find that the new matrix has diagonal entries δn
which are given by the recursion formula: δ0 = d0, δn = dn− s2n−1/δn−1 (1 ≤ n ≤ N).
An induction argument shows that

δn ≥ 30(n+3)6(2n+3)2(2n2+10n+11)2(3n2+7n+3)2

(n+1)2(n+4)(2n+5)2(2n+7)(3n2+13n+13)2g(n) > 0, where

g(n) = 60n7 + 1020n6 + 7348n5 + 29016n4 + 67679n3 + 93031n2 + 69633n + 21860

for 0 ≤ n ≤ N−1; note that g(n) is the numerator obtained in dN when N is replaced
by n+1. Since dN departs from the pattern set by the earlier dn’s, δN must be handled
separately:

δN ≥ 60N7+600N6+2488N5+5476N4+6795N3+4650N2+1584N+207
30(N+1)3(N+2)4(N+3)(2N+5) > 0.

Therefore detQN =
∏N

j=0 δj > 0, and the proof is complete. �
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For the induction step in the proof above, the initial estimate for δn came from

computing
s2N−1

dN
and then replacing N by n + 1. From there, an adjustment was

needed.
The verification of the induction step reduces to showing that a 19th degree

polynomial is positive for all n ≥ 1. Below is the command that was given to SAGE
to execute.
n = var ('n')
expand((30 ∗ (n + 2)ˆ4 ∗ (144 ∗ nˆ11 + 3192 ∗ nˆ10 + 31216 ∗ nˆ9 + 177540 ∗ nˆ8 + 651210 ∗ nˆ7 +

1613062∗nˆ6+2743061∗nˆ5+3186210∗nˆ4+2460693∗nˆ3+1192988∗nˆ2+323673∗n+37086)−
(n+1)∗ (n+4)∗ (2∗n+5)∗ (2∗n+7)∗ (3∗nˆ2+13∗n+13)ˆ2∗ (60∗ (n−1)ˆ7+1020∗ (n−1)ˆ6+
7348∗ (n−1)ˆ5+29016∗ (n−1)ˆ4+67679∗ (n−1)ˆ3+93031∗ (n−1)ˆ2+69633∗ (n−1)+21860))∗
(60 ∗nˆ7+ 1020 ∗nˆ6+ 7348 ∗nˆ5+ 29016 ∗nˆ4+ 67679 ∗nˆ3+ 93031 ∗nˆ2+ 69633 ∗n+21860)−
900 ∗ (n+1) ∗ (n+2)ˆ4 ∗ (n+3)ˆ7 ∗ (2 ∗n+3)ˆ2 ∗ (2 ∗nˆ2+ 10 ∗n+11)ˆ2 ∗ (3 ∗nˆ2+ 7 ∗n+3)ˆ2)

And this is the resulting SAGE worksheet output, which we denote by f(n).
f(n) = 220320 ∗ nˆ19 + 8325216 ∗ nˆ18 + 147344112 ∗ nˆ17 + 1621610588 ∗ nˆ16 + 12423804832 ∗
nˆ15 + 70274637076 ∗ nˆ14 + 303640886360 ∗ nˆ13 + 1022365685883 ∗ nˆ12 + 2710505167956 ∗
nˆ11 + 5672704072899 ∗ nˆ10 + 9319440019836 ∗ nˆ9 + 11820506702133 ∗ nˆ8 + 11159132582690 ∗
nˆ7 + 7175130478741 ∗ nˆ6 + 2225790478822 ∗ nˆ5 − 894429232807 ∗ nˆ4 − 1475079085458 ∗ nˆ3 −
812545969449 ∗ nˆ2− 226952537400 ∗ n− 26586925200

f(0) = −26586925200
f(1) = 48058098267150

f(2) = 29447930357308764

f(3) = 2740303120043884194
f(4) = 100611201083636165760
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