Remark on Voronovskaja theorem for q-Bernstein operators

Zoltán Finta

Abstract. We establish quantitative Voronovskaja type theorems for the q-Bernstein operators introduced by Phillips in 1997. Our estimates are given with the aid of the first order Ditzian-Totik modulus of smoothness.

Mathematics Subject Classification (2010): 41A10, 41A25, 41A36.

Keywords: Voronovskaja theorem, q-integers, q-Bernstein operators, K-functional, first order Ditzian-Totik modulus of smoothness.

1. Introduction

Let $q > 0$ and n be a non-negative integer. Then the q-integers $[n]_q$ and the q-factorials $[n]_q!$ are defined by

$$[n]_q = \begin{cases} 1 + q + \ldots + q^{n-1}, & \text{if } n \geq 1 \\ 0, & \text{if } n = 0 \end{cases}$$

and

$$[n]_q! = \begin{cases} [1]_q[2]_q \ldots [n]_q, & \text{if } n \geq 1 \\ 1, & \text{if } n = 0. \end{cases}$$

For integers $0 \leq k \leq n$, the q-binomial coefficients are defined by

$$\left[\begin{array}{c} n \\ k \end{array} \right]_q = \frac{[n]_q!}{[k]_q! [n-k]_q!}.$$

The so-called q-Bernstein operators were introduced by G.M. Phillips [3] and they are defined by $B_{n,q} : C[0,1] \to C[0,1]$,

$$(B_{n,q}f)(x) \equiv B_{n,q}(f, x) = \sum_{k=0}^{n} f \left(\frac{[k]_q}{[n]_q} \right) p_{n,k}(q, x),$$
where
\[p_{n,k}(q;x) = \left[\begin{array}{c} n \\ k \end{array} \right] q^k (1-x)(1-qx) \ldots (1-q^{n-k-1}x), \quad x \in [0,1], \]
and an empty product denotes 1. Note that for \(q = 1 \), we recover the classical Bernstein operators. It is well-known that Voronovskaja’s theorem [5] deals with the asymptotic behaviour of Bernstein operators. Then naturally raises the following question: can we state a similar Voronovskaja theorem for the q-Bernstein operators? The positive answer was given in [3] as follows.

Theorem 1.1. Let \(q = q_n \) satisfy \(0 < q_n < 1 \) and let \(q_n \to 1 \) as \(n \to \infty \). If \(f \) is bounded on \([0,1] \), differentiable in some neighborhood of \(x \) and has second derivative \(f''(x) \) for some \(x \in [0,1] \), then the rate of convergence of the sequence \(\{(B_{n,q_n},f)(x)\} \) is governed by
\[
\lim_{n \to \infty} |n| q_n \{(B_{n,q_n},f)(x) - f(x)\} = \frac{1}{2} x (1-x) f''(x). \tag{1.1}
\]

In [4], the convergence (1.1) was given in quantitative form as follows.

Theorem 1.2. Let \(q = q_n \) satisfy \(0 < q_n < 1 \) and let \(q_n \to 1 \) as \(n \to \infty \). Then for any \(f \in C^2[0,1] \) the following inequality holds
\[
|n| q_n \{(B_{n,q_n},f)(x) - f(x)\} - \frac{1}{2} x (1-x) f''(x) \leq c x (1-x) \omega \left(f'', [n] q_n^{-1/2}\right),
\]
where \(c \) is an absolute positive constant, \(x \in [0,1], n = 1, 2, \ldots \) and \(\omega \) is the first order modulus of continuity.

The goal of this note is to obtain new quantitative Voronovskaja type theorems for the q-Bernstein operators. Our results will be formulated with the aid of the first order Ditzian-Totik modulus of smoothness (see [1]), which is given for \(f \in C[0,1] \) by
\[
\omega^1_{\varphi}(f, \delta) = \sup_{0 < h < \delta} \| \Delta_{h\varphi(x)}^1 f(\cdot) \|,
\tag{1.2}
\]
where \(\varphi(x) = \sqrt{x(1-x)}, x \in [0,1], \| \cdot \| \) is the uniform norm and
\[
\Delta_{h\varphi(x)}^1 f(x) = \begin{cases} f \left(x + \frac{1}{2} h \varphi(x)\right) - f \left(x - \frac{1}{2} h \varphi(x)\right), & \text{if } x \pm \frac{1}{2} h \varphi(x) \in [0,1] \\ 0, & \text{otherwise}. \end{cases}
\]
Further, the corresponding \(K \)-functional to (1.2) is defined by
\[
K^1_{1,\varphi}(f, \delta) = \inf\{\| f - g \| + \delta \| \varphi g' \| : g \in W^1(\varphi)\},
\]
where \(W^1(\varphi) \) is the set of all \(g \in C[0,1] \) such that \(g \) is absolutely continuous on every interval \([a,b] \subset [0,1]\) and \(\| \varphi g' \| < +\infty \). Then, in view of [1, p.11], there exists \(C > 0 \) such that
\[
K^1_{1,\varphi}(f, \delta) \leq C \omega^1_{\varphi}(f, \delta). \tag{1.3}
\]
Here we mention that throughout this paper \(C \) denotes a positive constant independent of \(n \) and \(x \), but it is not necessarily the same in different cases.
2. Main result

Our result is the following.

Theorem 2.1. Let \(\{q_n\} \) be a sequence such that \(0 < q_n < 1 \) and \(q_n \to 1 \) as \(n \to \infty \). Then for every \(f \in C^2[0,1] \) the following inequalities hold

\[
\left| [n]_{q_n} \left((B_{n,q_n} f)(x) - f(x) \right) - \frac{1}{2} x(1-x) f''(x) \right| \\
\leq C \omega_1^1 \left(f'', \sqrt{[n]_{q_n}^{-1} x(1-x)} \right), \tag{2.1}
\]

\[
\left| [n]_{q_n} \left((B_{n,q_n} f)(x) - f(x) \right) - \frac{1}{2} x(1-x) f''(x) \right| \\
\leq C \sqrt{x(1-x)} \omega_1^1 \left(f'', \sqrt{[n]_{q_n}^{-1}} \right), \tag{2.2}
\]

where \(x \in [0,1] \) and \(n = 1, 2, \ldots \).

Proof. We recall some properties of the q-Bernstein operators (see [3]):

\[
B_{n,q_n}(1, x) = 1, \quad B_{n,q_n}(t, x) = x, \quad B_{n,q_n}(t^2, x) = x^2 + [n]_{q_n}^{-1} x(1-x) \tag{2.3}
\]

and \(B_{n,q_n} \) are positive.

Let \(f \in C^2[0,1] \) be given and \(t, x \in [0,1] \). Then, by Taylor’s formula,

\[
f(t) = f(x) + f'(x)(t-x) + \int_x^t f''(u)(t-u) \, du.
\]

Hence

\[
f(t) - f(x) - f'(x)(t-x) - \frac{1}{2} f''(x)(t-x)^2 \\
= \int_x^t f''(u)(t-u) \, du - \int_x^t f''(x)(t-u) \, du \\
= \int_x^t [f''(u) - f''(x)](t-u) \, du.
\]

In view of (2.3), we obtain

\[
\left| B_{n,q_n}(f, x) - f(x) - \frac{1}{2} [n]_{q_n}^{-1} x(1-x) f''(x) \right| \\
= \left| B_{n,q_n} \left(\int_x^t [f''(u) - f''(x)](t-u) \, du, x \right) \right| \\
\leq B_{n,q_n} \left(\left| \int_x^t [f''(u) - f''(x)] \, |t-u| \, du \right|, x \right). \tag{2.4}
\]

In what follows we estimate \(\int_x^t |f''(u) - f''(x)| \, |t-u| \, du \). For \(g \in W^1(\varphi) \), we have
where we have used the inequality $|\int_a^b f''(u) - f''(x)| |t-u| \, du |$ \\
\[\leq \left| \int_a^b f''(u) - g(u) |t-u| \, du \right| + \left| \int_a^b g(u) - g(x) |t-u| \, du \right| \\
\[+ \left| \int_b^c g(x) - f''(x) |t-u| \, du \right| \\
\[\leq 2\|f'' - g\|(t - x)^2 \]

On the other hand, by [2, p. 440], we have the following property: for any $m = 1, 2, \ldots$ and $0 < q < 1$, there exists a constant $C(m) > 0$ such that \\
\[|B_{n,q}(t-x)^m| \leq C(m) \frac{\varphi^2(x)}{[n]_q^{(m+1)/2}}, \]

where we have used the inequality $\frac{|u-v|}{\varphi^2(v)} \leq \frac{|u-x|}{\varphi^2(x)}$, v is between u and x (see [1, p. 141]).

Now combining (2.4), (2.5), (2.6) and the Cauchy-Schwarz inequality, we find that \\
\[\left| (B_{n,q}f)(x) - f(x) - \frac{1}{2} [n]_{q^n}^{-1} x (1-x) f''(x) \right| \]

where $\varphi(x) = \sqrt{x(1-x)}$, $x \in [0,1]$ and $\lfloor a \rfloor$ is the integer part of $a \geq 0$ (see also [4, (4.2) and (5.6)]).
Because $\varphi^2(x) \leq \varphi(x) \leq 1$, $x \in [0, 1]$, we obtain, in view of (2.7),

$$\left| [n]_{q_n} \{ (B_{n,q} f)(x) - f(x) \} - \frac{1}{2} x(1-x) f''(x) \right| \leq C \left\{ \|f'' - g\| + \frac{\varphi(x)}{[n]^{1/2}_{q_n}} \|\varphi g'\| \right\}$$

(2.8)

and

$$\left| [n]_{q_n} \{ (B_{n,q} f)(x) - f(x) \} - \frac{1}{2} x(1-x) f''(x) \right| \leq C \varphi(x) \left\{ \|f'' - g\| + \frac{1}{[n]^{1/2}_{q_n}} \|\varphi g'\| \right\},$$

(2.9)

respectively. Taking the infimum on the right hand side of (2.8) and (2.9) over all $g \in W^1(\varphi)$, we obtain

$$\left| [n]_{q_n} \{ (B_{n,q} f)(x) - f(x) \} - \frac{1}{2} x(1-x) f''(x) \right| \leq \begin{cases} C K_{1,\varphi} (f'', \varphi(x)[n]^{-1/2}_{q_n}) \\ C \varphi(x) K_{1,\varphi} (f'', [n]^{-1/2}_{q_n}) \end{cases}.$$

Hence, by (1.3), we find the estimates (2.1) and (2.2). Thus the theorem is proved. □

References

Zoltán Finta
“Babeș-Bolyai” University,
Faculty of Mathematics and Computer Sciences
1, Kogălniceanu Street,
400084 Cluj-Napoca,
Romania
e-mail: fzoltan@math.ubbcluj.ro